Baierlein, Thermal Physics Chapter 9

20. BEC with sodium. The second experiment to produce BEC in a dilute gas used sodium atoms. The number density was $N/V=10^{20}~\rm atoms/m^3$. The mass of a sodium atom is $m=3.82\times 10^{-26}~\rm kg$. As with the rubidium experiment, only one state of intrinsic angular momentum was populated.

- (a) If the trap that confined the atoms were adequately approximated by a box with rigid walls, at what temperature would you expect BEC to set in (as one lowered the temperature)?
- (b) How low a temperature would be required for 90 percent of the atoms to be in the single-particle ground state?
- (c) The common, stable isotope of sodium has 12 neutrons and is the isotope referred to above: ²³Na. The unstable isotope ²¹Na has ten neutrons, the same nuclear spin, and a half-life of 23 seconds. In the following, suppress the possibility of radioactive decay.

A box of volume $1 \, \mathrm{cm}^3$ contains 10^{14} sodium atoms at a temperature $T = 1.3 \times 10^{-6}$ K. The atoms form a dilute gas, and only one state of intrinsic angular momentum is populated. Determine whether the heat capacity C_V is an increasing or decreasing function of temperature if

- (i) all atoms are ²³Na atoms;
- (ii) half are ²³Na and half are ²¹Na.

Baierlein, Chapter 9

Problem 20

(a) The critical temperature is

 $kT_{c} = S(\frac{3}{2})^{-\frac{2}{3}} \frac{h^{2}}{2\pi m} \left(\frac{N}{V}\right)^{\frac{2}{3}}$

Detting $m = 3.82 \times 10^{-26}$ kg and $n = 10^{20}/m^3$, we obtain

Tc = 1.75 µK

(b) The condensate fraction is

 $\frac{N_0}{N} = \left(1 - \frac{T}{f_c}\right)^{3/2}$

This is equal to 0.90 at the temperature

T=0.068Te = 0.12 pK

- (c) The heat capacity Cy is an increasing function of T if T < To and it is a decreasing function function of T if T > To.
 - (i) Cy is an increasing function of T since 1.3 µK is less than Tc=1.75 µK

(ii) The two isotopes are like 2 spin state.

The critical temperature for 2 spin state is $KT_c = \left(28\binom{3}{2}\right)^{\frac{2}{3}} \frac{h^2}{2\pi m} \left(\frac{N}{V}\right)^{\frac{2}{3}}$

 $T_c = 2^{-2/3} (1.75 \mu K)$

= 1.10 µK

Cv is an increasing function of T since 1.3 pK is less than Te.