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Chapter 7 Quantum Statistics

Problem 7.3. Neglecting both spin (\-vhich cancels out of the final result) and the excited
states of the hydrogen atom (which contribute negligibly even at 10,000 K), this system
has just two states:

unoccupied: E=0, N=0, Gibbs factor=e¢’=1;
occupied: E=—I, N=1, Gibbs factor = e (-I-#D/¥T,

The ratio of the probabilities of these two states is the same as the ratio of partial pressures
of ionized to un-ionized atoms:

P, _ P(unoccupied) 1 R B

Py P(occupied) e~ (=T-#)/kT T en/kT "

Here p is the chemical potential for electrons. Treating the electrons as an ideal gas and

again neglecting spin,
VZ,
B —len( ‘ t) & —len( ) )
N'UQ Pe'UQ

so e*/*T = P,ug/kT, which yields the Saha equation,

_}}. — ii-‘_ e_I/‘kT.
PH PE'UQ

S

Problem 7.4. Taking electron spin into account, the hydrogen atom now has two occupied
states, each with the same energy, so the ratio of unoccupied to occupied atoms is
P, _ P(unoccupied) _ 1 R il (1)
Py Ploccupied) ~ 2e~(-I-m/kT " 2en/kT’

But now, a free electron has two degenerate states, so the chemical potential of the electron
gas is
VZ
w= -—len( Z‘"t) = —len( 26L )
N'UQ Pe‘UQ

implying that e*/*T = P,ug/2kT. When we plug this into equation 1, the factors of 2
cancel, yielding the Saha equation exactly as derived in the previous problem.

Problem 7.5. (lonization of donors in a semiconductor.)

(a) Taking the system to be a single donor ion, there are three possible states: one ionized
state (no electron present), and two un-ionized states (with one electron present, either
spin-up or spin-down). The energies and Gibbs factors of these states are

ionized: E=0, N=0, Gibbs factor= e =1;

un-ionized: E=-I, N=1, Gibbs factor = e~ (—T-w1)/kT
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For our parameters, this works out to

—34 T.q)2 3/2 1/t
(6.63 x 1073 J . 5) ) e (00036)

= 1023 -3
L L )(277(9.11 x 10-31 kg)(7.04 x 10-21 J) ) 72 t3/2

(where I've converted Ny/V and I to SI units before doing the arithmetic). To plot
z as a function of ¢ I used Mathematica, first defining the function y(t) with the
instruction y[t_] := 0.0036 * Exp[1/t] / t~1.5. Then, to draw the actual plot,
I typed

This produced the following plot:
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As expected, the fraction of ionized donors goes to zero at low temperature and to 100%
at high temperature. Interestingly, the steep increase occurs when kT is substantially
less than the ionization energy To convert the horizontal scale to kelvins, note that
I/k = (0.044 eV)/(8.62 x 10~° eV/K) = 511 K. At room temperature, kT/I is about
0.59, and more than 95% of the donors are ionized.

Problem 7.6. It’s easiest to start from the right-hand side of the desired relation and
work backwards:

¥TOZ KT Z D B -uN@)/rT
op

Zou Z
_ kT~ N(s) o~ [E(s)=nN(s)]/kT
— Z L4TKT

= Z N(S)Ee—lEca)—uN(a)I/kT

= Z N(s)P(s) =
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Similarly, making use of the third line above,
(kT)2622 kT & N(s)e—1BEG)-sN@I/kT
Z 0 Zop Z e

= Z[N( S)]ze—lE(s)—pN(an/kT
= [N(s)*P(s) = N?

Notice that these two results can be combined to obtain a formula for N? in terms of N:
2 N N i
7 = (kT) i NZ\ kT BNZ N?E) —kT—+(_)2
Z eu\ kT — Z \p A
The standard deviation of a quantity can be calculated as the square root of the average
of the squares minus the square of the average:

on = /N — (N)2 = /kT'(dN /).

For an ideal gas, p = —kT In(V Zjs./Nvg), where vq and Zjy; are functions of temperature
only and the N could just as well be N if the number of particles in the gas fluctuates.
Therefore 8u/ON = kT /N or 8N /du = N /kT, and the standard deviation is simply

on = \/KT(N/kT) = VN.

The appearance of the square root is ubiquitous in formulas for fluctuations, so we could
have guessed this result (up to a numerical factor) by dimensional analysis. For a gas of
about 10%® molecules, the number will typically fluctuate by less than 10'?, or about one

part in a hundred billion of the total.

Problem 7.7. Recall from Problem 5.23 the partial-derivative relation

(), -
op TV

We can think of N as a function of 4, T', and V; then this equation is a first-order differential
equation for & as a function of p, with 7" and V held fixed. Now define ® = —kTIn Z, and

differentiate with respect to u:
o )y Z o

according to the first result of Problem 7.6. In other words, ) obeys exactly the same

differential equation as ®. All that remains is to show that & = @ at one particular value
of . Consider both quantities at 4 = 0. Under this condition the Gibbs factor reduces

to a simple Boltzmann factor, so the grand partition function reduces to the ordinary
partition function (though still summed over states with all possible V) and therefore
$ = —kTInZ = —kTInZ = F, as shown in Section 6.5. On the other hand, the original
® is simply U — TS — uN = U = TS = F, when p = 0. Since % and & obey the same
differential equation W1th the same “initial” condition at p = 0, they must be the same

function.
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Problem 7.10. (A five-particle system with evenly spaced energy levels.)

(a)

(b)

()

(d)

If the particles are distinguishable, then all five will settle into the lowest energy level.
The same will happen if they are indistinguishable bosons. If they are indistinguishable
fermions, however, then only one may occupy each level so each of the five lowest levels
will contain one particle. The occupancies of the five lowest levels are therefore:

Distinguishable or Bosons Fermions
50000 11111

If the particles are distinguishable or bosons, then the system’s first excited state
has one of the five particles promoted to the second-lowest level. For distinguishable
particles, there are five different ways to do this (choose any one of the five particles
to promote), while for identical bosons there is only one way (it’s meaningless to ask
which particle has been promoted). For the system of fermions, the first excited state
has the highest-energy particle promoted from the fifth state to the sixth (again adding
just one unit of energy), and again there is only one way to do this. Graphically,

Distinguishable or Bosons Fermions
410000 111101

To add another unit of energy to the systems of bosons or distinguishable particles,
we can either promote a second particle to the second-lowest level (leaving three in
the lowest level) or leave four in the lowest level and promote the fifth up two levels.
For bosons, there is only one way to do either of these things, but for distinguishable
particles there are ten ways (5 choose 2) of doing the first and five of doing the second,
for a total degeneracy of 15. Meanwhile, for the fermionic system there are two ways
of putting in two units of energy, as illustrated below:

Distinguishable or Bosons Fermions
3200000 1110110
4010000 1111001

To add yet another unit of energy there are basically three choices for each system,
which I’ll simply illustrate:

Distinguishable or Bosons Fermions
23000000 11011100
31100000 11101010
40010000 11110001

Again there is a large degeneracy for the system of distinguishable particles: 10 for
the first arrangement (5 choose 3), 20 for the second (5 choices for the highest-energy
particle and 4 for the next-highest), and 5 for the third for a total of 35.

The probability for the system to be in any particular state is proportional to the Boltz-
mann factor for that state, e #/¥T (where F is the total energy of all the particles).
For any given E value, this quantity is the same for either system (and furthermore
the allowed E values are the same). But the probability, say, of finding the system
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with three units of energy is also proportional to the degeneracy, which is 3 for the
bosonic system but 35 for the system of distinguishable particles. This means that at
low temperatures we are much more likely to find a few units of energy in the system of
distinguishable particles than in the system of bosons. Put another way, the ground
state of the bosonic system is much more probable (relative to collection of all the
low-energy excited states) than we might otherwise guess.

Problem 7.11. The probability of a state being occupied is given by the Fermi-Dirac dis-
tribution function, At room temperature, kT = .026 eV, so the probabilities

are:

ele—m)/kT 4 1°

(a) For e — p= —1 eV, probability = pa= i (1+2x1077)"1 =1-2x10"" ~ 1.

1 1

(b) For € — ,u.= —.01 eV, prqbablllty = o Tl 1.68 .59.
o 1 1
(c) For € — p = 0, probability = o .50.
i 1 1
(d) For € — p = +.01 eV, probability = SToUos 11 = .47 = 41,
1 1

=2x 107",

(e) For e — p = +1 eV, probability = ST 11 = 5 x 101

Problem 7.12. According to the Fermi-Dirac distribution, the probability of state B being
occupied is I

. # 1 1
P(B OCCUP‘Ed) T es-W/FT 11 /AT 11

since eg = u + x. The probability of state A being unoccupied is

P(A unoccupied) =1 — provemm Y e L+ e—=/FT 11 e-a/kT 1 ]
e—/kT 1

e=/FT 11 1+ e*/FT

where I've used the fact that e, = p — z. This is exactly the same formula, so the two
probabilities are equal as expected.

Problem 7.13. The average occupancy of a state is given by the Bose-Einstein distribution

function,
T Ll

s g e e where z = (e — p) /kT.

n=

~ The probability of a state being occupied by exactly n particles is

—nIT

P(n) = G- = (-

Thus we can compute everything we need from the uantity e=* = e~ (¢~#)/*T where in this
¥ q

case kT = .026 eV.
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is equal to In(V Z;,,/Nvg). The inequality above is therefore satisfied for all energy levels

provided that
Y Zin >200 or wdC

.NUQ F@Q
For nitrogen at room temperature and atmospheric pressure, the left-hand side of this
inequality is

(1.38 x 10-23 J/K)(300 K)(50) /27 (28)(1.66 x 10~27 kg)(1.38 x 10~2® J/K)(300 K) \**
10° Pa (6.63 x 10-34 J.5)?

= 3.0 x 10°,

so the inequality is easily satisfied. At 200 K, colder than anywhere on earth, this expression
would be less by a factor of only (3/2)7/? = 4.1, so the inequality would still be easily met.
Even for a gas like hydrogen or helium, with Z,,; =~ 1 and a mass that is less by an
order of magnitude, this expression would evaluate to more than 200. So for ordinary
gases under atmospheric conditions, the three distribution functions are always essentially
indistinguishable.

> 200.

Problem 7.15. For a system of particles obeying the Boltzmann distribution, the total
number of particles should be

N = E TiBoltzmann = E e-_(h-“)/kT = e”/kT E e_EI/kT-
all s s 8

But the sum in the last expression is just the single-particle partition fun'ction, Z,, and
therefore, , W

%:e“’” or u:len—Z=—len%.
(I prefer to write — In(Z; /N) rather than In(N/Z;), since Z, > N whenever the Boltzmann

distribution applies.)

Problem 7.16. (Fermionic system with evenly-spaced levels.)
(a) Here are the diagrams for ¢ = 4, 5, and 6:

Energy —»
000000000000
900000000000
000000000000 |l
0000000 O00000 ™
900000000000
000000000080
000000000800
900000000000
000000000000 |
200000000000 @
000000000000
000000000000

90080000000
00000000080
90000000000
00000Q®000O00
900000000000
000000000000 ||
900000000000 @
900000000000
L 1 Je] 1 ol 1 Jelelele]
[ Jel 1 I I Jol Jelelole)
C00Q®0@0000000

(b) For g = 6 there are 11 states in total. Counting black dots in each row from bottom
to top, I therefore find that the probabilities of the levels being occupied are

1610 -9 8- 7 - 6.6 "4 3.2 1.1
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