Problem 4*

(0) The Lagrangian for \(N \) real scalar fields with an \(O(N) \) symmetry is given in Eq. (23.132). Verify that the Feynman rule for the propagator of a scalar with momentum \(p \) and indices \(i, j \) is

\[
\frac{i\delta^{ij}}{p^2 - m^2 + i\epsilon}.
\]

Verify that the Feynman rule for the 4-scalar vertex with indices \(i, j, k, l \) is

\[
-2i\lambda(\delta^{ij}\delta^{kl} + \delta^{ik}\delta^{jl} + \delta^{il}\delta^{jk}).
\]

In the case \(N = 1 \), how is the coupling constant \(\lambda \) related to the parameter \(\lambda \) in the Lagrangian in Eq. (23.85).

(a1) Calculate \(\beta(\lambda) \). Check that your result for \(N = 1 \) is consistent with Eq. (23.95).

Calculate the ultraviolet divergent part of each of the three one-loop vertex correction diagrams using dimensional regularization. Determine the renormalization constant \(Z_4 \) for the 4-point vertex to order \(\lambda \) using minimal subtraction. The renormalization constant for \(\lambda \) is \(Z_\lambda = Z_4/(\sqrt{Z_\phi})^4 \). The wavefunction renormalization constant to order \(\lambda \) is \(Z_\phi = 1 \). The relation between the bare and renormalized coupling constants is \(\lambda_0 = \mu^{d-4}Z_\lambda\lambda \). Apply \(\mu d/(d\mu) \) to the logarithm of both sides and use the fact that \(\lambda_0 \) does not depend on \(\mu \).

(a2) Calculate \(\gamma_m(\lambda) \). Check that your result for \(N = 1 \) is consistent with Eq. (23.96).

Treat the \(-\frac{1}{2}m^2\phi^i\phi^j \) term in the Lagrangian as an interaction term whose vertex has two incoming lines and the Feynman rule \(-im^2\delta^{ij} \). Calculate the ultraviolet divergent part of the one-loop vertex correction diagram using dimensional regularization. Determine the renormalization constant \(Z_2 \) for the 2-point vertex to order \(\lambda \) using minimal subtraction. The renormalization counterterm for the mass parameter \(m^2 \) is \(Z_m = Z_2/(\sqrt{Z_\phi})^2 \). The relation between the bare and renormalized masses is \(m_0^2 = Z_mm^2 \). Apply \(\mu d/(d\mu) \) to the logarithm of both sides and use the fact that \(m_0^2 \) does not depend on \(\mu \).
(b) Express the equations for $\beta(\lambda)$ and $\gamma_m(\lambda)$ in the forms in Eqs. (23.104) and (23.105). Identify the nontrivial fixed point analogous to that in Eqs. (23.106).

(c) Predict the critical exponent ν defined in Eq. (23.103) in $d = 3$ dimensions.