Section 1.1/1.2
Graphical and Numerical Summaries of Data

- **Shape of a Distribution**
 - Modes
 - Symmetric vs. Skewed
 - Outliers
- **Measures of the Center**
 - mean
 - median
- **Measures of Spread**
 - IQR
 - standard deviation
- **Choosing Summaries of Distributions**
- **Changing the Units of Measurement**

Modes

- **Question:** Does the distribution have one or several major peaks?
 - Look at histograms and stemplots.
- A distribution with one major peak is called **unimodal**. A distribution with two major peaks is called **bimodal**.
- Example of a bimodal distribution: scores on an exam
Symmetric vs. Skewed

- A distribution is **symmetric** if the values larger or smaller than the midpoint are mirror images of each other.

- A distribution is **skewed to the right** if the right tail (larger values) is much longer than the left tail (smaller values).

- A distribution is **skewed to the left** if the left tail (smaller values) is much longer than the right tail (larger values).
Outliers

Outliers – values that fall outside the overall pattern and are far from the bulk of the data

- Can be a result of natural variation.
- Or, can be evidence of a mistake (equipment failure, incorrect recording of an observation, etc.).

Removing an outlier? Big Decision
Measures of the Center

Two different ideas for the “center” of a distribution - can be very different.

• **Mean** - “average value”

\[
\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}
\]

or,

\[
x = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

• **Median** - “middle value”

a) sort observations from smallest to largest

b) if \(n \) is odd (\(n = \) number of observations)

median = middle value of the sorted list

= \(\frac{n+1}{2} \)th observation up from the bottom of the list

c) if \(n \) is even

median = mean of the middle two observations
Mean vs. Median

- The median is a more resistant measure of the center of a distribution, i.e., the median is not as affected by extreme observations (long tails, outliers)

Mean vs. Median Applet - example of a dot plot
(http://bcz.whfreeman.com/ips4e/default.asp)

<table>
<thead>
<tr>
<th>Left Skewed</th>
<th>Symmetric</th>
<th>Right Skewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean < Median</td>
<td>Mean = Median</td>
<td>Mean > Median</td>
</tr>
</tbody>
</table>
Example: Phyllis received 6 HW grades in her statistics class:
86 88 92 44 89 90

Her mean grade is:
\[
\frac{86 + 88 + 92 + 44 + 89 + 90}{6} = 81.5
\]

Her median grade is:
44 86 88 89 90 92
\[
\frac{88 + 89}{2} = 88.5
\]

Question: Does the mean, 81.5, give a good idea of her “typical” grade?

No, it is lower than all but one of her grades.

Question: What about the median, 88.5?

88.5 is more typical.
Measures of Spread

The p^{th} percentile of a distribution is the value such that p percent of the observations fall at or below it.

Most common percentiles: QUARTILES (25%, 50% (median), 75%)

- Q_1 (1st Quartile) - the median of the observations whose position in the ordered list is to the left of the location of the overall median.
- Q_3 (3rd Quartile) - the median of the observations whose position in the ordered list is to the right of the location of the overall median.

Five-Number Summary: Minimum Q_1 Median Q_3 Maximum

Boxplots

- Boxplots are graphs of five-number summaries.
 - A central box spans the quartiles Q_1 and Q_3
 - A line in the box marks the median.
 - Lines extend from the box out to the largest and smallest observations.

- Boxplots are good for side-by-side comparison of a few variables.
Measures of Spread

IQR vs. Standard Deviation

- **Inter Quartile Range (IQR)** = \(Q_3 - Q_1 \)
 - Resistant to outliers.
 - Not very useful for describing skewed distribution (as are all measures of spread).

- **1.5 X IQR criterion for outliers** - call an observation an outlier if it falls more than 1.5 X IQR above \(Q_3 \) or below \(Q_1 \).

Modified Boxplot: lines extend out from the central box only to the smallest and largest observations that are not suspected outliers.
Statistics 528 - Lecture 3

Variance (s²) - average of the squares of the deviations of the observations from their mean

\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2 \right] \]

Standard deviation (s) - square root of the variance (has the same units as the data)

\[s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]

Properties of the Standard Deviation

- s measures the spread about the mean and should only be used when the mean is chosen as the measure of the center of a distribution.

- s = 0 only when all the observations take on the same values. Otherwise, s > 0.

- s, like the mean \(\bar{x} \), is not resistant to outliers. A few outliers can make s very large.
Choosing a Summary

- The median, IQR, or five-number summary are better than the mean and the standard deviation for describing a skewed distribution or a distribution with outliers.
- The mean and standard deviation should only be used for describing symmetric distributions with no outliers.
- Why should we ever use the mean and standard deviation?
 Answer: They completely specify a normal distribution which allows us to easily perform statistical inference.

Changing the Unit of Measurement

Linear Transformations: \(x_{\text{new}} = a + bx \)

- \(a \) (constant) shifts all of the values of \(x \) up or down by the same amount
- \(b \) (positive constant) changes the size of the unit of measurement

- A linear transformation will not change the shape of a distribution.
- Multiplying each observation by a positive constant \(b \) multiplies both measures of the center (mean and median) and measures of spread (IQR and standard deviation) by \(b \).
- Adding the same number \(a \) (either positive or negative) to each observation adds \(a \) to the measures of the center (mean and median) and to the quartiles (and other percentiles) but does not change measures of spread.