(c)

Problem 7.53

On a per-kilogram basis, my radiation rate is '

1000 W

g T e 14 W /kg,
whereas the sun’s is 4 LR
9 x
— = 0.0002 W
2 x 10% kg /ke,

about 70,000 times less (and 7000 times less than my rate of fuel consumption). How
is this possible? Although the sun is bright, it is also very massive. And although it
generates energy by nuclear fusion, the reactions in its core actually proceed extremely
slowly—giving it a ten-billion-year lifetime. I, on the other hand, have to replenish
my (chemical) fuel supply on a daily basis.

Problem 7.53. (Hawking radiation from black holes.)

(a)

(b)

We calculated in Problem 3.7 that the temperature of a one-solar-mass black hole is
6 x 1078 K. For a blackbody at this temperature, the peak in the radiation spectrum
(plotted as a function of photon energy) would be at € = (2.82)kT = 1.5 x 1071 eV.
This corresponds to a wavelength of A = hc/e = 84 km. More generally, the peak
would be at a wavelength of

he he 16m*GM 2GM
(2.82)kT ~ 282  he s

The quantity 2GM/c? is just the “radius” of the black hole, that is, the quantity that
you could plug into the formula 4772 to obtain the surface area. Thus, for any black
hole, the typical wavelength emitted is about 28 times the “radius,” or 14 times the
“diameter.”

The total power radiated should be given by Stefan’s law:

ower = o AT — 2n5k* \ (16wG2M? he? ) B ho®
it = \1sh3c2 ot 1672kGM ) ~ (30, 720)n5G2M?

For the sun’s mass (2 x 10%° kg), this expression evaluates to 9 x 103! watts, or
6 x 107!2 eV/s. Since the typical photon radiated has an energy of 1.5 x 107! eV,
this means that such a black hole would emit a (very feeble) photon only about once
every two or three seconds.
The power radiated is the same as the rate at which the black hole’s energy (Mc?)
decreases, so the rate of decrease is given by the differential equation

d(Mc?) hc®

e T _
R TN ) e Yoy v

That is,

dM H he® 51,8
— = T where H=W=4'OX1OI kg*/s.
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(d)

(e)

(We could refer to H as Hawking’s constant.) This is a separable differential equation,
which we can integrate to obtain the lifetime 7 of the black hole:

0 T M3
/ M%!M:—Hf P PRI | R
M; 0 3
that is, 7= M?/3H.
For M; = 2 x 10% kg, the lifetime should be
30 3
W 15l SEE ST

~ 3(4.0 x 10 kg?/s)

That’s 2 x 10%7 years, or more than 10°7 times the age of the known universe. Black
holes that form by stellar collapse should have initial masses at least this large, so
there’s no hope of observing such black holes disappearing any time soon.

The age of the known universe is about 15 billion years or 5 x 10'” seconds. The initial
mass of a black hole with this lifetime would be

M, = (3Hr)/3 = [3(4 x 10" kg?/s)(5 x 107 5)]"/* = 1.8 x 10" kg,

smaller than the sun’s mass by a factor of about 10'®. The “radius” of such a black
hole would be .
s 2.6 x 1071% m,
c

and therefore the radiation it emits (initially) would peak at a wavelength of about
28 times this, or 7 femtometers. That's comparable to the size of an atomic nucleus.
At photon with this wavelength has an energy of € = he/A = 170 MeV. That’s a very
hard gamma ray, a hundred times more energetic than gamma rays emitted in nuclear
reactions, though not as energetic as those produced at today’s particle accelerators.
As the black hole evaporates and loses mass, its temperature increases and the gamma
rays emitted become even more energetic. However, a black hole that can emit MeV
gamma rays can probably also emit electron-positron pairs and perhaps other species
of massive particles. This would increase its rate of evaporation and decrease its
lifetime. Therefore, to have lasted the age of the universe, a black hole probably
would have needed an initial mass somewhat greater than I've calculated.

Problem 7.54. (Stellar surface temperatures and sizes.) Stefan’s law, in conventional
units, reads I = 0 AT* = 4roR*T*, where L is the star’s luminosity and R is its radius.
For convenience, though, we could measure L, R, and T in units of the sun’s values. In

these units, the constant 47o must be equal to 1, because the sun’s temperature and radius

(bot
R=

h 1) must yield the sun’s luminosity (1). Solving the equation for R then gives simply
L/T%. Note also that the energy at which a blackbody spectrum peaks is directly

proportional to the temperature (e = (2.82)kT’), so the ratio of a star’s temperature to that
of the sun is the same as the ratio of the peak photon energies. As calculated on page 305,
the sun’s spectrum peaks at a photon energy of 1.41 eV.



Problem 7.61

where a is an abbreviation for 127*N k/STS,‘ the slope of the graph plotted in Figure
7.28. From the data for copper plotted in the figure, this slope appears to be roughly
(0.9 mJ/K?)/(18 K?) = 5 x 10~® J/K*, while v, the intercept, appears to be roughly
0.7 mJ/K2. Therefore the temperature at which the two contributions are equal should be

Tx 10+ J/K2 =
T= \/;x TR VI4K? =3.7K.

At this temperature, each of the contributions to the heat capacity is equal to ¥T" =
(7 x 10~4 J/K2)(3.7 K) = 0.0026 J/K. Here, then, is a plot of the two contributions
separately:

900k Lattice
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Problem 7.61. If we repeat the derivation on pages 308 through 311 for the caseiof a
liquid, the only thing that changes is the number of polarization states for each triplet
(nz,ny,n,): now there is only one polarization rather than three. This change has no effect
on volume of n-space that is summed over, and therefore has no effect on the formula
= (6N/m)'/? or on equation 7.111 for the Debye temperature:

1/3
TD:."_C: 6N\
2k \ «V

nmax

To evaluate this expression we need to know the ratio N/V. Let’s take N to be Avogadro’s
number, so that the mass of the sample is 4 g. At a density of 0.145 g/cm?®, this value
implies a volume of 27.6 cm® or 2.76 X 10-5 m3. The predicted Debye temperature is
therefore

(6.63 x 103 J.5)(238 m/s) [ 6(6.02 x 10%) \/*
to =19.8 K.
2(1.38 x 102 J/K)  \m(2.76 x 10-° m?)

What does change in the derivation in the text is the numerical factor multiplying the
energy (and the heat capacity): The factor of 3 in equation 7.106 disappears, so each
expression for U or Cy from there on should be divided by 3 for the case of a liquid. The
heat capacity in the low-temperature limit is therefore 1/3 times the formula in equation

7.115: 3
& 4T
Nk~ 5 \Tp/
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The cube root of 5/47* is 0.234, so this is the same as

Cv _ L
Nk~ \(0.234)T, ) ~ \4.64K)’

in almost perfect agreement with the measured behavior.

Problem 7.62. When T > Tp, the z values integrated over in equation 7.112 are all much
less than 1, so we can expand the exponential in a power series:
z?3 x3 z3
-1 (1+z+ 322+ 323) - 1 9 T + 12? + 123
~ 22 [1 — (z + L2 + 1 (-1)(-2)(}z + %.1:2)2]

V1 B TS T PR T ISR e I S
s z3[1 lz 6:1:+4:c]-—m 15 + Lat,

=z3(1 + jz + 12%)?

Integrating this expression from 0 to 7p /7", we obtain
ONKT*[1/Tp\® 1/Tp\* 1 /Tp\®
U~“q'~g"[§("f) -5(F) +w(T)
1T 1 1 /Tp
Do [E(TE) e aa(‘fr—)]-

To obtain the heat capacity, differentiate:

-
ou 1 Tb 1 /Tp\2
= —_— = —— 0 —a—] — el oy .

=57 gNkTD[sTD 60T2J st [1 20\ T ) ]
Assuming that this formula is reasonably accurate down to T' = Tp, it predicts that the
heat capacity is 5% below its asymptotic value at T' = Tp, and 1.25% below its asymptotic

value at T = 2Tp.

Problem 7.63. For a two-dimensional material, the average energy in each wave mode
will still be given by the Planck distribution, but to compute the total thermal energy we

carry out only a double sum over modes:
€
U=Zzeem~_1’
x ny

where € = hf = he,/\ = he,n/2L = (he,/2L)\/nZ 4+ nZ. The numerical factor in front
of the sum is 1, assuming that each mode has only one possible polarization (compare
equation 7.106). If the material is in the shape of a square and there are N atoms, then

each sum goes from 1 to /N, the number of modes along each direction. In other words,
the sum is over a square region in n-space with area N (see the illustration on the following

page). Assuming that N is large, we can replace the sum by a double integral over the

same region:
vN vN &
U ‘-::A dn:,:‘/(]‘ dny W
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To obtain the heat capacity at intermediate temperatures, it’s easiest to differentiate
the energy integral before changing variables to z:

e L e ne L i ne(e/kT?)es/*T
C"_aT_E/O ﬁ(ee/kT—l) d”‘ifo (e</*T —1)2 o

T oLkT\? [ z3e® T AN { T \? (= gz3e"
—_ — . ——— d = . 4 m— ——ih e —
3k (hc. - = L R (TD)./O E-1 "

_2N.’¢:T2 f"""‘ 3 e® 2
3 TI% 0 (‘3’-1)2 .

To plot C/Nk vs. T/Tp, I gave Mathematica the instruction

Plot [2%t~2*NIntegrate [x"3*Exp [x]/ (Exp [x]-1)"2,{x,0,1/t}1,{t,0,1}]

and it produced the following graph:

1.0
0.8
c °®
Sl
0.2 -
, T/Tp
0.2 0.4 0.6 0.8 1

Although this graph looks similar to that for a three-dimensional solid (Figure 7.29), here
the low-temperature behavior is quadratic (rising more suddenly) instead of cubic.

Problem 7.64. (Spin waves in a ferromagnet.)
(a) The total number of magnons at temperature 7' should be given by the Planck distri-
bution, summed over all modes:

' 1
Nn= ). =7

Nz, My,

where € = p?/2m*, p = h/X = hn/2L, and n = /nZ +n2 + n?. If we convert the sum
to an integral in spherical coordinates, the angular integrals give a factor of /2 (as

always), leaving us with
. r [ n?
Ne =73 fo 1 9m

where I've used co as the upper limit because this whole picture applies only at
relatively low temperatures. Now change variables to z = ¢ [kT:

e h2n? _ [8m* LTz ) 2m*L2kT 1 di
T= o i T Bk ¥V R b .z




(b)

(c)

Problem 7.64

This variable change puts the expression for N, into the form

7 (8m*L2kT\ [2m*L2kT [* z 2m*kT\¥* [* Jz
Nm-—E( Iz ) o : em_ldm—-21rV( e ) -/; e’—ldm'

According to Mathematica, the integral is equal to 2.315.

If the total magnetization at T = 0 is 2ug N, and each magnon reduces this value by
2ug, then the fractional reduction in magnetization is

) 872 3/2
2us N, 5 N =2W(2_315)]_‘G_(2m kT) i (T> )

2usN ~ N h? To
where

B (NY" 1 _ (0.0839)h? ( N\*/°

°Tomrk\V /) (2-7-2315)23  m*k V)

For iron, we're given m* = 1.24 x 10~2° kg. The ratio N/V can be calculated from
the density and the atomic mass, or we can look up V/Navo on page 404. So for iron,
we can predict

. (0.0839)(6.63 x 10~34 J.s)> ( 6.02 x 1022
0

2/3
~ (1.24 x 10~ kg)(1.38 x 10~ J/K) \ 7.11 x 10-° ma) = 4150 K.

So the temperature has to be pretty high before the magnetization decreases by a
substantial fraction. -

To calculate the heat capacity, we should first calculate the energy:

oo

€ T [ en? om*kT\*? z3/2

n,,,n.,,n,

Mathematica says that this integral equals 1.783, so

om*k\** m*k\*?
U=21r(1.783)Vk( - ) T5/2=(31.69)Vk(~h—2) T3,

Differentiating with respect to T" gives the heat capacity:

w7\ 3/2 T7\3/2
Cy 1 U (31.69)5V(ka) =( ) ,

Nk NkoT AL T
where i o
h? (N 2 0.0542
e m*k ('17) (5(31.69)) T (0.0839)T° = (0.646)To.

For iron, therefore, T} = 2680 K, which implies that the magnon contribution to
the heat capacity is quite small (compared to Nk) at room temperature and below.
However, at sufficiently low temperatures, the magnon contribution will be greater
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than the phonon contribution, which is proportional to T® (see equation 7.115). The
temperature at which these two contributions are equal is given by

q 3/2 4 3 2/3 T2 2
(T) =12“(T), oo T=( >) T3 _ (0.0264) 41O KY _ 517k,

T 5 \Th 1204 T, 2680 K

Thus, at temperatures of a few kelvin, the magnon contribution to the heat capacity

should be measurable.
(d) For a similar system in two dimensions, the number of magnons at temperature T'

should be 1 =
™ n
N’“zzee/w_1=§/o ee/kT__ldn’

Nz, Ny

where I’ve converted the sum into an integral in polar coordinates and carried out the
angular integral (over a quarter-circle). But now, changing variables to z (which is
proportional to n?) gives the integral

Nmocf . dz.
o € —1

Near z = 0, we can expand e* =~ 1 +z + - - - and cancel the 1 to see that the integrand
is proportional to 1/z. Therefore, the integral diverges at its lower limit; this implies
that the number of long-wavelength magnons is infinite. The only obvious way out of
this contradiction is to suppose that the material doesn’t magnetize in the first place,

and this turns out to be true.

Problem 7.65. To evaluate the integral I used the Mathematica instruction

NIntegrate [Sqrt[x]/(Exp[x]-1),{x,0,Inf inity}]
and it returned 2.31516, confirming the value quoted in the text.

Problem 7.66. (Bose-Einstein condensation of rubidium-87.)
(a) For a rubidium-87 atom in a cube-shaped box of with 10~% m, the ground-state energy
is
Y e i il (6,63 % 107~ J.a)*
i da e T el )= 8 (87)(1.66 x 10-27 kg)(10-5 m)?
=1.14x10"32 J=71x 107" eV.

This is a tiny energy indeed.

(b) According to equation 7.126, the condensation temperature is

h2

2nmL?

where the coefficient 0.224 comes from comparing this expression to the previous one.
If there are 10,000 atoms in our box, then the kT, is greater than ¢, by a factor of
(0.224)(10,000)2/3 = 104 ~ 100, that is, kT, = 7.4 x 10712 eV or T, = 8.6 x 1% K.
This is in rough agreement with the value 107 K quoted on page 319.

kT, = (0.527)( )N = (0.22) N2,



