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Chapter 7 Quantum Statistics

Problem 7.33. (Simple model of a pure semiconductor.)
(a) At nonzero temperature there will be some electrons in the conduction band and some

To plot it I gave the instruction
Plot[energy[t],{t,.01,2},PlotRange->{A11,{0,3.2}}];

This produced the following graph:
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Notice that U/Neg goes to 3/5 at T' = 0, as expected. To obtain the heat capacity I
numerically differentiated the energy function and then plotted the result:

heatcap[t_] := (energy[t+.01] - energy[t-.01])/.02
Plot [heatcap[t],{t,.02,1.99}];

(Not very elegant, but it does the job.) Note that this “heat capacity” function really
calculates C/Nk, since the energy function is really U/Ne, and ¢ is in units of eg/k.
Here's the plot:
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At temperatures much less than ep/k, the heat capacity is approximately linear in T,
as derived in the text. A temperatures much greater than ep/k, the heat capacity
approaches %N k, the value for an ordinary “monatomic” ideal gas.

“holes” (unfilled states) in the valence band. But the numbers of conduction electrons
and valence holes must be exactly equal, since raising the temperature can’t change



(b)

(c)

Problem 7.33

the total number of electrons. To calculate the number of electrons within any energy
range we would integrate the function g(€)Tigp(€). Now in this simple model, g(e) is
symmetrical about the point € = €g. Furthermore, as shown in Problem 7.12, the
Fermi-Dirac distribution is symmetrical about the point € = 4, in the sense that the
probability of a state at € being occupied is equal to the probability of a state at p—¢€
being unoccupied. In order for the calculated number of conduction electrons to equal
the number of valence holes, the produce g(€)7ipp(€) must also have this property, but
this will happen only if the symmetry points and ep coincide. '

The number of electrons in the conduction band is the integral of the density of states
times the Fermi-Dirac distribution:
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If the width of the gap is much greater than kT, then the exponent in the Fermi-Dirac
distribution is large over the whole range of integration and we can neglect the +1
in comparison to the exponential. The integral then simplifies considerably; we can
evaluate it explicitly by changing variables to z = (e — €) /KT
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The integrtﬂ over z can be done by the methods of Appendix A, or looked up in tables
or evaluated by computer; it is simply \/7/2. Plugging in the explicit value of go (from
equation 7.51) then gives
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vQ
where vq is the quantum volume defined in equation 7.18 and Ae is the width of the

gap, 2 - (€. — €f)-

At room temperature, kT’ ~ 0.026 eV so the exponential factor is

1.11 eV
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Meanwhile, the quantum volume is

( (6.63 x 10-3¢ J - 5)?
UQ =

3/2
o —26 3
27(9.11 x 10-3! kg)(1.38 x 10-23 J/K)(300 K)) =8.0x 107" m".

Therefore the number of conduction electrons per unit volume should be roughly

N. _ 2(5.4x107)
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For comparison, the density of conduction electrons in copper is about 8.5 x 10%
per cubic meter, as calculated in Problem 7.19. So copper should conduct electricity
roughly a million million times better than (pure) silicon.

(d) A pure semiconductor will conduct much better at higher temperature because there
are so many more electrons in the conduction band. For example, suppose we raise the
temperature of our silicon from 300 K to 350 K. The quantum volume then decreases
by a factor of (350/ 300)3/2 = 1.26, which isn’t very significant. On the other hand,
the exponential factor is now

= 1.11 eV
2(8.62 x 10° eV/K)(350 K)

o—De/2kT — exp( ) el g e 1077,

greater than its value at 300 K by a factor of 19. The number of conduction electrons
is therefore more than 20 times larger than at 300 K. (An ordinary metal, on the other
hand, has a fixed number of conduction electrons so its conductivity depends only on
how readily these electrons can move around. At high temperatures, collisions occur
more frequently, so the conductivity is lower. This effect is also present in silicon, but
is swamped by the enormously greater number of conduction electrons.)

(e) To get an insulator (with essentially no conduction electrons), we would want the
gap to be significantly wider than the 1.11 eV gap in silicon. Doubling this value
should pretty much do it, since this would square the exponential factor computed
above, multiplying the number of conduction electrons by another factor of 5 x 1071°
to yield only 7 million per cubic meter. For a 3-eV gap, the exponential factor (at
room temperature) is
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negligible indeed.

Problem 7.34. (Semiconductor: asymmetry of the density of states.)

(a) Suppose that gov < Zoc- Then, if p were to remain constant as the temperature
increases from zero, the symmetry of the Fermi-Dirac distribution would imply that
the number of electrons added to the conduction band is less than the number removed
from the valence band. To prevent such nonsense, u must decrease with temperature.
Similarly, if gov > goc, the chemical potential would have to increase with temperature.

(b) The number of electrons in the conduction band is the integral of the density of states
times the Fermi-Dirac distribution:
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(b) The conduction electrons can be treated as an ordinary ideal gas as long as the 1in the
denominator of the Fermi-Dirac distribution is negligible compared to the exponential
function, e(<—#/*T_for all € in the conduction band. This is the same as saying that
e—p > kT for all € in the conduction band, so a sufficient condition is €, —p > kT'. In
the limit T — O this condition definitely holds, since €. — p goes to a nonzero constant,
I/2, in this limit. Note also that €, — p is at least this large at any temperature;
furthermore, from the graph in part (a) we see that €. — p is at least four times
greater than kT' over the entire range of temperatures plotted. This range includes
room temperature, at which kT = 0.026 eV so kT'/I = 0.026/0.044 = 0.59; at this
temperature, €. — p is slightly greater than 31, about 5 times greater than kT'. Since

¢® ~ 150, approximating the Fermi-Dirac distribution by the Boltzmann distribution
within the conduction band should be accurate to about the 1% level.

(c) At temperatures around room temperature or lower, the number of valence electrons
excited to the conduction band will be quite negligible compared to the number from
donor ions, as discussed in part (a). (Actually, the number is even less than in a pure
- semiconductor, since the chemical potential is considerably higher in this case, imply-
ing that occupancies in the valence band are even closer to 1 .) At higher temperatures,
though, the number of conduction electrons from donor impurities saturates at 10%7
per cm®, while the number excited from the valence band continues to rise. At what
temperature will this number equal 10'7 per em3? To make a crude estimate, let’s go
back to the simplified model of a pure semiconductor used in Problem 7.33. There
we calculated that at room temperature, pure silicon contains about 10*® conduction
electrons per cm®. If we double the temperature to 600 K, the exponential factor
increases to
e~B¢/2%T =23 x 107°,
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about 40,000 times greater than at 300 K. The quantum volume also decreases by
a factor of 2%/2 = 2.8, the combined effect is to increase the density of conduction
electrons by only a factor of about 105. At 900 K, however, the exponential factor
increases to 8.1 x 10~4, greater than at 300 K by a factor of 1.5 x 10°. Factor in the
decrease in the quantum volume, (900/ 300)*2 = 5.2, and we obtain an increase in the
number of conduction electrons by a factor of nearly 107, as desired. Of course, all
this assumes that the chemical potential is at the midpoint between the valence and
conduction bands. In a doped semiconductor, as we’ve just seen, the chemical potential
is considerably higher at relatively low temperatures. But for our phosphorus-in-silicon
example, a temperature of 900 K implies kT/I = 1.76, at which the chemical potential
should drop below €. by more than 12 times the ionization energy (extrapolating from
the graph in part (a)). That puts p pretty near the center of the band gap, as needed.

Problem 7.36. (Magnetization of a degenerate Fermi gas.)

(a) Inthe paramagnetic systems studied in Chapters 3 and 6, every elementary dipole was
free to flip its spin from up to down—there were no restrictions from states already
being occupied. But in a degenerate Fermi gas, most electrons can’t flip from one
spin alignment to the other, because the state with opposite spin alignment is already
occupied by another electron. Only near the Fermi energy are there a significant
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(b)

(e)

number of unoccupied states, so only a small fraction the electrons are free to flip
their spins. Therefore, the magnetization should be relatively small, compared to
other paramagnets at the same temperature.

When there is no magnetic field, the density of states is

- _ w(8m)*? _ 3N
g(f) = gOJE! Where go - 2h3 = 252‘/2 .

This formula includes all states with either spin alignment; half of the states at any
energy come from each spin alignment. Adding a magnetic field B shifts the energies
of half the states (those with positive u,, and hence negative z-spin, thanks to the
electron’s negative charge) down by & = upB, and shifts the energies of the other half
of the states up by 6. Thus, the density of states is now

gle) = %’—\/e+6+ 92—"\/5—.5,

where it is understood that the ¢ values in each term are restricted to those that yield
real roots. A clever way to interpret this formula graphically is to turn Figure 7.13 on
its side, and plot one term to the left and the other to the right:

As the magnetic field is turned on (at T' = 0), the number of electrons that flip from one
spin alignment to the other is equal to the area of either of the lightly shaded regions
in the illustration above. Approximating these areas as rectangles, this number is
8 - 390,/€r- The number of up-dipoles increases by this amount, while the number of
down-dipoles decreases by this amount, so the total magnetization is

1 3NuiB
M = pp(N; —N)=pp-2-96- §gox/a= pgBgo/Ep = —2—?—.
F
It is interesting to compare this formula to equation 3.35 for an ordinary paramagnet in
the regime where Curie’s law applies. Aside from the factor of 3/2, the formulas differ
only in the replacement of kT’ by ep. Since € is normally much larger than kT, the
present system has a magnetization much less than that of an ordinary paramagnet.
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(d) At nonzero T, we can compute the numbers of up- and down-dipoles by integrat-

ing the corresponding portion of the density of states, multiplied by the Fermi-Dirac
distribution. Therefore the magnetization is

M = pp(N; — Ny) = ps U -9-22\/5_+ 3 Tipp(€) de — / 9—2°\/e s le) de].
-8 ]

To evaluate either integral, we can use the Sommerfeld expansion as on pages 283-284
of the text. For instance, the first integral is

o 2 = dn 2 e e
VeF 3 iple)de = = 32 _%TFD ,f e 3/2
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where in the first step I've integrated by parts and in the second step I've changed
variables to z = (e — p)/kT and extended the lower limit of the integral down to
infinity. The next step is to expand (€ 4+ 8)%? in a power series about € = p:

3 3 _
(€+06)*2 = (u+0)"* + 5(e—p)(u+ &)Y + Z(e— w)*(k+9) 1 g von
Writing € — ¢ as zkT and plugging into the integral above gives (approximately)
IR (N S kT (i + )2 + 5 (KT (u+ )™ | do
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where I've evaluated the integrals as in equations 7.62 through 7.64. The other integral
is the same except that d is replaced by —d, so the magnetization is approximately

2 2
M=% %[(# 6% — (= 82 + T (RT)*(u + 6) /% — & (KT (1~ 6)"’”]-

Since & is much smaller than p, we can now use the binomial expansion as follows:

(nxoy =p(1£ %)P ~ (14 ?-:E),

where p is either 3/2 or —1/2. Applying this approximation to each term gives

M=’_‘%@[#3/2(1+3_6_.1+_3_6)+£82_(kT)2#—1/2(1__5__1__§_)]

2u 2p 2u 2u
_ HBY 3/2_§_ﬁ 2 —1/2,_‘2 = 1/2,._“&(_’“‘1_1)_2

Now recall that the chemical potential is given, to order (kT /eg)?, by equation 7.66
(plus a correction proportional to (6/ep)?, which we assume to be small in comparison).
In the second term of our formula for M, we can simply plug in p = €, since the




242  Chapter 7 Quantum Statistics

correction would be proportional to (kT'/ep)*, which we assume to negligible. In the i

first term, though, we must carefully plug in the corrected formula for u and use the g

binomial expansion once again:

1/2 w2 (kT)?
M= #3590[ 1/2(1 i ) ) x| 3/3 ]
w2 (kT
= #3590[ 1/2( 5 ) ) ( 3/3 ]
3N ,u’ B kT
= ) 1/2 1___ o _ bkl ol b
Heiiore 12 ( ) :

(In the final step I've used the definitions of § and go. ) The prefactor is the same N

zero-temperature result obtained much more easily in part (c). The correction term ];’

shows that as the temperature increases, the magnetization decreases (as one would e

expect), but only slightly as long as kT < eg. :l;?_

£
Problem 7.37. To find the maximum of the Planck function z®/(e* — 1), you could just P
plug in numbers until it becomes clear that z = 2.82 gives a larger value than any other z. e
Or you could use a Mathematica instruction such as i
FindMinimum[-x"~3/(Exp[x]-1),{x,3}] g

which returns the value 2.82144. The sophisticated method is to set the derivative of the
function equal to zero: is the

LR d z3 _32:2(63—-1)—2738’:_ z2 . .
O_E(f—l)‘ =y | e ey S e |

The solutions z = 0 and z = co give the minima of the function. We want the maxim
which is at the nontrivial solution where

3e® — 3 = ze, or e T=1——.

But this is a transcendental equation, so we again must resort to numerical methods, sud
as the Mathematica instruction

FindRoot [Exp [-x]==1-(x/3),{x,3}]

which again returns 2.82144.

Problem 7.38. At T' = 3000 K, kT = 0.26 eV, while at T = 6000 K, kT = 0.52 eV.

To plot the Planck spectrum vs. photon energy at each of these temperatures, I used the
Mathematica instruction

Plot[{e~3/(Exp[e/.26]-1),e"3/(Exp[e/.52]-1)},{e,0,6}]



