Winter 2012

Physics 622 1st Midterm Exam NAME

Problem 1.
An ideal paramagnet consists of N spins with magnetic moment x in a magnetic field B at
temperature 7. The Helmholtz free energy for this system is

F = —NKT In[2 cosh(BuB)],
where 3 = 1/kT. The thermodynamic relation for F' is
dF = —-SdT — MdB.

The following derivative might be useful:

d
- In[2 cosh z] = tanh z.

(A) What is the partition function Z for this system?
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(B) Express the energy U as a derivative of F' and calculate U explicitly.
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(C) Express the entropy S as a derivative of F' and calculate/{ explicitly.
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Consider a single spin in equilibrium at temperature T. Its energy is E = —uB if the spin is
up (1) and E = +uB if the spin is down (|).

(D) Express the partition function Z; for the single spin as a sum of Boltzmann factors.
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(E) Express the partition function Z for the entire system of IV spins in terms of Z;.
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(F) What is the probability P; that the single spin is up?
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(G) What is the average energy E of the single spin? (Express it using the probabilities P;
and P, and also as an explicit function of B.)
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(H) Given E, what is the total energy U of the system?
The general definition of the entropy S for a probability distribution P(s) is
=Y P(s)log P(s).

(I) What is the entropy S for the single spin. (Express it in terms of the probabilities P; and

P).
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Problem 2.

Neutrinos have a single interacting spin state, but they come in three flavors (e, u, and 7),
which can be treated like 3 spin states. For an ideal gas of N massless neutrinos with equal
numbers of the 3 flavors, the number N of neutrinos and their total energy U are
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First consider the system at the absolute zero of temperature.
(A) Evaluate the two mtegrals analytically.
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(B) Solve for the chemical potential p as a function of V.
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(C) Express the energy U as a function of N and V' only.
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Next consider the system at very low temperature. The integrals for N and U can be
calculated as expansions in kT'/u:
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where £ is the Fermi energy. The solution for y and the expression for U can be expanded in
powers of kT'/cp.

(D) Solve for p to first order in kT'/cp.
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Finally consider the system at very high temperature. The integrals for N and U can be
calculated as expansions in exp(Su):
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The solution for y and the expression for U can be expanded in powers of Y = (N/V)(he/kT)?.

(E) Solve for exp(8Bu) at leading order in Y. (At this order, the expressions in square brackets
can be set equal to 1.)
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(F) Determine the energy U of the classical gas of neutrinos.
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(G) The solution for exp(Su) at next-to-leading order in Y is
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Calculate U to next-to-leading order in Y.
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(H) The typical momentum of a particle in the gas is of order KT/c. Show that the condition
Y < 1 is equivalent to the condition that the cube of the de Broglie wavelength A/p of a
typical particle is small compared to the volume per particle.
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Problem 3.

A system consists of a gas of N particles in a volume V' at temperature 7. Each of the
following specifies a possible probability distribution P(s) for the microstates of the system in
terms of the energy U, of the microstate s and its particle number N,:

R: P(s) x exp|[Sres(Utotal — Us)], where S,es(U) is the entropy of a much larger reservoir as a
function of its energy U and Uiy is the conserved total energy of the reservoir plus the
System,

C: P(s) x exp[—BU,], where [ is a parameter,

G: P(s) x exp[—B(Us — uNy)], where 3 and p are parameters.

(A) For R, specify the constraint on the entropy function Syes(U) that is required in order to
describe the system, which has temperature 7.

8Srcs (u-hw‘ﬁb P —L

Era T
(B) For C, identify the parameter (3.
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(C) For G, identify the parameter 3. Write down the equation that determines the parameter
L.
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(D) For C, express the average energy U of the system as a ratio of sums over microstates.
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(E) For G, express the average particle number N of the system as a ratio of sums over
microstates.
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(F) Specify the thermodynamic limit of the system in terms of the variables N, V', and T.
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(G) Of the three probability distributions (R, C, and G), which ones can correctly describe
the thermodynamic limit of the system.
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Recall that the system consists of exactly N particles in the volume V. Suppose the
temperature T of the system is held fixed by keeping it in thermal contact with an infinitely
large reservoir with that temperature.

(H) How does the relative fluctuation AU/U in the energy of the system scale with N?
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(I) What is the average particle number N for the system? What is the standard deviation
AN in the particle number?
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(J) Of the three probability distributions (R, C, and G), which one describes the system most
accurately, including fluctuations in the thermodynamic variables?
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