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Abstract

In epigenetics, researchers are often interested in detecting differential DNA methylation
associated with phenotypes such as complex human diseases. We propose two powerful
statistical tests AFb and AF that can detect disease-related DNA methylation regions.
Our methods are based on adaptive combination of marginal tests in generalized functional
linear models, assuming continuity in the effects of the methylation sites in the pre-defined
genomic regions (such as genes). Simulation studies based on real human genome properties
show that our methods carry out high statistical power for various simulation models and
signal proportions. Experiments on schizophrenia data show that the detected genes by our
methods are remarkably consistent with previously reported genes related to schizophrenia.
Many of the previous reports were based on evidence other than DNA methylation, which
demonstrates the potential of our methods in detecting novel associated DNA methylation
regions.

1 Introduction

Understanding the etiology of complex diseases is one of the major challenges for biomedical
research. In the past decades, disease-associated single nucleotide variants (SNVs), the genetic
determinants, have been extensively detected and studied by numerous genome-wide association
studies (GWASs). Having realized that the genetic components may only explain a small
proportion of complex human diseases, researchers are now increasingly interested in seeking
disease-related epigenetic components, including DNA methylation and histone modification.
DNA methylation is a biological process during which methyl groups are added to cytosines
at the sites of CpG dinucleotides, which presumably leads to repression of gene transcription
when located near a gene promoter. Evidently, proper DNA methylation plays a critical role in
regulating gene expression for cell differentiation and embryonic development, which is to some
degree heritable across generations [1]. As shown in a large amount of research, abnormal DNA
methylation could give rise to severe adverse consequences, including human diseases such as
cancer [2], muscular dystrophy, ICF syndrome, and immunological defects [3], as well as birth
defects [4].

During recent years, technology advancements have promoted the development of epigenome-
wide association studies (EWASs). Methylation profiles with better resolution reveal that the

∗Correspondence to: Chi Song, College of Public Health, Division of Biostatistics, The Ohio State University,
1841 Neil Ave., 208E Cunz Hall, Columbus, OH 43210. E-mail: song.1188@osu.edu

1



relationship among methylation, gene expression, and human diseases is more complicated than
that was anticipated in the beginning. The functions of methylation vary with context [5].
Different methylation regions of a gene (e.g. exonic and intronic portions of gene body) may
have different effects on the gene expression and disease development, and to large extend this
regulation mechanism is unknown [6, 7]. There is an urgent need for statistical methods that
can identify disease-associated gene methylation profiles while treating the effects of different
methylation sites differently within each gene.

Commonly used methylome profiling technologies can be coarsely categorized as capture-based
and bisulfite (BS) conversion based. Capture-based technologies rely on the pulldown of methy-
lated DNAs. Fragments with any methylated CpGs are pulled down by either methyl-binding
proteins or immunoprecipitation. BS conversion technologies are based on bisulfite treatment
of DNA, which converts unmethylated cytosines to uracils while leaving methylated cytosines
unchanged. In the amplification stage, uracils are amplified as thymines, and thus can be distin-
guished from methylated cytosines. At each CpG site, the intensities of methylation (M) and
unmethylation (U) can be estimated for bulk tissue samples. DNA methylation level of each
sample can then be assessed as methylation proportion M

M+U . BS conversion is commonly used
in EWAS, because of its potential to produce CpG-resolution or base-resolution methylation
profiles.

Increasingly dense BS methylation arrays have been developed. The Infinium HumanMethy-
lation27 BeadChip array covers 27,578 CpG sites located in or near CpG islands within the
promoter regions of 14,475 genes [8]. The Infinium HumanMethylation450 BeadChip array
contains 485,577 sites (3,901 non-CpG loci) covering 99 % of RefSeq genes and 96 % of CpG
islands [9]. The Infinium MethylationEPIC BeadChip array accesses >850,000 methylation
sites, with 90 % of the HumanMethylation450 content covered [10]. However, even the Methy-
lationEPIC array only covers 4 % of all CpG sites, and is less targeted at gene bodies, where
methylation is hypothesized to be the most variable [11]. Sequencing, therefore, is undoubtedly
preferred for future EWAS because of its better resolution and larger coverage over the genome
[12].

Bisulfite sequencing (BS-seq) couples BS conversion and next-generation sequencing (NGS),
making it possible to produce single-base resolution methylation profiles across the entire
genome [13]. Currently, the most readily available BS-seq platform is reduced representation
BS-seq (RRBS), which covers 5 - 10 million CpG sites [14]. Whole-genome bisulfite sequencing
(WGBS) is able to generate methylation data at all CpGs in the genome, but for now, it is only
feasible in studies with small sample sizes due to its relatively high cost.

Over the past decade, many statistical methods for BS-seq data have been proposed to detect
differentially methylated cytosines (DMCs) or differentially methylated regions (DMRs). Like
GWAS, EWAS also started from testing each CpG site serially using classical hypothesis testing
methods, such as Fisher’s exact test (FET) [15, 16, 17, 18, 19] and logistic regression [19, 20],
and adjusting for multiple comparisons.

Neither FET nor logistic regression takes biological variability into account [21]. To overcome
this limitation, BSmooth [22] models the methylation level at a CpG site by a smoothly varying
function of its location and compares two groups by a signal-to-noise statistic similar to t-test.
Besides accounting for biological variation, smoothing also reduces the sequencing coverage
requirement for BS-seq and takes spatial correlation across nearby CpG sites into consideration.
BiSeq [23] is another commonly-used smoothing-based method. Smoothing is carried out on
predefined CpG clusters, and smoothed methylation level is modeled by a beta distribution.
The mean parameter of beta distribution is further modeled by the generalized linear model
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(GLM) with a “probit” link.

Beta-binomial methods belong to another category that accounts for biological variability. For
a particular CpG site, given the total number of reads, the number of methylated reads follow a
binomial distribution with probability of success being the underlying methylation level. This
methylation level is further assumed beta-distributed, so the dispersion parameter of the beta
distribution accounts for biological variation within groups. Based on this model, some meth-
ods compare the mean parameters of beta distributions between case and control groups to
detect DMCs. MethylSig [24] conducts the log-likelihood ratio test. Local information can be
incorporated in estimation to increase power when the sample size is small. DSS [25] estimates
the dispersion parameter by an empirical Bayes approach, or a shrinkage approach when the
number of replicates is small. Differential methylation is determined by the P-value of the Wald
test. DSS-single [26] shares the same framework, but further model the mean as a function
of location. This function is estimated by a smoothing procedure, so within-group biological
variation can be accounted for by borrowing information from nearby CpG sites when there are
no replicates. Empirical Bayes approach is also applied by MOABS [27], which identifies DMCs
by credible methylation difference (CDIF), a new metric developed upon the credible interval
of the mean difference between two groups. Other methods model the relationship between the
mean parameter and experimental factors/covariates by GLM, in order to allow for more general
experimental designs. RADMeth [28] uses the “logit” link function and tests whether the full
model is significantly better than the reduced model (without any factors) by the log-likelihood
ratio test. DSS-general [29] uses the “arcsin” link function, and a linear combinations of GLM
coefficients is tested by the Wald test. MACAU [30] generalizes the beta-binomial model by
adding a term accounting for population structure. GetisDMR [31] is similar to RADMeth in
employing the “logit” link and log-likelihood ratio test, but differentially methylated regions
(DMRs) are detected by Getis-Ord statistic, a widely-used quantity in spatial statistics.

Besides biological variability, the spatial correlation among CpG sites is another important
factor to be considered. One solution is to use the hidden Markov model (HMM), where the
Markov chain is used to model methylation levels of CpG sites as states (hypermethylation,
hypomethylation, and no change) and emission probabilities are their chance of being DMCs
among samples. HMM methods include ComMet [20], HMM-Fisher [32] and HMM-DM [33].

Most aforementioned methods also proposed approaches of various types for defining DMRs
from DMCs. For example, Bsmooth combines DMCs whose test statistic is larger than a
threshold; DSS also put thresholds on region length and CpG numbers; eDMR and RADMeth
employ the Stouffer-Liptak test. Robinson et al. [21] and Shafi et al. [34] summarized DMR
defining approaches in their reviews.

In addition to finding DMRs by combining DMCs, another strategy is to detect DMRs in
predefined regions (e.g., genes, CpG islands). QDMR [35], CpG MPs [36], and SMART [37] use
the entropy to quantify methylation level variation in a region among samples, and DMRs are
determined by a threshold for entropy. A few DMR analysis pipelines, such as COHCAP [38],
DMAP [39], and swDMR [40], provide a flexible selection of statistical tests (including ANOVA,
FET, t-test, Wilcoxon test, etc.) for different experimental designs. Regions satisfying certain
criteria are claimed as DMRs. Park and Lin [41] proposed BCurve, which detects DMRs by
Bayesian credible bands. For each sample, the methylation level over a region is modeled as a
smoothing function of CpG locations by B-spline basis functions. Credible bands of methylation
levels are estimated by a Bayesian shrinkage approach for cases and controls, respectively.
Regions are identified as DMRs if credible bands do not overlap. Wu et al. [42] proposed to
use aSPUw [43] test, a weighted version of aSPU [44], to detect associated CpG sites within
a gene region. This method adaptively combines score statistics for CpG sites to minimize
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the power loss due to nonassociated CpG sites. Zhao et al. [45] proposed the global analysis
of methylation profiles (GAMP), which employs the well-known SKAT [46]. Two methods,
GAMPcdf and GAMPpdf, were developed to detect methylation differences over a large number
of CpG sites or across the epigenome. They approximated the cumulative distribution function
(CDF) or the density of methylation distribution for each sample by B-spline basis functions,
respectively. Methylation profiles represented by functional basis coefficients are included in
GLMs and tested by SKAT.

Statistical challenges are presented despite the existence of a great number of DMC or DMR
detection approaches. First, most methods lack the flexibility of adjusting for covariates. It is
known that age and ancestral population are two major confounding factors for DNA methy-
lation. Yet, many methods mentioned earlier are designed for case-control studies and unable
to incorporate age and population structure into comparison. Second, a great number of the
above methods start from detecting DMCs site by site. On one hand, this strategy ignores the
potential spatial correlation among CpG sites. On the other hand, multiple test adjustment is
required afterwards, leading to potential power loss especially when the number of CpG sites is
large.

We propose to model the association between a trait and methylation levels of multiple CpG
sites in a region using generalized functional linear models. To detect trait-associated regions,
we propose to use the adaptive Fisher (AF) method [47] to combine multiple tests of functional
model coefficients according to their significance. Its weighted version, weighted adaptive Fisher
(wAF) [48], has high power in detecting disease-associated genes. In this article, we conduct
simulation studies and a real data analysis to show our newly proposed method, AFb, has good
power for detecting differentially methylated regions. Specifically, AFb adapts to different pro-
portions of nonzero effects in the functional space (i.e. proportions of basis functions associated
with the trait). For the ease of discussion, we refer to the scenario of large proportion as a dense
scenario, and the scenario of small proportion as a sparse scenario.

2 Methods

Consider n independent subjects. Assume that K CpG sites are located in a region (e.g., a
known gene or a CpG island) with locations 0 < t1 ≤ · · · ≤ tK ≤ T ordered in terms of the
cumulative count of base pairs. For subject i, let Yi denote a trait, M i = (Mi(t1), ...,Mi(tK))T

denote methylation levels of the K CpG sites, and Ci = (Ci1, ..., CiJ)T denote J covariates. We
use the following generalized functional linear model to describe the association between the
trait and this region,

h
(
E(Yi)

)
= β0 +

∫ T

0
β(t)Mi(t)dt+

J∑
j=1

αjCij , (1)

where Mi(t), t ∈ [0, T ] is the methylation function for subject i, β(t) is the methylation effect
function over the region [0, T ], and h(·) is taken as the logit link function for binary traits or
the identity link function for continuous traits.

We assume methylation effects at t1, · · · , tK are a discrete realization of an underlying contin-
uous function β(t) over [0, T ]. Here, we model β(t) as a linear combination of basis functions

β(t) =

Kb∑
m=1

γmbm(t), (2)
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where bm(t),m = 1, 2, · · · ,Kb is a series of B-spline basis functions [49]. We choose Kb � K to
reduce dimension and improve computation efficiency. Using numerical integration and equation
(2), the model (1) can be approximated as follows:

h
(
E(Yi)

)
= β0 +

∫ T

0
β(t)Mi(t)dt+

J∑
j=1

αjCij

≈ β0 +
K∑
k=1

β(tk)Mi(tk)∆tk +
J∑
j=1

αjCij (3)

= β0 +

K∑
k=1

[ Kb∑
m=1

γmbm(tk)
]
Mi(tk)∆tk +

J∑
j=1

αjCij

= β0 +

Kb∑
m=1

γm

[ K∑
k=1

bm(tk)Mi(tk)∆tk

]
+

J∑
j=1

αjCij

= β0 +

Kb∑
m=1

γmXim +

J∑
j=1

αjCij , (4)

where Xi = (Xi1, . . . , XiKb
)T =

(∑K
k=1 b1(tk)Mi(tk)∆tk, . . . ,

∑K
k=1 bKb

(tk)Mi(tk)∆tk
)T

, and

∆tk =


t2 − t1 k = 1,
1
2(tk+1 − tk−1) k = 2, . . . ,K − 1,

tK − tK−1 k = K.

We are interested in detecting any possible association between the trait and a CpG site in the
region. Specifically, we test

H0 : γ = 0 versus H1 : γ 6= 0, (5)

where γ = (γ1, . . . , γKb
)T . In the following subsections, the proposed adaptive fisher methods

involve the score statistics U = (U1, . . . , UKb
)T and the estimated covariance matrix V =

Ĉov(U |H0) = {Vij}Kb
i,j=1, which are given by

U =
n∑
i=1

(Yi − µ̂Yi)(Xi − X̂i), (6)

and

V = σ̂2
n∑
i=1

(Xi − X̂i)(Xi − X̂i)
T . (7)

where µ̂Yi = h−1(β̂0+
∑J

j=1 α̂jCij) with β̂0 and α̂j , j = 1, 2, ..., J being the maximum likelihood

estimators, σ̂2 = 1
n

∑n
i=1 µ̂Yi(1 − µ̂Yi) for binary traits and σ̂2 = 1

n−1
∑n

i=1(Yi − µ̂Yi)
2 for

continuous traits, and X̂i = (X̂i1, ..., X̂iKb
)T with X̂ik being the predictive value of Xik from a

linear regression model with the covariates Cij ’s as predictors.

2.1 Smoothed Adaptive Fisher Method

Let the standardized score statistics be

Ũk = Uk/
√
Vkk, k = 1, · · · ,Kb, (8)
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where Vkk is the kth diagonal element of V . Note that the P-value for testing a γk marginally
based on the test statistic Ũk is approximately equal to pk = 2

(
1−Φ(|Ũk|)

)
. Consider the order

statistics of pk’s, p(1) ≤ · · · ≤ p(Kb), in ascending order (i.e., the marginal tests are ordered from
most to least significant). Let

R(k) = − log p(k), (9)

for all k = 1, · · · ,Kb so we have R(1) ≥ · · · ≥ R(Kb). Let S = (S1, ..., SKb
)T be the partial sums

of R(1), ..., R(Kb), i.e.

Sk =
k∑
l=1

R(l), k = 1, · · · ,Kb. (10)

For each Sk, we calculated its P-value by

PSk
= Pr(Sk ≥ sk), (11)

where sk is be observed value of Sk. The smoothed adaptive Fisher statistic is defined by

TAFb
= min

1≤k≤Kb

PSk
, (12)

and the critical region is given by TAFb
< Tα, where the threshold Tα is determined by the

distribution of the test statistic TAFb
and the significant level α.

2.2 Adaptive Fisher Method

Alternatively, we could also put no assumption of smoothness on methylation effects, and thus
model the association between disease status and methylation levels by the following generalized
linear model,

h
(
E(Yi)

)
= β0 +

K∑
k=1

βkMi(tk) +
J∑
j=1

αjCij , (13)

which has a similar form as in model (4). Thus, we can likewise test

H0 : β = 0 versus H1 : β 6= 0. (14)

using the adaptive fisher statistic TAF calculated by using equations (6) - (12) with βk, Mi(tk),
and K in place of γk, Xik, and Kb, respectively for all k. This is a special case of the weighted
adaptive Fisher test [48] with constant weights.

2.3 Computation

We use the following procedure to assess PSk
in (11) and find the null distributions of TAFb

in
(12).

1. Calculate U , V and Ũ = (Ũ1, · · · , ŨKb
)T by equation (6) - (8).

2. Denote E = (e1, · · · , en)T , where ei = Xi − X̂i, i = 1, · · · , n. Permute the rows of E

for a large number B times, obtaining E(b) = (e
(b)
1 , · · · , e(b)n )T . Compute U (b), V (b) and

Ũ
(b)

= (Ũ
(b)
1 , · · · , Ũ (b)

Kb
)T based on E(b), b = 1, · · · , B.

3. Follow equation (9) and (10) to calculate S(b) = (S
(b)
1 , ..., S

(b)
Kb

)T , b = 0, 1, 2, .., B.
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4. For a fixed b∗ ∈ {0, 1, 2, ...B},

P
(b∗)
Sk

=
1

B + 1

B∑
b=0

I{S(b)
k ≥ S

(b∗)
k }.

5. For each S(b), T
(b)
AFb

= min1≤k≤Kb
P

(b)
Sk

, b = 0, 1, 2, ..., B.

6. The P-value of AFb test can be approximated by

P̂r{TAFb
≤ T (0)

AFb
|H0} =

1

B + 1

B∑
b=0

1{TAFb
≤ T (0)

AFb
},

where T
(0)
AFb

= min1≤k≤Kb
P

(0)
Sk

is the observed value of the AFb statistic and 1(·) is the
indicator function.

3 Results

To evaluate the performance of AF methods, we conduct both simulation studies and real-data
application. In the simulation studies, we compare AF, AFb with GAMP and aSPUw, two
popular methods to detect DMRs for pre-defined genomic regions. In the real-data application,
we apply AF methods on the Whole Genome Profiling to Detect Schizophrenia Methylation
Markers data, which is publicly available in the database of Genotypes and Phenotypes (dbGaP)
with study accession: phs000608.v1.p1. We refer to it as Swedish SCZ data because the study
collects samples from national population registered in Sweden. The software package of our
proposed method is available at https://github.com/cxystat/AFb.

3.1 Simulation Studies

We simulate BS-seq methylation data with methylation levels quantified as estimated methyla-
tion proportions. To mimic real methylaton data, we collect location information of CpG sites
and genes from the UCSC Human Genome build hg38. Let L be the length of a CpG island and
T be the total length from the start of a CpG island to the end of its nearest downstream gene.
In this simulation study, we take (T, L) = (39139, 329), (99557, 576), or (233783, 970), which are
the first quartiles, the medians, the third quartiles of L and T , calculated using the data set.

Based on CpG intensities, we categorize human genome into regions of three types: CpG island,
CpG shore and CpG desert. The regions of CpG islands are extracted from UCSC Genome
Brower; CpG shores are defined as the 2,000 bp flanking regions upstream and downstream of
CpG islands; the rest regions are CpG deserts. For each sequence from the data set, we can
calculate the frequency of CpG sites on the region of each category (the number of CpG’s within
the region of the category divided by the length of the region), and then we take the median
of the frequencies for each category. Let pI , pS and pD be the medians for the CpG island,
CpG shore and CpG desert categories, respectively. We have pI = 0.0944, pS = 0.0190 and
pD = 0.0125.

Next, we generate 1,000 replications for each of the three pair values of (T, L). In each replica-
tion, we simulate the locations of CpG sites in a sequence of total length T with a CpG island
of length L, a CpG shore of length 2,000, and a CpG desert of length T −L−2, 000. Going over
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from the first location to the last, the simulation algorithm generates a Bernoulli(p) random
variable to determines whether a locus is a CpG site, where p is equal to pI (pS or pD) if the
locus is in the region of the CpG island (CpG shore or CpG desert). Denote the locations of
the CpG sites as t1 < · · · < tK . We compute the expected total numbers of CpG sites, denoted
by µN , for (T, L) = (39139, 329), (T, L) = (99557, 576), and (T, L) = (233783, 970), and get
µN = 528, µN = 1, 300, and µN = 3, 003, respectively.

Next, we generate correlated methylation proportions by the following steps:

1. Generate a realization Z0(−b), Z0(−b + 1), · · · , Z0(T ) of the first-order autoregressive
AR(1) process

Z0(t) = ψZ0(t− 1) + ε(t), t = −b+ 1, · · · , T (15)

where ψ = 0.991/10, b = 1000, and Z0(−b) and ε(t)’s are i.i.d. N(0, 0.152). Note that
t = −b,−b+ 1, · · · , 0 is a burn-in period, and only Z0(tk)’s will be used in step 3.

2. For each subject i, we generate Zi = (Zi(t1), . . . , Zi(tK))T from N(0,Σ), where Σ has a
AR(1) structure with Σkk′ = Cov(Zi(tk), Zi(tk′)) = ρ|k−k

′|, ρ = 0.9.

3. Transform linear combinations of Z0(t) and Zi(t) at locations t1, . . . , tK by the inverse
tangent function. For subject i,

ξi(tk) = arctan(wZ0(tk) + (1− w)Zi(tk) + c+ εik), k ∈ {1, ...,K}, (16)

where ω = 0.9, c = −1.8, and εik’s are i.i.d. N(0, 0.052) perturbations (e.g. measurement
errors). The weighted sums of Z0(t) and Zi(t) allow methylation profiles for the n subjects
to have individual variations upon a baseline level. The constant c and weight ω are chosen
to match the empirical distribution of real methylation proportions.

4. Rescale ξ to get the methylation proportions

Mi(tk) =
ξi(tk)−mink ξi(tk)

maxk ξi(tk)−mink ξi(tk)
, k ∈ {1, . . . ,K}. (17)

To construct methylation effect function β(t), we discuss three methods in the following three
subsections, which are based on B-spline basis functions, Fourier basis functions, and a autore-
gressive (AR) model. Finally, we generate binary trials, Yi, i = 1, · · · , 1000, using equation (1)
and numerical integration [equation (3)], where the link function h is the logit function.

We compare the power of five methods: AF, AFb, GAMPcdf, GAMPpdf and aSPUw, where
the power is estimated empirically based on the 1, 000 replications. Note that the AFb test is
conducted with B-spline basis functions, regardless of the construction methods of β(t) used
to simulate data. For the second and third construction methods, the effect models used to
generate data are different from that used for the AFb tests. By choosing different construction
methods, we can see how robust (or how sensitive) the performance of AF methods is to the
effect models.

3.1.1 B-spline Basis Effects

In this simulation, the effect function is constructed using equation (2) with B-spline basis
functions defined in Chambers and Hastie [49]. The number of the basis functionsKb = d0.2Ke+
2, where dxe is the smallest integer no less than x. Among these Kb γm’s, we randomly select
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Figure 1: Power comparison of the five methods. Data is generated using B-spline basis functions.
(a) Power against varying expected number of CpG sites µN in dense scenario, with effect propor-
tion π = 20% and effect size δ = 0.05. (b) Power against varying expected number of CpG sites
µN in sparse scenario, with effect proportion π = 1% and effect size δ = 0.3. In both scenarios,
T ∈ {39139, 99557, 233783} and thus µN ∈ {528, 1300, 3003}.

dπKbe of them to be nonzero and generated from U [−δ, δ]. For dense scenario, π = 20% and
δ = 0.05; for sparse scenario, π = 1% and δ = 0.3.

In Figure 1, AFb has the best power among the five methods in both dense and sparse scenarios.
In dense scenario, AFb has the best performance. Its power is more than 0.2 larger compared
to the second best method for all three lengths. AF has the second best performance, followed
tightly by aSPUw. GAMPcdf and GAMPpdf have the least favorable power. In sparse scenario,
AFb still has the most competitive power, though not as superior as in dense scenario. AF and
aSPUw have similar power, which is about 0.1 smaller than AFb. Two GAMP methods have
the smallest power. Different from the other three methods, the power of two GAMP methods
does not increase as the expected number of CpG sites increases. Type I errors for all methods
are well-controlled empirically.

3.1.2 Fourier Basis Effects

In order to see how sensitive the AFb performance is to the basis functions used to gener-
ate the data, we use the Fourier basis to simulate data instead. In other words, the ef-
fect function is generated using equation (2) with b0(tk), · · · , bKb

(tk), k = 1, · · · ,K being
Fourier basis functions [50]: b1(t) = a/

√
2, b2r(t) = a sin rθt, b2r+1(t) = a cos rθt, where

a =
√

2/(tK − t1), θ = πa2, r = 1, · · · , R and Kb is the smallest odd number no less than
0.2K. dπKbe of γm’s are randomly selected to be nonzero and generated from U [−δ, δ]. For
dense scenario, π = 20% and δ = 1; for sparse scenario, π = 1% and δ = 5. Notice that when
carrying out the AFb test, we still use the B-spline basis functions to calculate the test statistic
given that the underlying basis functions are unknown in practice.

Figure 2 shows that AFb still has the best performance among the five methods for all three
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Figure 2: Power comparison of the five methods. Data is generated using Fourier basis functions. (a)
Power against varying expected number of CpG sites µN in dense scenario, with effect proportion π =
20% and effect size δ = 1. (b) Power against varying expected number of CpG sites µN in sparse scenario,
with effect proportion π = 1% and effect size δ = 5. In both scenarios, T ∈ {39139, 99557, 233783} and
thus µN ∈ {528, 1300, 3003}.

lengths in both scenarios. In dense scenario, the power of AFb is about 0.3 to 0.4 larger than
the second best method AF. AF, and aSPUw have similar power, with AF slightly better than
aSPUw. GAMPcdf and GAMPpdf have the least favorable power. In sparse scenario, the trend
is very similar with the dense scenario. AFb has the highest power. AF and aSPUw rank second
and third, with very close power. Different from the dense scenario, the power of AF and aSPU
does not improve with the increasing length of target region. Two GAMP methods have the
smallest power. Since GAMP is designed for the global profile over the entire methylome,
difference in the chosen region might not be large enough to be detected by GAMP. In other
words, a gene-length region is not ideal for GAMP to be effective and powerful. Type I errors
for all methods are well-controlled empirically.

3.1.3 Autoregressive Effects

In reality, methylation effects usually may not be perfectly smooth as a linear combination of
basis functions. In the last subsection, we evaluate the performance of five methods when the
effect function is not generated based on basis functions. Here, we construct the effect function
using the following AR(1) model (instead of basis functions)

β̃(t) = φβ̃(t− 1) + ε(t), t ∈ {1− b, . . . , T}, (18)

where t ∈ {1 − b, · · · , 0} is the burn-in period, b = 1000, φ = 0.951/20, and the initialization
β̃(−b) and white noise ε(t)’s are i.i.d. from N(0, 0.0052). Among the K CpG sites {t1, · · · , tK},
we use a discrete Markov chain of length K with two states to select sites that have nonzero
effects. Denote the two states as 0 (no effect) and 1 (having effect). The transition probabilities
are P (1, 1) = q1, P (1, 0) = 1− q1, P (0, 1) = 1− q2, P (0, 0) = q2. Let S be the set of the site
indexes with state value 1. We let β(t) = β̃(t) if t ∈ S and β(t) = 0 if t /∈ S.
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Figure 3: Power comparison of the five methods. Data is generated using AR(1) model. (a) Power
against varying transition probability q2 when q1 = 0.8. q2 ∈ {0.95, 0.965, 0.98, 0.99}. (b) Power against
varying transition probability q2 when q1 = 0.975. q2 ∈ {0.995, 0.9975, 0.99875, 0.99975}. In both cases,
T = 39139.

Figure 3 shows the power of the five methods for different transition probabilities. In Figure 3(a),
q1 = 0.8, which is equivalent to 5 consecutive CpG sites on average carrying effects. In Figure
3(b), q1 = 0.975, which is equivalent to averagely 40 consecutive effect carriers. Comparing the
two cases, effects are more scattered in (a) while are more regional in (b). Within each case, we
evaluate the power for different q2 values. Note that as q2 increases, on average there are more
CpG sites having no effects in the region. Power curves in Figure 3 indicate that AFb performs
best with the highest power in both cases. AF and aSPUw still have the second and third best
performance, whose power are very similar. The gap between AFb and AF are much less than
in Figure 1 and Figure 2. The performances of GAMPcdf and GAMPpdf are inferior, but the
power of GAMPcdf improves faster when there are more sites having effects.

Figure 1-3 show that AFb has the highest empirical power for all three types of effects: B-spline
basis, Fourier basis and autoregressive effects. Good performance of AFb in both dense and
sparse scenarios shows that it exhibits adaptability to different effect proportions. Thus, AFb

is a competitive method for detecting disease-associated methylation regions.

3.2 Real Data Application

We apply AF methods on the Swedish SCZ data. MBD-seq is employed to collect methylation
profiles. Raw data is processed by the pipeline of Aberg et al. [51]. 1,459 subjects remain after
quality control, including 741 schizophrenia (SCZ) cases and 718 controls.

The pipeline uses a nonnegative coverage at each CpG site to measure its methylation level.
The coverage is estimated based on the number of sequence reads and the sample-specific
fragment size distribution. Intercorrelated CpG sites are combined into blocks. For blocks
containing multiple CpGs, the methylation level is the average estimated coverage. After this
data reduction, 28,217,444 CpG sites are combined into 5,074,538 blocks.
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The distribution of estimated coverage is highly right-skewed, so we log-transform the data to
stabilize the variance. Moreover, we regress out seven principal components (PCs) from the log-
coverages to eliminate potentially unmeasured confounders. In other words, Mi(tk) in model
(1) is the residual of subject i’s log-coverage at block k after adjusting for the PCs.

We apply AF methods on each of the 19,429 autosomal genes and their flanking regions (up-
stream 10,000 bp and downstream 5,000 bp) in the reference genome of UCSC Human Genome
build hg19. We take disease status as the outcome and take age, gender, batch number, amount
of starting material for MethylMiner, and the quantity of methylation-enriched DNA captured
as covariates. We estimate P-values using a step-up procedure [44]. All genes start with B = 100
permutations for rough estimates of P-values. For genes with P-values smaller than or equal to
5/B, we increase B by 10 times and redo the permutation. We repeat this procedure until all
remaining P-values are greater than 5/B, or reaches the precision level of 1× 10−7.

AFb detects six significant genes (P-values ≤ 2.5 × 10−6), which are listed in Table 1. Among
them, FOXP1 and HOXB4 are previously reported associated with SCZ. DNA methylation of
HOXB4 is correlated with the changes in hippocampal volume, suggesting it may explain SCZ-
related neurodegeneration [56]. Ingason et al. [55] identifies FOXP1 by an animal experiment
and confirms its human ortholog’s association with SCZ by a GWAS. Results of AF tests provide
additional evidence of this association between FOXP1 and SCZ, and different from previous
studies, our result also suggests that the association might come from methylation in addition to
SNV. FOXP1 is also identified as associated with attention deficit disorder with hyperactivity
(ADHD) [54], cognitive disorders [61], and autism [62].

Some of the listed genes are related to other neurological diseases. ATP8B4 and GANC are
associated with panic disorder (PD), which causes panic attacks when there is no real danger
[52]. The authors identified the two genes by whole-exome sequencing of a Japanese family with
several PD patients. A subsequent association test on a Japanese PD case-control study reveals
that an SNV (chr15: 42631993, T > C ) in GANC is a potential pathogenic variant. Because
PD is well-known comorbidity to SCZ that is often overlooked [63, 64], our finding may add to
the knowledge of how DNA methylation of these genes contributes to the development of PD
and SCZ beyond SNVs.

Cecil et al. [53] considers a CpG site in PRDM13 (chr6: 100061307) as a differentially methy-
lated probe to childhood maltreatment, which is a key risk factor to psychiatric vulnerability.
Since DNA methylation can be acquired beyond heritage, our finding might suggest that DNA
methylation of PRDM13 mediates the effect of childhood experience on the risk of SCZ, which
needs to be further investigated.

Table 2 shows the nine significant genes identified by AF, among which PRDM13, HOXB4, and
FOXP1 are also detected by AFb. Among the other six genes, SATB1 and ETS2 are found to
be associated with SCZ in the existing literature. SATB1 is identified by two EWASs [57, 58],
whereas the gene expression level of ETS2 (which could be regulated by DNA methylation) is
detected to be associated with SCZ in a microarray meta-analysis study [60].

CDKN2A, a gene containing a type II diabetes (T2D) risk marker identified by previous GWAS,
is detected to be associated with SCZ by our AF method. Similarly, Hansen et al. [59] finds
another T2D at-risk variant in TCF7L2 (rs7903146 [T]) also increases the risk of SCZ. The
comorbidity of T2D and SCZ has been studied [65], suggesting that CDKN2A is also a candidate
risk gene for SCZ.

12



T
ab

le
1:

S
ig

n
ifi

ca
n
t

G
en

es
Id

en
ti

fi
ed

b
y

A
F
b

in
S

w
ed

is
h

S
C

Z
S

tu
d

y

G
e
n

e
P

-v
a
lu

e
R

e
la

te
d

D
is

e
a
se

F
u

n
c
ti

o
n

A
T

P
8
B

4
3.

0
×

10
−
7

P
D

[5
2
]

P
h

os
p

h
ol

ip
id

tr
an

sp
or

t
in

th
e

ce
ll

m
em

b
ra

n
e.

P
R

D
M

1
3

3
.0
×

10
−
7

P
sy

ch
ia

tr
ic

v
u

ln
er

ab
il

it
y

[5
3]

F
O

X
P

1
7.

0
×

10
−
7

A
D

H
D

[5
4]

S
C

Z
[5

5
]

R
eg

u
la

ti
on

of
ge

n
e

tr
an

sc
ri

p
ti

on
d

u
ri

n
g

d
ev

el
op

m
en

t
an

d
ad

u
lt

h
o
o
d

.

G
A

N
C

9
.0
×

10
−
7

P
D

[5
2
]

E
n

co
d

es
a

ke
y

en
zy

m
e

in
gl

y
co

ge
n

m
et

ab
ol

is
m

.

H
O

X
B

4
1.

0
×

10
−
6

S
C

Z
[5

6
]

T
ra

n
sc

ri
p

ti
on

fa
ct

or
in

vo
lv

ed
in

d
ev

el
op

m
en

t.

H
O

X
A

7
1.

3
×

10
−
6

D
N

A
-b

in
d

in
g

tr
an

sc
ri

p
ti

on
fa

ct
or

,
m

ay
re

gu
la

te
ge

n
e

ex
p

re
ss

io
n

,
m

or
p

h
og

en
es

is
an

d
d

iff
er

en
ti

at
io

n
.

13



T
ab

le
2:

S
ig

n
ifi

ca
n
t

G
en

es
Id

en
ti

fi
ed

b
y

A
F

in
S

w
ed

is
h

S
C

Z
S

tu
d

y

G
e
n

e
P

-v
a
lu

e
R

e
la

te
d

D
is

e
a
se

F
u

n
c
ti

o
n

P
R

D
M

1
3

4
.0
×

10
−
7

P
sy

ch
ia

tr
ic

v
u

ln
er

ab
il

it
y

[5
3]

H
O

X
B

4
4
.0
×

10
−
7

S
C

Z
[5

6
]

T
ra

n
sc

ri
p

ti
on

fa
ct

or
in

vo
lv

ed
in

d
ev

el
op

m
en

t.

H
O

X
B

3
4
.0
×

10
−
7

S
A

T
B

1
6
.0
×

10
−
7

S
C

Z
[5

7
,

58
]

R
ec

ru
it

s
ch

ro
m

at
in

-r
em

o
d

el
in

g
fa

ct
or

s
to

re
gu

la
te

ch
ro

m
at

in
st

ru
ct

u
re

an
d

ge
n

e
ex

p
re

ss
io

n
.

C
D

K
N

2
A

6
.0
×

10
−
7

T
2
D

[5
9]

Im
p

or
ta

n
t

tu
m

or
su

p
p

re
ss

or
ge

n
e.

E
T

S
2

6.
0
×

10
−
7

S
C

Z
[6

0
]

T
ra

n
sc

ri
p

ti
on

fa
ct

or
w

h
ic

h
re

gu
la

te
s

ge
n

es
in

vo
lv

ed
in

d
ev

el
op

m
en

t
an

d
ap

op
to

si
s.

F
O

X
P

1
7
.0
×

10
−
7

A
D

H
D

[5
4]

S
C

Z
[5

5
]

R
eg

u
la

ti
on

of
ge

n
e

tr
an

sc
ri

p
ti

on
d

u
ri

n
g

d
ev

el
op

m
en

t
an

d
ad

u
lt

h
o
o
d

.

B
4G

A
L
T

5
9.

0
×

10
−
7

D
H

R
S

9
9
.0
×

10
−
7

M
ay

fu
n

ct
io

n
as

a
tr

an
sc

ri
p

ti
on

al
re

p
re

ss
or

in
th

e
n
u

cl
eu

s.

14



Table 3: Computation Time

Method AF AFb aSPUw

Time 219s 66s 2986s

4 Conclusion and Discussion

In this paper, we propose two methods AFb and AF for detecting disease-associated DNA
methylation regions. We demonstrate its competitive statistical power by simulation studies.
By applying our methods to an SCZ dataset, we successfully identify differentially methylation
genes. Most of our detected genes have been reported to be associated with SCZ or other related
events (such as PD and childhood maltreatment). More interestingly, the previous report of
our detected genes was based on other evidence, such as SNV association or gene expression
studies. This highlights the potential of our proposed methods in detecting novel disease-
related DNA methylation. While considering the fact that DNA methylation can be altered
by environmental factors beyond inheritance, our method could help explain gene-environment
interaction in disease etiology and could help identify potential drug targets since many DNA
methylation sites are more actionable than other genomic features (e.g. SNV).

Besides statistical power, compared with AF and aSPUw, AFb also improves computation
efficiency. In Table 3, we compare the running time to scan 242 genes on chromosome 21 for the
1459 subjects in Swedish SCZ study using AFb, AF and aSPUw with 1,000 permutations. The
computation is paralleled on a compute node with two Intel Xeon E5-2680 v4 processors (28
cores in total) and 128G memory. AF methods are much faster than aSPUw. AFb is three times
faster than AF because of the dimension reduction using basis functions. In our data example,
we reduced the dimension to one fifth of the original number of CpG sites. In practice, we can
also set a maximum for the number of basis functions, so the efficiency of AFb can be further
improved for genes with a large number of CpG sites.

Combining biomarkers into groups is a widely used strategy to improve the power of asso-
ciation tests in GWAS. Since BS-seq data is also single-nucleotide resolution, some methods
for detecting SNV sets can also successfully detect DMRs with some appropriate adjustments.
For instance, AFb, GAMP, and aSPUw are based on wAF, SKAT, and aSPU respectively. In
contrast, burden tests, which simply pool methylation levels at all CpG sites in a region into
an “epigenomic burden”, may not work well in EWAS, if different subregions affect the trait
differently, even in opposite directions. In contrast, AFb has shown its robustness for different
directions and proportions of methylation effects in simulation. Furthermore, B-spline basis
functions bm(t)’s can be carefully selected to cover different subregions of the genes, such as
promoters, exons, and introns, as they may have distinct biological functions.

We mentioned several regression-based methods in the introduction section. Most of them
regress methylation counts or proportions on experimental factors or covariates, while GAMP
and aSPUw use methylation profiles and covariates as explanatory variables and trait as the
response variable. AF methods also employ the latter modeling strategy. Besides being able
to include covariates, this strategy is more flexible for different data types. For example, beta-
binomial methods can only be applied to BS-seq but not MBD-seq data. AF methods, GAMP
methods, and aSPUw, on the other hand, are not restricted by techniques used for methylation
levels because they are used as regressors. We have applied AF methods on MBD-seq data in
our data application and found potential SCZ-associated genes with differentially methylated
profiles. AF methods could potentially be applied on data produced by third-generation se-
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quencing (TGS) technologies, such as PacBio sequencing [66] and Nanopore sequencing [67],
which are superior for simpler library preparation and of fewer artifacts and biases compared
to BS-seq [68].
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