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~ Therefore the Fermi energy is

e sN\¥* _h? (3N a
F ™~ gmL?\ 27 = 8m\ 27V '

Plugging in the numbers for nuclear matter gives

6.63 x 10734 J-s)* (3 0.18 x 104 m™° 2/3
| (663104 35 (HOIBX T 2 ) = P
€F = §(1.67 x 107 ké) ( ( o )) —64x10712J=40 MeV.

The Fermi temperature is just this divided by Boltzmann’s constant:

4% 107 eV
Tp:%=_____i———f—-——=4.6x10“K.

362 x 10°eV/K
This is hotter than the center of any ordinary star. Therefore, to the extent that such a
small system can be treated using thermodynamics at all, it should be an excellent approx-

jmation to treat & nucleus as a degenerate, T = 0 Fermi gas, in virtually all circumstances.

(Exceptions would include heavy jon collisions, supernova explosions, and the very early

universe.)

Problem 7.22. (Relativistic Fermi gas at T' = 0.)

(a) The allowed wavelengths are the same as for a nonrelativistic particle: If the length

of the box in the = direction is L, then the allowed wavelengths in the = direction
are Az = 2L /N, and similarly for A\, and X,. The momenta are also the same:
py = hnz /24, and similarly for py and p,. But now the energy 1is

hc hen
e=pc=c1/p§+p§+p,=ﬁ n2 +nd+n;= 31"

where n = /nz + 7y T n2. Each of the n’s can be any positive integer, so we can
visualize the single-particle states as a lattice of points in the first octant of n-space.
As in the nonrelativistic case, the energy of a state depends only on its distance from
the origin, so at T =0 we simply fill up an eighth-sphere, working our way outward
to some maximum radius Tmax- LD total number of electrons is just the volume of
this eighth-sphere times 2 (since there are two spin states for each set of n's):
1 4 ™
N = 2 -8' » Eﬂnimx = —3'11.3““.

Solving for Mmax gives Nmex = (3N /1fr)’“r 3, The chemical potentia.l or Fermi energy is
just the energy of the last state filled, that is, the energy corresponding to = -

i 61 )_________hc'nm,__ﬁ_c_ 3_N.1/3.-f'f ?.Iy_l/s
pmep=elrm) =5 2\ 7/ 2 v

(b) The total energy is the sum of the energies of all the occupied states:

U=2§:}:Ze(n),

ne Ny =
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where the factor of 2 is for the two spin orientations. As in the nonrelativistic €ase,
convert this sum to an integral in spherical coordinates, being sure to include the

o 1r/2d¢ ﬂ/?; Nmax - hen
=2[ f dGSiﬂB[ dnn® - —+-
0 0 0 2L

The angular integrals give m/2 (the surface area of 2 unit-radius eighth—sphere), leaving

“measure” n?sinf:

us with
o2 e nmax . whe 1, _ mhe aN\"® 3Nhe A
U=%"3L Js "d”’zL'ax“m‘SL(w =g \nV =7

where €p is given by the result of part (a). Thus the average energy is 3/4 of the
maximum energy, as compared to 3/5in the nonrelativistic case.

Problem 7.23. (White dwarf stars.)

(a) We want to make something with units of energy (newton-meters) out of M (kg), R
(m), and G (N'm? [kg?). It's convenient to express all the units as I just have, taking
the three basic units to be newtons, kilograms, and meters; none of these three can be : _J
written in terms of the other two. How to do it? Well, to get N in the numerator We
need exactly one power of G. But then, t0 cancel the kg? in the denompnator we need
two powers of M. And, since G has m® in the numerator and we want just meters,
we need to divide by one power of R. Finally, we should put in & minus sign since
gravity is attractive: We would have to add energy 0 disassemble the sphere, moving

the parts infinitely far apart where they have z€ro potentia,l energy.

Just for fun, let me now derive the exact formula for the potential energy of a sphere
of uniform density p- Imagine assembling the sphere by bringing in concentric shells
of mass, one at 2 time, from infinite distance. Suppose, further, that we already have
a sphere of radius r and mass m = arr3p/3. We now bring in the next shell, whose
thickness is dr and whose mass is therefore dm = Amrdr - p- The potential energy
of this shell once it arrives is dU = —Gmdm/r. Summing over all such shells and

converting the sum to an integral, we obtain for the total potentia.l energy

R 3
e [ [ im0 [ HEF
0
R

16m2Gp* f i 16m2Gp*? R’ 16m2GR® ( 3M )2
167°Ge” [" dgr=——75 "5
0

E
B
i

P

==""3 3 5 15 AT R3
. _3GM .2.
=% R’

where I've substituted p = 3M/4nR® in the second-to-last step. So the pumerical
coefficient in the energy formula, for the (probably unrealistic) case of a uniform™”

density sphere, i8 3/5.
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(b) According to equations 7.42 and 7.39, the total energy of a degenerate electron gas is
3 3 2 (3N\"°
Ukinetic = gNEF = EN : _8_;1: (}T/_) )

where N is the number of electrons. If the star contains one proton (mass m,) and

one neutron (mass = m,,) for each electron, then N = M/2m,. Plugging in 4nR® for
the volume then gives

32 (M 3/ 9 3/3 B2 M5/3
Ukinetic = (-—_) (—_“ = (OOOBB)J——
40m, \ 2m, 4m?R? memy! *R?

(c) The gravitational energy of the star is proportional to —1/R, while the kinetic energy
of the electrons is proportional to +1 /R?. Here's a sketch of these functions and their
sum:

U

LB
L R2

-

To find the minimum in the total energy, set the derivative equal to zero:

0—-_(2_ _E!_'_*.ﬂ -_a___gé—i _.%
4R\ R R?) R? B Rr\" R/

The equilibrium radius is therefore at
28 2(0.0088)h2M5/3/mem§/3 ( B2 1

. (3/5)GM? 0.020) -5 M

Notice that a white dwarf star with a larger mass has a smaller equilibrium radius.
This does make sense, because adding mass creates more gravitational attraction,
allowing the gravitational energy to decrease more then the kinetic energy increases
as the star contracts. :

(d) For a one-solar-mass white dwarf,
o (0.020)(6.63 x 10~ J - 5)?
= (667 x 10-11 N - m?/kg?) (911 x 10~ kg)(1.67 x 107 kg)*/3(2 x 10% kg)'/3
= 7.2 x 10° m = 7200 km.
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(e

(f)

(8)

This is just slightly larger than the earth. (For comparison, the sun’s radius is more
than 100 times the earth’s.) The density is the mass divided by the volume:

M 2 % 10°° kg & 5
P= T = Ta(rax i mp - o X 10 ke/m

This is 1.3 million times the density of water.
The Fermi energy is

h? (3NN R2 [ oM \1
= S—mg(ﬁ/‘) - R(Swzm‘,) R?
_ (6.63x 1073 J. 5)2( 9(2 x 10% kg) )2’3 1

T 8(9.11 x 103! kg) \ 872(1.67 x 10-2" kg) / (7.2 x 10° m)?
=31x107"J=19x10°eV.

So the Fermi temperature is
Te = ep/k = 2.3 x 10° K.

This is more than a hundred times hotter than the center of the sun. It seems unlikely
that the actual temperature of a white dwarf star would be anywhere near this high. In
other words, the thermal energy of the electrons is almost certainly much smaller than -
the kinetic energy they have even at T' = 0. For the purposes of the energy calculations
in this problem, therefore, simply neglecting the thermal energy and setting 7' =0 is
probably an excellent approximation.

If the electrons are ultra-relativistic, we can use the formulas derived in the previous
problem for the Fermi energy and the total kinetic energy:

3 3. hc(3N\"?
Ukinetic = ZNEF = ZN . —2— (W)

8. fHYSr 4 W M\¥/31
—S-hc(zmp) (w--;-'rrRa) —(0.0gl)hc(m—p) ol

The important feature of this formula is that it is proportional to 1/R, not 1/R?.
When we add the gravitational potential energy, which is proportional to —1/R, we
get a total energy function with no stable minimum. Instead, depending on which
coefficient is larger, the total energy is simply proportional to either +1/R or —1 /R.
Therefore the “star” will either expand to infinite radius or collapse to zero radius.

First note that the coefficient of the gravitational energy is proportional to M?, while

that of the kinetic energy is proportional to only M*/3, so the star will collapse rather :

than expand if its mass is sufficiently large. The crossover from expansion to collapse ] " ab
occurs when the coefficients are equal, that is, when

M3 3,
) = soM?,

H
it

(0.091)he(

mp



Problem 7.24

5 he1¥/? 1 "
M= [(0.091)5-5] e 3.4 x 10% kg,

| thatis, 8 little under twice the sun’s mass. However, the star won’t be relativistic to
. pegin with unless the average kinetic energy of the electrons is comparable to their
| rest energy, mc> =5X% 10° eV. For the sun’s mass, the average electron energy (0.6€x)
is only 1.2 X 10° eV, too low by a factor of about 4.4. This indicates that a one-solar-
mass white dwarf is probably stable, but it’s still close enough to being relativistic
that we shouldn’t expect the nonrelativistic approximation to be terribly accurate.
Meanwhile, looking back at part (e), we see that the Fermi energy is proportional to
(M/R®)*?® o (M2 =M 4/3 Therefore, to increase the Fermi energy by a factor of
4.4, we'd have to increase the mass by only a factor of about 3. Conclusion: A white
dwarf star with a mass greater than about three times the sun’s mass will be relativistic
and hence unstable, collapsing to zero radius (unless it first converts into some other
form of matter). (Note: The best modern calculations, which take into account both
the exact relativistic energy-momentum relation and the variation of density within
the star, put the critical mass for a white dwarf at only 1.4 solar masses. )

.:f-'Problem 7.24. In a neutron star, the kinetic energy comes from the neutrons, and the
. number of these is simply N = M/m,, where M is the total mass and m., is the mass of a
1 neutron. Therefore we can write the kinetic energy as

B e _3y. aN\/* _ 3% M\ (0 Y
netic = 5V °F T 57 8my V)  A40mp \Mn amR3 )

Adding the (negative) gravita.tiona,l potential energy, we have for the total energy

a
_ U= Upotantld + Uklmth: = _'"1__?" + %s
where @ = (3/5)GM? and B = (0.028)h’M5/3/m2,/3. As with a white dwarf star, the
equilibrium radius is the one that minimizes the total energy. Setting dU/dR = 0 and
solving for R gives
(0.093)h?
G M
Here again, the equilibrium radius decreases with increasing mass, due to the greater grav-
itational attraction. For a one-solar-mass neutron star this model predicts,
(0.093)(6.63 x 107 J5)?
- =12.3 km,
R=Gerx 10 N kg) (167 ¥ 1077 )2 < 10% kg)' "

about the size of & large city. The density would be

M 2 x 10%° kg
M _ 2x10 X _96x107k m?,
irR? in(12, 300 m)® e/
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or more than 10'* times the density of water. Not surprisingly, this is comparable to the
density of an atomic nucleus. The Fermi energy is

e (aN R (M1
s (o) “m(ﬁ) I

_ (6.63x107%J- s)? (9(2 x 10% ke) %3 1
B(1.67 x 107" kg)*/° 4r? (12,300 m)?
_g1x10"12J=57x10"eV,

so the Fermi temperature is
Tp = ep/k = 6.6 % 01 K,

This is even higher than for a white dwarf star, sO the actual temperature of a neutron
star is almost certainly much lower than Tg. Like 2 white dwarf, a neutron star should
become unstable when the neutrons become relativistic, that is, when their average kinetic
energy becomes comparable t0 their rest energy, mc? = 940 MeV. For a one-solar-mass
peutron star, the average Kinetic energy is only 0.6ep = 34 MeV, too small by about a
factor of 28. But the Fermi energy is proportional to the mass to the 4/3 power, SO the
critical mass should be larger than the sun’s mass by a factor of about 9g3/4 = 12. (The
experts, however, puf the critical mass at only about 3 solar masses, taking into account

both density variations and the full relativistic equation of state.) “

Problem 7 95. According to equation 7 A8, the electronic heat capacity of a mole of _
copper should be S,

a7 (8.62 % 10-% eV/K)(300 .5 Y __
ov=3 k" A A R = (0.018)R = 0.15 J/K.

For comparison, the heat capacity of lattice vibrations (assuming these are not frozen
should be roughly 3R = 25 J/K, 166 times greater. So at room temperature, the elec
contribute less than 1% of the total heat capacity of copper

Problem 7.26. (Liquid helium-3 as & degenerate Fermi gas.)
(a) The Fermi energy of & «gas” of *He atoms with the given density is

B (3N 28 (6.63x 107 J9)" ( 3(6.02 x 10%) )2’3
=go\7v,) ~ B(3)(1.66x107 kg) \m(37 x 10-° m°)
—69x10 B J=43X 1074 eV.

The Fermi temperature is therefore

-4
43 %1071 eV _50K.

€
T = % = 5o x 0 IR

862 x 10-° J/K

That'’s only 2 little higher than the boiling point, 3.2 K.
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Problem T2

As p;edicted by equation 7.48, the heat capacity should be

C 2k 3
___‘f_-:L-f_.-:ll()K-l_

S0 although the linear temperature dependence agrees with experiment, the predicted

Using the experimental value of the heat capacity coefficient, the entropy of liquid *He

exactly equal to the heat capacity due to the lineat temperature dependence- The en-
tropy of the solid meanwhile, should be k 2V = Nk In 2, since each nucleus has two
ossible spil orientations. This constant value should apply down to very loW (mil-
likelvin OF lower) temperatures, when the nuclear spins finally align and the entropy
freezes out- Here is & sketch of both entropy functions:

S

Nkin2

T

~ ¢ 0.25 K

The intersection point where the entropies aré equal should be at a.pproximateiy

In2

T=5g5 0.25 K.

Nkln2= (2.8 K-V NKT, or

According O the Clausius—Ciapeyron relation, the slope of the solid-liquid phase
boundary on & graph of Povas T should be proportiona.l to the entropy difference,
Siiqud — Seolid- Qur analysis therefore predicts that the slope should be positive at
temperatures greater than about 0.25 K, and negative at lower temperatures: The ex-
perimentai phase diagram (Figure 5.13) shows just this behavior, with the transition
from positive to negative slope at about 0.3 K, just slightly higher than our prediction.
The discrepancy could be because of lattice vibrations giving the solid some additional
entropYs and/or the entropy of the liquid no longer being quite linear at relatively high
temperatures: At very loW temperature, where the entropy of the solid also goes 10

zero, the phase boundary becomes horizontal.

Problem 7.97. (Heat capacity of a Fermi gystem with evenly spaced Jevels.)

(a) Referring t0 the dot diagrams of Problem 7.16, imagine starting with =0 and then
constructing & state for higher 4 by displacing 0D€ or more solid dots upward. The
total pumber of upward steps taken by the dots must be g, the total number of units
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The plus sign gives

o value of s that actually decreases with increasing t.

Statistics

gives
m2t? 24 24 m2t? m2t?
SR el 1o = e I
b 4 * w2t u wzt) 12 G
= m2t? i3 22 12 i - w2t? eyt
. 12 ot -6 T

the physically relevant solution, since the minus sign
Squaring this expression then

y

would give

24

2t

In the second line I've approximated the square root under the assumption that ¢ =>

which is true whenever the

qn, so the heat capacity is

The predicted
constant term.

can see, it agrees peautifully with the

Why is the heat
a par

explicitly specified volume, SO
meaningful. In real systems,

really

with increasing volume.
the constant 1. In formula 7 A8

a three—dimensional box, the factor of N really comes

dependence in

capacity
adox, since heat capacity must be extensive. However, this model s
vs. intensive quantity is not

gwould decrease,
a hidden volume
of a Fermi gas in

AT

—_—

3 n

w2t
™t _9\ =
2) =k

of this system independent of

the notion of an extensive
the spacing between
9o if you like,

as well; see equations 751 and 7.54.

Problem 7.28.
(a) Intwo dimensions,

AMT=0 fermions s€

they fill & quarter-circle with radius Nmax:
/8mA. But the total number of fermions in the

assuming that the fermions have spin 1 /2 and hence two allowed states for
wavefunction. Solving for Mimax

— h2m2
€F'_'h''n"l'nmﬁ'.

To compute the

total energy,

(TWO—dimensional Fermi gas.)
the allowed energy levels are

€= __hf___(nz +n2)
8mL? ” L8

The Fermi energy is

and plugging into the formula
e h? ?_N_ B h*N
P EmA\ T ) armA’

we add up

the sum to an integral over & quarter—circle in polar coordinates:

U:?ZZe(ﬁ)

0

Timax L . Nmex h?,n?-
:2[) dnﬁ dqbne(n)-:-ﬁf ey

energy level
imagine that there is
for the heat capacity
from the energy

gystem is N

for €p gives

the energies of all filled states and

dn =

—_—
=

RH formula applies in the first place. The energy U 18 just -

2).

heat capacity is linear in T, as expected, but offset downward by a

This prediction is plotted as the solid line in the graph above. As you

exact numerical calculation as t becomes large.

N? This may seem like quite

ystem has no

level spacing

ttle into the lowest unfilled levels, s0 in two—dimensional n-space,
the highest filled level,
2 .

MM pax! 7!
each spatial




Problem 7.28

But B~ 9N/ so this is just

h? (2NY RN? 1
i 32mA( = =gNer

e grmA

The average energy is just U/N = ep/2-

To find the density of states, We need to change variables to € in either the integral
for the total energy of the integral for the total number of particles. Since the energy
integral appears just above, 11l work with it. For the variable change from 7 to €
we need to Know that € = h*n’/ gmA, which implies de = (hgn/thA)dn, or ndn =
(4mA/ h?)de. Therefore the energy integral (at T = 0) is

EF 4
U=L w(-%’f‘- cde (@ T=0)

We interpret this integral of the sum of all the energies (€) multiplied by the number
of states per unit energy (g(€)de)- Therefore, for this system,

which is indeed & constant, independent of €.

() The illustration below is an adaptation of Figure 7-14 10 this two-dimensional system.
The solid curve shows the number of particles present, per unit energy; 88 T increases,
the slope of the fall-off becomes shallower. But because g(€) 18 constant for this
system (and because of the symmetry of the Fermi-Dirac distribution about the point
€ = p), the lightly shaded areas ar€ equal and therefore p, the point where figp = /2
remains at its zero-temperature value, €. OF almost: At sufficiently high temperatures
(kT ~ €p), the Fermi-Dirac distribution will become signiﬁcantly Jess than 1 at negative
values of €. Since g(€) = 0 at negative € (there are no negative-energy states), the
upper 1ight1y—shaded area will then be smaller than the lower one unless p decreases-
At temperatures much greater than eg/k: the fall-off in the Fermi-Dirac distribution
will be so spread out that p will have to become pegative 11 order to preserve the
equality of the two lightly shaded areas. In summary: When kT < €ps H remains
almost exactly equal to €F- When kT > €m H becomes negative and decreases with

increasing temperature.

1O

p=Ex

(d) At nonzero temperature, the integral for the total number of particles is

00 [ o9 1
o [somtose=s [
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tegral becomes

= (€— p)/kT, this in
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ging variables t0

since g is & constant. Chan
il X

N = gkT f T dz.

—p/kT e* + 1

- if it were multiplied by the deriva-

The integrand is 8 composite function involving €%}
z), we could integrate it easily with another substitution.
g pumerator and denominator

= (which is also €
form by multiplyin

on the other
1 and therefore the ¢

he logarithm is less than

‘When kT > Em
the argument of t

ve as expected.
the exponential can be exp

eaving us with ‘
A ArmkT A2
(W*WT)"”m‘ﬁE)

the chemical PO
ron has

anded in & power series: 1+ € JRT v

tive of €
But we can almost put it into this
by e **
(e o] e——z
—p/kT Lpie
Now just substitute ¥ = e—* and dy = —e *dx:
N k i LI kT In(1 ’
== fgp/w 14y g n( +y) enl kT
o 1 i kT
— —gkTln (ﬁ_emﬁ) = ngln(l + ! ).
Solving for p 88 & function of N then gives
p= len(e”"ng,-— 1) = len(e‘F/"T = 1Y o
When kT < €r the exponential eer/KT is very 1arge, and the 118 negligible in com-
parison, SO the right-hand side is approximately kT - ep/ kT = €0 as predicted above.
hand, the exponential is only slightly larger than 1, s0 ]
hemical potential is

negati

(e) When kT >> €r)
The 1 cancels, 1
€
~ kT o SO
p =~ kT In 75 KT In
f equation 6.93 for tential of a8
two internd ;,

mensional analogue O
— 92 because the elect

This is the two-di
ordinary (“classical”) ideal gas, with Zin

spin states.

7.29. The energy 1
) oo
p= [[esl@mep@te=e
-

ate by parts:

AN ATy, Ve "

ntegral is

Problem
o0
j A2 Agp(€) e
0 b
]

7.57, we now integr

2 sy o 2 [oo 5/2 dngp
U= 5906 nFD(e)\D + g9 | € - de.

Asin equation




Problem 7.31

Lz Vorder to do the rest of the algebra with Mathematica, I typed in this expression:

energy = (2/5)goxma” (6/2) * (Pi“2/4)g0*k’1"‘2*mu“(1/‘2) -
' (T%Pi"4/960) gO*KT~4/mu” (3/2)

n the pext four steps 1 plugged in the explicit formula for gos plugged in the previously
calcula.ted series for p, substituted kT [ep for T and expanded everything in & series to

.~ fourth order in kT"

energy /- 89 77 (3/2) (n/eF” (3/2))

energyl =

energy2 = energyl /. mu _> muSeries*eF
energy3 = energy2 /- £ 7 kT/eF

energy4d = Normal [Series [energy3, {kT,0,4}]]

The final instruction returned the desired expression for U to fourth order in kT [€x:

- o k) art (kD)
= el

4 3 0 €

| @
-
=

+

l

T

|

Notice that the fourth-order correction to the energy is negative. The corresponding correc-
tion to the heat capacity would also be negative, and cubic in temperature, 0 & plot of Cv
vs. T should become concave-down a8 T becomes comparable to €f- (See Problem 7.32.)

Problem 7.31. We saW in Problem 728 that the density of states of this two-dimensional
system is & constant, N/€g- Therefore the energy integral is

3 U= 1_\&[ eTippl€) de-

€r Jo

Unlike the integral for N, this integral cannot be done analytically: So let’s integrate by
parts as in equation 7.5T:

— ——

2 0 oo 2
N€ \ N E__ﬁgn 36,
o €rlo 2 de

U= E;‘g"ﬁ?n(ﬁ)

The boundary term vanishes at both limits, leaving us with

o T
=-—N ezi@p—de—:-—ly— __¢ _éds,

2er Jo € 2ep Joupr (&7 F 1)?
where in the last expression I've changed variables toz = (e~ 1)/ kT and inserted expression
7.58 for diipp /de. So far this expression is exact. But when kT < €r» W can extend the
lower limit of the integral down to —oo as in the three-dimensional case. Since €2 contains
only integer powers of =, no Taylor expansion is necessary; We have simply

| N [ e’ 9
; 2.3 do.
U= PR f ..-—-—-—-—'( 1) v+ ukTz + (kT)°z \dz
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Evaluating the integrals exactly as on page 284, this becomes

2 N(kT)2 -

—_—

N2 2 (KT) N
_ Nup +W__N( P Nee o

U=

The heat capacity 18 therefore

au w2 NK*T

I
V oT /v 3ep

which is linear in T as expected. Here, howeVer, there are no corrections to the linear be-
havior that are proportional to higher powers of T’; the corrections are instead exponential,

just as the deviation of p from €p 1S exponentially suppressed by a factor of e~°¥/*

Now consider the high temperature limit, kT > €p- In this limit, a8 shown in Problem
7.28(e), 1 & kT In(ep/KT)s which is negative. ginop e Wit 31 for all €, we can neglect

the 1 in the denominator of the Fermi-Dirac distribution and write simply

N [ Ne N
s P e = — f o - 2 _
=) A €e de EF———-k ah €e de = kT(kI) = NkT,

tition theorem.
&

Problem 7 32. (Numerica.l treatment of a Fermi gas.)

obtained the integral
2 ] - VI dz

. i
e{z—c)/t + 1

—1andc=0, this condition becomes simply

o
1:§ —-—[Ec——d:n.
2 0 €x+1

To evaluaté the right-hand side T typed

1 .5*NIntegrate [Sqrt[x1/ (exp [x1+1) ,{x,0,Inf jnity})

into Mathematica and got the result 1.017. So p is not exactly zero when kT =S8

but it's close. To reduce the value of the integral slightly we would want to met

the denominator of the integrand larger, which we can do by making ¢ (or ) sl
negative.

(b) First 1 defined 2 Mathematica function 0 compute the integral for any values
and t:

fermilN[c_ £ =1 _gxNIntegrate [Sqrt [x]/ (EXP [(x-c) /%] 1) ,{x,0 .Infinit-Y

as we would expect for an ordinary ideal gas in two dimensions, according to the equipar-

(a) Making the substitutions t = kT[egs € = pfep, and T = e/€ep 1D equation 7.58,1

(Here I've used equation 7.51 for g(€), and canceled the N's on both sides.) Setting



