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Abstract. We present a universal discontinuity detector constructed by deep neural networks.
Using convolution neural network (CNN) structure, we design a comprehensive set of synthetic
training data. The data consist of randomly generated piecewise smooth functions evaluated at
equidistance grids, with labels denoting troubled cells where discontinuities are present. Upon suc-
cessful training of the network, the CNN based detection network is capable of accurately identifying
discontinuities in newly given function data by correctly labeling the troubled cells. Even though all
of our training data have fixed size, the constructed detector can be applied to function data of arbi-
trary size, so long as they are on equidistance grids. To increase the detection efficiency in two- and
three-dimensional cases, we propose a two-level detection procedure, where the detector is applied to
a coarsened grid first and then to the fine grids only at the trouble cells identified at the coarse level.
Through an extensive set of numerical tests, we demonstrate that the developed detectors possess
strong generalization capabilities, in the sense that they are able to accurately detect discontinuity
with structures much more complex than those in the training data.

Key words. Deep neural network, convolution neural network, discontinuity detection, troubled
cell.

1. Introduction. Discontinuity detection is a common numerical task in many
applications including signal processing, shock-wave analyses for nonlinear PDEs,
phase transitions in physical systems, change-point analyses in geology or biology to
name a few. The task is to detect the discontinuity positions of a function given only
the function values on a grid in the function domain. In recent decades, algorithms
have been developed for this task, including wavelet-based algorithms [11, 3], filter-
based algorithms [13, 6], high-dimensional discontinuity detection [16, 6], discontinuity
in derivatives [2] and polynomial annihilation detection [1, 2].

Neural networks have become essential methodologies for many research fields
related to artificial intelligence. In particular, convolutional neural networks (CNN)
have become dominant in ImageNet competitions for computer vision as well as some
other AI competitions since 2012, and therefore, many vision tasks have been inves-
tigated based on CNN models. Focusing on edge detection problems, various CNNs
were recently trained to detect edges directly from images (e.g., [4, 12, 14, 10, 15]).
Motivated by successful applications in edge detection, we develop discontinuity de-
tection methods based on properly designed CNN models. In fact, the edge detection
problem in computer vision can be viewed as a two-dimensional discontinuity detec-
tion problem where the differences are the inputs of detection algorithms and the
training procedure. The observed data for edge detection are intensity values of im-
age pixels, but the observed data for discontinuity detection are the function values
at discrete locations (e.g., grid points). The training data for edge detection are often
real images with labeled edges, while the training data for the discontinuity detection
here are synthetic function values generated to provide sufficient properties of discon-
tinuity to be learned by the training procedure. In addition, we propose a two-level
detection procedure to reduce the computational cost for two- or higher-dimensional
discontiuity detection problems. The two-level detection procedure is a coarse-to-fine
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procedure with two detectors. The first detector is for coarse or preliminary detection
over coarsened grids for fast detection of coarse trouble celles. The second detector
is refined and detailed detection of troubled cells on the fine grids only within the
detected coarse troubled cells.

The paper is organized as follows. The problem setup and preliminaries are
discussed in the next section, where a brief review of CNN models and polynomial
annihilation methods is included. This is followed by the constructions of our dis-
continuity detection procedures, CNN models and synthetic training data in section
3. Numerical experiments in section 4 are provided to demonstrate the utility of our
approaches.

2. Problem Setup and Preliminaries. Consider a function f : D → R,
where D ⊂ Rd, d ≥ 1, is a compact set. Obviously, f is continuous at x0 ∈ D
iff limx→x0

f(x) = f(x0). In this paper, we consider f , to be piecewise continuous,
in the sense that there is a finite partition of D on each coordinate such that f is a
continuous function on each polytope. Note that this definition includes the trivial
case when f is continuous on D.

Without loss of generality, we assume D is a d-dimensional rectangle given by
I1 × I2 × · · · × Id where Ii = [ai, bi], bi = ai + ni · δ, ni is a positive integer and

δ > 0. Consider a uniform grid over D with
∏d
i=1(ni + 1) grid points S = {(a1 +

i1δ, a2 + i2δ, · · · , ad + idδ) : ik ∈ {0, 1, 2, · · · , nk},∀k = 1, · · · , d}. The problem
of discontinuity detection is to detect grid cells, called “trouble cells,” that contain
discontinuity points, based on the function values at the grid points.

2.1. Polynomial annihilation detection. Here we briefly review polynomial
annihilation detection method ([1]), as it is an established method with solid math-
ematical foundation and will be used to compare with our proposed CNN detection
method in this paper. The goal of polynomial annihilation is to construct a function
Lmf(x), m ∈ N, such that, for x away from discontinuity points of f(·), Lmf(x) ≈ 0.
Therefore, the detection of discontinuities is based on |Lmf(x)| > t where t is a
threshold.

Specifically, suppose that f is known only on the discrete set S. Let Πm be the
space of all polynomials of degree ≤ m in d variables. The value of Lmf at x ∈ D

is determined by the function values of f on a local set Sx ⊂ S of md =

(
m+ d
d

)
points around x as follows. For simplicity, let Sx := {x1, · · · , xmd

} be the set of the
md nearest points to x. For polynomial annihilation up to degree m− 1, one solves a
linear system for the coefficients {cj(x) : j = 1, · · · ,md},∑

xj∈Sx

cj(x)pi(xj) =
∑
|α|1=m

p
(α)
i (x), (2.1)

where α = (α1, · · ·αd), α1, · · · , αd ∈ Z ∪ {0}, {p1, · · · , pmd
} is a basis of Πm, and

p
(α)
i (x) =

∂α1+···+αdpi(x)

∂x(1)α1 · · · ∂x(d)αd
, x = (x(1), · · · , x(d)).

Since the solution of (2.1) exists and is unique, one can define

Lmf(x) =
1

qm,d(x)

∑
xj∈Sx

cj(x)f(xj), (2.2)

where qm,d(x) is a normalization factor. For the numerical experiments in Section 4
of this paper, we use the formulas of Πm and qm,d(x) on pp. 277 of [1].
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2.2. Convolution Neural Network. The Convolutional Neural Network(CNN)
is a special type of neural networks. It was first introduced for solving the problem
of document recognition [9], and becomes well-known thanks to the success of its
applications on image classification [8]. A CNN contains an input layer, an output
layer, and multiple hidden layers, where the hidden layers may consist of convolutional
layers, pooling layers, fully connected layers and so on (see chapter 9 in [5] for more
details).

Convolutional Layers. The convolutional layers are defined based on discrete
convolutions. The discrete convolution of the input u for a convolutional layer and a
discrete kernel w, denoted by u ∗ w, is given by

u ∗ w(x) =
∑
x̃∈Ix

u(x̃)w(x− x̃),

where Ix is the neighborhood of x determined by the kernel w. Therefore, the output
of a convolutional layer of k kernels is given by

σ(u ∗ wj + rj), for j = 1, 2, · · · , k,

where wj ’s are the discrete kernels, rj ’s are the biases, and σ(·) is the activation
function. The values of the discrete kernels and biases are the unknown parameters
to be learned. The activation function used for our experiments is the rectified linear
units (ReLU).

Pooling Layers. Pooling is a common down-sampling operation in CNNs, and it
reduces the dimension by taking a summary statistic for each subregion of a partition
of the input. In our 2-D experiments, we use the most common pooling method, called
max-pooling. The output of a max-pooling layer is obtained by first partitioning
the domain of its input u into (non-overlapping) hyper-cubic subregions and then
computing maxx∈I u(x) for each subregion I.

Fully Connected Layers. The fully connected layers are often constructed as
the last layers in CNN models, based on which we make detection or classification
decisions. If we represent or rewrite the input of a fully connected layer using a vector
u, then the output can be obtained by a matrix multiplication with a bias offset,
Au+ r, where the entries of A and r are also unknown parameters to be learned.

3. Construction of Discontinuity Detector. Suppose we only observe the
values of a function f on the set of grid points S over a uniform grid in Rd. The
discontinuity detectors constructed in this section are to detect the trouble cells, in
which discontinuities exist.

3.1. One-dimensional detector. Let D = [a, b] and S = {xi = a + (i − 1)δ :
i = 1, . . . , N + 1} be a set of uniform grids, where δ = (b− a)/N , N ≥ 1. Therefore,
the uniform grid has N cells, denoted by intervals [xi, xi+1), i = 1, · · · , N . Let

y = (y1, · · · , yN ) ∈ {0, 1}N

be a binary vector indicating the ground truth trouble cells, where for each i =
1, . . . , N , yi = 1 if i-th cell is a trouble cell (i.e., there is at least one discontinuity
point in the interval [xi, xi+1)) and yi = 0 otherwise. Let vf = {f(x) : x ∈ S} be
the set of observed function values on S. Here we construct a detector that first
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Fig. 3.1: Diagram for the one-dimensional detection.

standardizes the observed function values and feeds them into a CNN to obtain an
output vector of N real values,

ŷ = (ŷ1, · · · , ŷN ) = N (ṽf ),

as an estimate of the ground truth y, where

ṽf =

{
f(x)− µf

σf
: x ∈ S

}
,

denotes the set of standardized function values, with µf and σf denote the mean and
standard deviation of vf , respectively. Then, for a chosen threshold t > 0, the detector
labels each of i-th cell a trouble cell if ŷi > t. See Figure 3.1 for an illustration of
discontinuity detection algorithm.

CNN architecture. For our experiments in Section 4, we consider a one-dimensional
detector of size N = 200, where the CNN model contains five convolutional layers and
one fully connected layer, summarized in the following table:

Layer input size kernel size num of kernel stride output size
conv1 202 2 24 1 201×24
conv2 201×24 2×24 24 1 200×24
conv3 200×24 2×24 24 1 199×24
conv4 199×24 2×24 24 1 198×24
conv5 198×24 2×24 24 2 99×24

fully connected 99×24 201

Training the CNN with synthetic training data. We train the parameters
of the CNN detector model using a synthetic dataset of n = 1, 000, 000 piecewise
smooth functions on domain D. Each piecewise smooth function is generated as
follows: (1) randomly select an integer Nd from {0, . . . ,M} using discrete uniform
distribution as the number of discontinuities. (In all most tests we set M = 3); (2)
using uniform distribution on D, generate Nd random numbers as the loations of the

4



discontinuities. This partitions the domain D into (Nd + 1) subdomains; and (3)
inside each subdomain, we create a random Fourier series

ã0 +

NF∑
n=1

(ãn cosnx+ b̃n sinnx),

where ãn’s and b̃n’s are i.i.d. Gaussian random variables N(0, 1), NF is set to be 15
in all our trainings.

The network is trained with Keras API (https://keras.io/), by using mean squared
loss function

1

n

n∑
i=1

‖yi −N (ṽfi)‖2l2

. We use 90% of the synthetic data for training and the remaining 10% for validation.
The training is based on the Adam optimization [7] with the mini-batch size of 5,000
and for 1,000 epochs.

3.2. Two-dimensional detector. For two-dimensional detector, we consider a
square domain D = [a, b]2 with unform grid points S = {xij : 1 ≤ i, j ≤ N + 1},
where xij = (a+(i−1)δ, a+(j−1)δ) for i, j = 1, · · · , N +1 and δ = (b−a)/N . This
creates N2 cells Cij , which corresponds to the grid point xij , for i, j = 1, · · · , N . Let

y = (yij)
N
i,j=1 ∈ {0, 1}

N×N (3.1)

be a binary matrix indicating the ground truth, where yij = 1 if Cij is a trouble cell
and yij = 0 otherwise. Let vf = {f(x) : x ∈ S} be the set of observed function values
on S. Similar to the one dimensional detector, we construct a detector that takes the
observed function values vf and outputs a binary matrix to predict y.

3.2.1. Synthetic data generation. To generate synthetic training data, we
create randomly generated piecewise smooth functions. More specifically, we first split
the function domain D into two subregions by a random curve and then generate two
smooth functions for the subregions:

fi(x, y) =
∑

m+n≤Np

a(i)m,nPm(x)Pn(y), i = 1, 2, (3.2)

where Pn’s are the standard Legendre polynomials, am,n are coefficients randomly
generated from Gaussian distribution N(0, 10), NP is fixed at Np = 4. For the
random curve, which serves as the interface between the two subregions and is also
the location of the discontinuity curve, we employ two cases:

• Line cut. Defined by random straght line

cos(θ)(x− x0) + sin(θ)(y − y0) = 0,

where θ ∼ U(0, 2π) and (x0, y0) ∼ U(D);
• Circular cut. Defined as

(x− x0)2 + (y − y0)2 = r,

where r ∼ U(0, 3) and (x0, y0) ∼ U(D).
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3,1ŷ
3,2ŷ
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4,3ŷ 4,4ŷ
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Fig. 3.2: Diagram for the one-step method for two-dimensional discontinuity detec-
tion.

Note that our synthetic training data cover very limited cases, which include only one
discontinuity curve taking either straightline shape or circular shape. However, the
resulting CNN detector model exhibits remarkable generalization capabilities and is
able to detect discontintuities with much more complex nature. This will be shown
in our examples in Section 4.

3.2.2. One-level detection method. Here we construct a detector that first
standardizes the observed function values and produces an output N ×N matrix

ŷ = N (ṽf ) = (ŷij)
N
i,j=1 ,

as an estimate of the ground truth y in (3.1), where

ṽf =

{
f(x)− µf

σf
: x ∈ S

}

is the set of standardized function values, with µf and σf denote the mean and
standard deviation of all values in vf , respectively. With a prescribed threshold value
t > 0, the cell Cij is labelled as a trouble cell if ŷij > t. The diagram of the one-level
detection algorithm is illustrated in Fig. 3.2.

For the experiments in Section 4, we consider a one-step detector of size 100×100
(i.e., N = 100), where the CNN model contains four convolutional layers, one max-
pooling layer and one fully connected layer, as summarized in the following table:
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Layer input size kernel/pooling size num of kernel stride output size
conv1 101×101 4×4 32 1 98×98×32

maxpooling1 98×98×32 2×2 2 49×49×32
conv2 49×49×32 2×2×32 32 1 48×48×32
conv3 48×48×32 2×2×32 32 1 47×47×32
conv4 47×47×32 2×2×32 32 1 46×46×32

fully connected 46×46×32 100× 100

3.2.3. Two-Step detection Method. Due to the substantial increase in the
number of parameters for the two-dimensional CNN detector, the computational cost
becomes a major concern, especially for the extension to high-dimensional detection
problems. Therefore, we propose a two-level detection approach that reduces the
computational cost while retaining accuracy. The method will be more beneficial for
higher dimensional problems. It consists of the following two steps.

Step 1. Define a coarse uniform grid, where each cell is the union of several
neighbouring cells of the original grid. The original cells are now subcells of the coarse
cells. For the 101× 101 original grid, we can choose an 11× 11 coarse grid such that
each coarse cell contains 10 × 10 = 100 subcells. We can then construct and train
a one-step CNN detector as in Section 3.2.2 for detecting coarse cells that contain
discontinuities. The detection threshold is chosen small enough so that ideally all
coarse cells with discontinuity can be detected. Note that due to the small threshold,
false detection is allowed and but would be eliminated in Step 2.

The CNN model in Step 1 contains four convolutional layers, one max-pooling
layer and one fully connected layer, as shown in the table:

Layer input size kernel/pooling size num of kernel stride output size
conv1 101×101 4×4 32 1 98×98×32

maxpooling1 98×98×32 2×2 2 49×49×32
conv2 49×49×32 2×2×32 32 1 48×48×32
conv3 48×48×32 2×2×32 32 1 47×47×32
conv4 47×47×32 2×2×32 32 1 46×46×32

fully connected 46×46×32 10× 10

Step 2. Next, we refine our detection by detecting fine trouble cells (subcells that
contain discontinuities) within each detected coarse cell. The detection of fine trouble
cells is operated on a very small grid – encompassing only the coarse celles. This can
be efficiently done with the one-level CNN detector developed here, or the polynomial
annihilation detector whenever the subcells are structured. See Figure 3.3 and Figure
3.4 for the diagrams of the two-step methods. The construction and training of the
CNN detector for fine trouble cells are similar to the one-step CNN detector in Section
3.2.2 except each training sample is a matrix of the synthetic function values on a fine
sub-grid over a detected coarse cell.

The CNN model used in Step 2 contains three convolutional layers and one fully
connected layer, as tabulated below.

Layer input size kernel size num of kernel stride output size
conv1 100×100 2×2 32 1 10×10×32
conv2 10×10×32 2×2×32 32 1 9×9×32
conv3 9×9×32 2×2×32 32 1 8×8×32

fully connected 8×8×32 10× 10

3.3. Generalization to three-dimensional detection. For higher dimen-
sional detection, the computation cost increases exponentially with the dimension.
Therefore, the proposed two-level coarse-to-fine approaches are strongly preferred.
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Fig. 3.3: Diagram for the two-step method for two-dimensional detection where step
2 is based on a CNN detector.
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Fig. 3.4: Diagram for the two-step method for two-dimensional detection where step
2 is based on the polynomial annihilation detector.

As an example, consider a two-step method for three-dimensional detection on a uni-
form grid of size 101 × 101 × 101, where the step 1 is based on a CNN detector for
detection of coarse trouble cells on a coarse grid of size 11× 11× 11 and the step 2 is
to detect fine trouble cells with the polynomial annihilation method. In each sample,
the total number of the coarse cells is 10× 10× 10 = 1, 000 and the total number of
the fine cells is 100× 100× 100 = 1, 000, 000.

For the experiment in Section 4, the CNN model contains two convolutional layers,
one max-pooling layer and one fully connected layer, as follows.
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Layer input size kernel/pooling size num of kernel stride output size
conv1 101×101×101 5×5×5 12 5 20×20×20×12

maxpooling1 20×20×20×12 2×2 2 10×10×10×12
conv2 10×10×10×12 2×2×2×12 6 2 5×5×5×6
dense 5×5×5×6 10× 10× 10

To train the model, we generate a data set of three-dimensional synthetic functions,
similar to the two-dimensional training data. We first split the function domain D
into two subregions by a random discontinuity surface and then generate two smooth
functions f1, f2 for the two subregions in term of Legendre polynomials:

fi(x, y, z) =
∑

m+n+k≤Np

a
(i)
m,n,kPm(x)Pn(y)Pk(z), i = 1, 2, (3.3)

where Np = 3, a
i)
m,n,k’s are i.i.d. N(0, 10), and the discontinuity surfacies are gener-

ated as random spherical surfaces defined by (x − x0)2 + (y − y0)2 + (z − z0)2 = r
with r ∼ U(0, 3) and (x0, y0, z0) ∼ U(D). Like the two-dimensional detection, the
neural network detection exhibits remarkable generalizability, even though the train
data consist of very limited classes of piecewise functions separated by very limited
classes of discontituity surfaces.

4. Numerical Experiments and Results. In this section, we apply the pro-
posed detection methods and the annihilation detection method on various test sets
to compare the detection performances. Here, to detect trouble cells of a grid with
the annihilation method, we claim a cell is a trouble cell if |Lmf(x)| > t where x is the
center of the cell and Lmf(x) defined in Section 2.1 is calculated using ṽf . To study
the robustness and applicability of the trained models, we also apply the methods
on more general data that are not generated from the simulation approaches used
to generate the synthetic training data. Notice that since the input of the (CNN)
detectors only depends on the function values over the uniform grid with no reference
to the grid location and the size of the grid cell, the detectors can be applied to any
function domain as long as the grid size matches the size of the input. In fact, for
the problem with a smaller grid, we can extend the grid and define the function value
at each new grid point by extrapolation for a smooth extension to match the size of
the detector input. For the problem with a larger grid, we use a “sliding-window”
procedure in which the detection algorithm is implemented on subregions of the grid
and combine the results of the subregions, where the subregions are determined by
placing a sliding window with the size the same as the input size at different locations
to cover the entire grid. Hence, the detection algorithms studied here can be applied
to the problems with different function domains and uniform grids with different sizes.

4.1. One-dimensional detection. We first generate a test set of 10,000 func-
tions using the same simulation approach as in section 3.1 for the training set. Note
that the trouble cell detection for the CNN and annihilation methods are based on
N (ṽf )i > t for cell i and |Lmf(x)| > t for cell center x, respectively. Thus, by varying
the threshold t, we can plot the ROC curves to compare their overall performance.
Figure 4.1 shows that the two ROC curves are nearly perfect and overlapped with each
other. In figure 4.2, we visualize the detection performance by plotting the output of
the CNN model (in orange) and the function values (in blue) together. The output
values are close to one on the cells of discontinuities and zero elsewhere. Hence, the
CNN detector results in an excellent performance, which is expected because the test
data are generated in the same way as the training data.
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Fig. 4.1: ROC curves of the CNN and annihilation methods. The vertical
coordinate represents the detection rate (true positive rate), and the horizontal coor-
dinate represents the false alarm rate (false positive rate).

Recall that the synthetic functions in the training data have at most three dis-
continuities (M = 3). What if test function has more than three discontinuities? To
answer this question, we apply the trained CNN detector on test functions with up
to M = 6 discontinuities. Figure 4.3 shows that the CNN detector can accurately
identify more than three discontinuities. The performance is consistent among test
functions, even for the functions with two or three discontinuities close to each other
as shown in the second plot of the figure. The experiment demonstrates the strong
generalization capablity of the CNN deterctor – it “learns” the generic properties of
discontinuity and is capable to handle scenarios different from the training samples.

The next example is to apply our detector on data with different resolutions,
where the function domain is fixed but the grid size is different. As discussed in
the first paragraph of Section 4, by extending smaller-size grids or implementing
the sliding-window procedure onto larger-size grids, we can apply our trained CNN
detector to detect trouble cells over grids of different sizes. Figure 4.4 shows that for
the low-resolution data of grid size 52, the CNN output (orange curve) could result in
more false detection, while the detection is significantly improved when we increase
the grid size to 102. Perfect accuracy is achieved when the grid size is the same as
the input size 202 or larger. This result shows that the trained model can be adapted
to any data with enough resolution without retraining models with different hyper-
parameter setups. The trained CNN model thus becomes a universal discontinuity
detector on uniform grids of arbitrary size.

4.2. Two-dimensional detection. For two dimensional detection, we shal lable
the one-level detetion method in Section 3.2.2 as “1CNN”. For the two-level methods
in Section 3.2.3, we shall use “2CNN” for the method with both CNN detection on
the coarse and fine levels, and “CNNPoly” for the method with CNN on the coarse
level and polynomial annihilation on the fine level.

Figure 4.5 shows the detection performance for the three methods on test func-
tions generated in the same way as our training data. The cells in red are the final
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Fig. 4.2: Detection with the trained CNN model. The blue curve is the real
function on 202 points in [−1, 1], and the green vertical dashed lines indicate the
true trouble cells. The orange curve is the output of the CNN model of size 201
corresponding to the 201 cells.

Fig. 4.3: Detection on test functions with M = 6 discontinuities. The blue
curve is the real function on 202 points in [−1, 1], and the green vertical dashed lines
indicate the true trouble cells. The orange curve is the output of the CNN model of
size 201 corresponding to the 201 cells.
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Fig. 4.4: Detection on data with different resolutions. Given a test function
on [−1, 1], the observed function values with different resolutions are generated by
changing the grid size. From left to right and top to bottom, the grid sizes are
52,102,202, and 402.

detected (fine) cells, while the blue boxes are the detected coarse cells from Step 1 of
the two-step methods. While the 1CNN model produces quite good results, it does
identify some false detected trouble cells around the true trouble cells. This is visible
in the top-left plot. On the other hand, both 2CNN and CNNPoly models produce
highly accurate identification of the trouble cells. It must be remarked that for the first
two examples, as shown in the left two columns of plots, the CNNPoly detection con-
tains certain “gaps” in the discontinuity curves. In another words, the discontintuity
curves appear to be “fragmented”. Upon close examination of the three-dimensional
surfaces of the original functions (shown in the first row of the plots), these “gaps”
occur exactly at the locations when the two piecewise smooth surfaces cross over each
other. Therefore, the discontinuity interfaces become “continuous” at the cross-over
location. The CNNPoly model identifies this kind of singular locations as “contin-
uous” and prduces a gap in the discontinuity interface. The 2CNN model, on the
other hand, identifies the singularities as part of the discontinuities. This behavior
further demonstrates the remarkable generalization capabilities of the trained CNN
models. Even though as our training data are of very limited classes of simple cases,
the trained CNN models are able to perform accuractely for much more complex cases.

More numerical tests are performed on test data of vastly more complex nature
than our training data. Figure 4.6 shows the detection results for data with triangular
discontinuity curves. The cases include cross-over points along the discontinuous
interfaces, shown in Column 3, as well as triangular discontinuities occupying a very
small area, shown in Column 1. We observe that the trained CNN models are able to
produce highly accurate detection, especially the two-level detection methods. And
the 2CNN method is slightly mode accuracte than CNNPoly. This again suggests
that the CNN model is able to extract generic features of the discontinuities from
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Fig. 4.5: Two dimensional discontinuity curve detection. Three test functions
in the top row are generated for the detection experiment where the corresponding
discontinuity curves are a circle, a line, and a circle. The performances of the three
methods, 1CNN, 2CNN, and CNNPoly, are shown in the second, third and fourth
rows, where blue boxes are coarse cells detected by the first step of the two-step
methods and red cells are detected fine cells.

the simple cases of test data. In doing so, it is then able to detect in test data the
discontinuities of much more complex nature.

As in Section 4.1, we apply our detectors on data with different resolutions by
extending small-size grids or using the sliding-window procedure, where the function
domain is fixed, but the grid size is varied for different resolutions. Figure 4.7 shows
that the low-resolution data of grid size 61 × 61 may result in slightly more false
detection, while the detection is improved when we increase the grid size to 101× 101
or larger. For the two-step methods, 2CNN and CNNPoly, some boundary coarse
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Fig. 4.6: Detection on data with triangular discontinuity curves. The models
in the three detection methods are trained based on data with circular and linear
discontinuity curves, but the test functions in this experiment are of triangular dis-
continuity curves. The trouble cells of the triangles are well detected. It demonstrates
the ability of the trained model to detect new discontinuity curves that have not been
seen in the training data.

cells are wrongly detected by the step-1 detector due to the artificial effects from the
extension of the grid and function values. However, the step-2 detectors eliminate
almost all false detection near the boundary. Therefore, the trained models can be
adapted to any data with enough resolution without retraining models for different
resolutions, similar to the conclusion in Section 4.1.

4.3. Three-dimensional detection. For three-dimensional detection, the re-
sults are similar to the two-dimensional problems. We only show the performance of
the two-step methods discussed in Section 3.3. In Figure 4.8, blue cubes denote the
coarse trouble cells detected by the Step-1 detection and the red cubes denote the
fine trouble cells detected by the Step-2 detection. The detected cells well cover the
true discontinuity surfaces with a small number of false detections. This is not unex-
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Fig. 4.7: Detection on 2D data with different resolutions. Given a test function
on [−1, 1]2, the observed function values with different resolutions are generated by
changing the grid size. From left to right, the grid sizes are 61×61,101×101,151×151
and 201×201.

pected, and even preferred in practice, for identitifiation of three-dimensional surfaces
using cubes. Hence, the two-step method results in accurate detection similar to the
result in the two-dimensional detection experiments. Other experiments in terms of
resolutions and discontinuity surfaces can be likewise demonstrated as in Section 4.2
and therefore are skipped here.

5. Conclusion. This paper constructs discontinuity detectors using convolu-
tional neural networks (CNN) and presents a two-step coarse-to-fine detection proce-
dure for efficient detection of discontinuities of two- or three-dimensional functions.
Generally, successful training of deep neural networks requires a very large training
set that contains functions of a large variety of discontinuities, which should be dense
enough in the space of functions with discontinuities. Since that space is infinite-
dimensional, collecting such a dense training set is not feasible. Instead, we propose
to generate sets of synthetic training data covering only basic scenarios of discon-
tinuities, which provides enough information for the neural networks to learn the
generic properties of discontinuities. Various detection experiments demonstrate that
the trained models are able to provide accurate detection for functions with vastly
different and more complex discontinuity structures unobserved from the training set.
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Fig. 4.8: Three dimensional detection. The three-dimensional plot on the left
side shows the discontinuity surface on the 3-D domain of a three-dimensional test
function. Blue cubes are detected coarse cells using the step-1 detector of CNNPoly.
Red cubes in the right plot show the step-2 fine detection within a detected coarse
cell.

The detection procedures can be adapted for function data with different function
domains and different resolutions by the sliding window procedure or grid extension.
In this sense, our proposed CNN models become univeral discontinuity detectors for
uniform grids of arbitrary domains.
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