Equi-partition Theorem

In the classical limit, the average of \(z \frac{\partial H}{\partial z} \), where \(H \) is the Hamiltonian and \(z \) is a generalized coordinate or a conjugate momentum, can be expressed as a ratio of integrals over phase space:

\[
\langle z \frac{\partial H}{\partial z} \rangle = \int d\omega \left(z \frac{\partial H}{\partial z} \right) e^{-\beta H} \bigg/ \int d\omega e^{-\beta H}.
\]

The phase-space measure can be expressed as \(d\omega = d\omega' dz \). The integral over \(z \) in the numerator is

\[
\int_{z_{\text{min}}}^{z_{\text{max}}} dz \left(z \frac{\partial H}{\partial z} \right) e^{-\beta H}
\]

A. Express the integrand with a factor of \((\partial/\partial z)e^{-\beta H}\).

\[
z \frac{\partial H}{\partial z} e^{-\beta H} = -\frac{1}{\beta} z \frac{\partial}{\partial z} e^{-\beta H}
\]

B. Integrate by parts to get a term with integrand \(e^{-\beta H} \) and a boundary term.

\[
\int_{2_{\text{min}}}^{z_{\text{max}}} dz \left(-\frac{1}{\beta} z \frac{\partial}{\partial z} e^{-\beta H} \right) = -\frac{1}{\beta} z e^{-\beta H} \bigg|_{z_{\text{max}}}^{z_{\text{min}}} + \frac{1}{\beta} \int_{z_{\text{min}}}^{z_{\text{max}}} dz z e^{-\beta H}
\]

Show that if \(H \) approaches \(+\infty\) as \(z \) approaches its endpoints, the average reduces to

\[
\langle z \frac{\partial H}{\partial z} \rangle = \frac{0 + \frac{1}{\beta} \int d\omega e^{-\beta H}}{\int d\omega e^{-\beta H}} = \frac{1}{\beta} = T
\]

where \(T \) is the temperature.

C. Determine the average value of each of the following terms in \(H \):

- \(H \) depends on the momentum component \(p \) only through the term \(p^2/2m \)
 \[
P \left(\frac{\partial}{\partial p} \left(\frac{p^2}{2m} \right) \right) = 2 \left(\frac{p^2}{2m} \right) \implies 2 \langle \frac{p^2}{2m} \rangle = T \implies \langle \frac{p^2}{2m} \rangle = \frac{1}{2} T
 \]

- \(H \) depends on the coordinate \(x \) only through the term \(\frac{1}{4} \gamma x^4 \)
 \[
x \left(\frac{\partial}{\partial x} \left(\frac{1}{4} \gamma x^4 \right) \right) = 4 \left(\frac{1}{4} \gamma x^4 \right) \implies 4 \langle \frac{1}{4} \gamma x^4 \rangle = T \implies \langle \frac{1}{4} \gamma x^4 \rangle = \frac{1}{4} T
 \]

- \(H \) depends on the angular momentum component \(L \) only through the term \(L^2/2I \) (the moment of inertia \(I \) is positive)
 \[
 L \left(\frac{\partial}{\partial L} \left(\frac{L^2}{2I} \right) \right) = 2 \left(\frac{L^2}{2I} \right) \implies 2 \langle \frac{L^2}{2I} \rangle = T \implies \langle \frac{L^2}{2I} \rangle = \frac{1}{2} T
 \]

Compare your results with your neighbors.
Show your results to the instructor.
If \(z \) is a generalized coordinate or a conjugate momentum, then in the classical limit

\[
\left\langle z \frac{\partial H}{\partial z} \right\rangle = T,
\]

where \(T \) is the temperature.

D. Show that the operator \(z \partial / \partial z \) counts the powers of \(z \): \((z \partial / \partial z) z^n = n z^n \).

\[
z \frac{\partial}{\partial z} z^n = z \cdot n z^{n-1} = n \cdot z^n
\]

Determine the average energy \(U \) in the classical limit for the following systems:

E. \(N \) atoms in a harmonic trapping potential with Hamiltonian

\[
H = \sum_{n=1}^{N} \left(\frac{1}{2m} \mathbf{p}_n^2 + \frac{1}{2} m \omega^2 r_n^2 \right).
\]

\[
U = \left\langle H \right\rangle = N \cdot \left(\frac{3}{2} T \right) + N \cdot \left(\frac{3}{3} T \right) = 3NT
\]

F. \(N \) quartic oscillators with Hamiltonian

\[
H = \sum_{n=1}^{N} \left(\frac{1}{2m} \mathbf{p}_n^2 + \frac{1}{4} \gamma x_n^4 \right).
\]

\[
U = \left\langle H \right\rangle = N \cdot \left(\frac{3}{4} \gamma \right) + N \cdot \left(\frac{1}{2} \gamma \right) = \frac{3}{4} \gamma NT
\]

G. an ideal gas of \(N \) diatomic molecules with atomic mass \(m \), vibrational frequency \(\omega \), and bond length \(R \). Its Hamiltonian can be approximated by

\[
H = \sum_{n=1}^{N} \left(\frac{1}{4m} \mathbf{p}_n^2 + \frac{1}{4} m \omega^2 z_n^2 + \frac{1}{mR^2} \left(L_{nx}^2 + L_{ny}^2 \right) \right),
\]

where \(R + z_n \) is the separation of the two atoms in the molecule and \(L_{nx} \) and \(L_{ny} \) are components of the internal angular momentum of the molecule.

\[
U = \left\langle H \right\rangle = N \left(\frac{3}{2} T \right) + N \cdot \left(\frac{1}{2} T \right) + N \cdot \left(\frac{5}{2} T \cdot 2 \right) = 3NT
\]

Compare your results with your neighbors.

Show your results to the instructor.