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Abstract: The Bayes classification rule offers the optimal classifier, minimizing the classification error rate,
whereas the Neyman-Pearson lemma offers the optimal family of classifiers to maximize the detection rate
for any given false alarm rate. These motivate studies on comparing classifiers based on similarities between
the classifiers and the optimal. In this paper, we define partial order relations on classifiers and families of
classifiers, based on rankings of rate function values and rankings of test function values, respectively. Each
partial order relation provides a sufficient condition, which yields better classification error rates or better
performance on the receiver operating characteristic (ROC) analysis. Various examples and applications of
the partial order theorems are discussed to provide comparisons of classifiers and families of classifiers,
including the comparison of cross-validation methods, training data that contains outliers, and labeling
errors in training data.
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1. INTRODUCTION

Over the last two decades as methodologies for building effective classifiers has continued to
grow, interest in comparing the accuracy of these classification paradigms has become increas-
ingly important across many fields of research (e.g., Lim, Loh, & Shih, 2000; Wu et al., 2003; Li
et al., 2014; Dudoit, Fridlyand, & Speed, 2002). The Bayes classification rule and the Neyman-
Pearson lemma provide the optimal classifier and the optimal family of classifiers respectively,
and allow for theoretical studies on classification comparison (e.g., Lee & Wang, 2015; Chang
et al., 2011). Nonetheless, most theoretical studies examining the comparison of classification
methods are often overly restrictive and largely unexplored. This is likely due to the complicated
analyses required to compute the classification error.

Motivated by the comparison of the randomized cross validation (RCV) and the cross-study
validation (CSV) in Chang & Geman (2015), we define a partial order relation for comparison
of classification error rates, which allows us to generalize the first theorem in the paper from 2-
class classification to multi-class classification. Note that, without using the partial order relation,
extending the original proof to multi-class classification problems is unfeasible.

Considering classifiers of the formH(x) = arg maxi∈{1,2,··· ,m} hi(x), this paper proposes a
partial order relation in which the order is defined by comparing, for every given x, the rankings
of rate function values {hi(x) : i = 1, 2, · · · ,m} of classifiers with that of the optimal Bayes
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classifier. According to the partial order relation, a classifier H1 ≤ H2 (another classifier) if H1

ranks any pair of rate functions (i.e. hi(x), hj(x) for any i, j and any x) more consistently with
the oracle (Bayes classifier) than H2 does. As demonstrated in Theorem 1, the partial order is
consistent with the order of classification error rates, providing a sufficient condition for perturb-
ing classifiers toward the Bayes optimal classifier (i.e. the minmum of the relation).

For comparing families of classifiers of the forms

Ht(x) =

{
1 if r(x) ≥ t,
2 if r(x) < t,

a different partial order relation is proposed, in which the order is defined by comparing the rank-
ings of test function values {r(x) : for all x} of the families with that of the optimal families of
classifiers (i.e. Neyman-Pearson classifiers). According to this partial order relation, a family is
smaller (better) than another if the former ranks any pair of test function values (i.e. r(x1), r(x2)
for any x1, x2) more consistently with the oracle (i.e. the family of Neyman-Pearson classifiers)
than the latter does. Similarly, this partial order relation provides a sufficient condition for per-
turbing classifiers toward the family of optimal Neyman-Pearson classifiers (the minmum of the
relation). As demonstrated in Theorem 3, this partial order relation is consistent with comparing
the performances of the receiver operating characteristic (ROC) curves.

In the next section, we discuss the definition of the partial order relation on classifiers and
provide theoretical results and various examples, including the comparison of cross-validation
methods, training sets that contain outliers, and the effects of labeling errors. Discussion of a
partial order relation on families of classifiers and the ROC analysis, including applications for
labeling errors and outlier contaminated models is included in Section 3. Numerical experiments
are provided to demonstrate the properties of the RCV and CSV in Section 4. Discussion and
open questions are included in Section 5. Proofs of theorems are in Appendix.

2. A PARTIAL ORDER RELATION ON CLASSIFIERS

Consider an m-class classification problem. Assume that the observed data are continuous and
drawn from classes with possibly different d-dimensional densities (everything works similarly
for discrete distributions). Let Y be a random integer in {1, · · · ,m} representing the class and
p(i) = P (Y = i) be the prior probability of class i. LetX be a random vector in Rd representing
the observation and f(x|i) be the probability density of X given class Y = i.

For any classifier H(x), let hi(x) be the rate function for class i such that

H(x) = arg max
i∈{1,2,··· ,m}

hi(x)

if the argmax returns a single index, and that H(x) otherwise is an integer from the set
arg maxi∈{1,2,··· ,m} hi(x). Let Err(H) be the classification error rate associated with H(x):

Err(H) = P (H(X) 6= Y ) =

m∑
i=1

p(i)Pi(H(X) 6= i)

where Pi(A) =
∫
A
f(x|i)dx for any measurable set A. The optimal classifier Ho(x), which

yields the Bayes error rate is defined as follows:

Ho(x) = arg max
i∈{1,2,··· ,m}

hoi (x),
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where hoi (x) = p(i)f(x|i). Notice that if arg maxi∈{1,2,··· ,m} h
o
i (x) returns a set of indices we

can arbitrarily assign the class Ho(x) from the set without affecting the error rate. Then we
can define a partial order relation as follows to characterize the relative similarity to the optimal
classifier.

Definition. Two classifiers H̄(x) and H(x) are of the relation H̄ ≤ H , if there exist two sets
of rate functions {h̄i(x) : i = 1, · · · ,m} and {hi(x) : i = 1, · · · ,m} with which

H̄(x) = arg max
i∈{1,2,··· ,m}

h̄i(x), H(x) = arg max
i∈{1,2,··· ,m}

hi(x)

such that for any distinct i, j ∈ {1, 2, · · · ,m} and x ∈ Rd we have h̄i(x) > h̄j(x) whenever
hi(x) ≥ hj(x) and hoi (x) > hoj(x).

Consequently, the relation defined above is a partial order relation for which Ho(x) is a min-
imum. Since p(i)f(x|i) ∝ f(i|x), the rate function hoi can be defined by hoi (x) = f(i|x). Thus,
this partial order relation can still be used in regression analysis or discriminative analysis when
only the conditional distribution (posterior distribution) f(i|x) is available or the corresponding
rate function is proportional to f(i|x). The following theorem shows that this relation is also a
partial order relation associated with the classification error rate. The proof is in the appendix.

Theorem 1. If H̄ ≤ H , then the classification error rate associated with H̄(x) is less than or
equal to that associated with H(x) [ i.e. Err(H̄) ≤ Err(H) ].

By this theorem, the partial order relation H̄ ≤ H provides a sufficient condition that en-
sures H̄ has a better classification performance. Note that verifying this condition requires the
underlying distributions or rate functions of the optimal classifier, which are usually unavailable
in practice. However, many characteristics and theoretical results can be discovered by applying
this partial order theorem, even when the underlying distributions and the optimal rate func-
tions are unknown. In particular, by assuming perfect training without estimation errors, we can
disregard the issues related to estimation and focus on the methodologies and other characteris-
tics. The following subsections explore several examples and applications under various training
scenarios to demonstrate the utility of the theorem.

2.1. Applications on Cross-Study Validation
“Study effects” are recently studied by comparing (ordinary) randomized cross-validation
(RCV ) with cross-study validation (CSV ). For example, Ma et al. (2014) conducted a series
of experiments to compare the variations of these two validation methods to demonstrate the
impact of study effects. Chang & Geman (2015) proposed a statistical formulation, under which
the theoretical results (three theorems) for two-class classification problems were established. In
this subsection, we use the partial order theorem to extend the first theorem in Chang & Geman
(2015) to multi-class classification problems.

Let the observed data be assembled from n equal-sized sources or “studies” (say z1, · · · , zn),
each consisting of samples from each of m classes. The populations among the studies could be
heterogeneous so that the samples across the studies far from identically distributed. The RCV
is a standard approach to estimating the error rate in which we train the classifier on the pooled
data excluding a random subset (e.g. ten percent), test on the left-out subset, repeat the procedure
and average the results. Nevertheless, in CSV , we leave each study out in turn, train on the other
n− 1 studies, test on the left-out study and average the results. Of these two validation methods,
which yields a larger error rate? Next, we show that the analytic error rate of CSV is larger or at
least equal to that of RCV , in support of our intuition.
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Now assume that the samples from each study and each class are continuously distributed.
Let pz(k) be the prior class probabilities given study z for k = 1, · · · ,m, and fz(x|k) be class-
conditional densities ofX given class k and study z. Focusing on the influence of study effects to
validation methods, we assume that the exact densities can be estimated in training procedures.
Therefore, in theRCV training, we get the following mixture of n densities as the learned density
for k-th class:

fz1:n(x|k) ≡ 1∑n
i=1 pzi(k)

n∑
i=1

pzi(k)fzi(x|k), (1)

where k = 1, · · · ,m. As per Chang & Geman (2015), the analytic error rate associated with
RCV is the Bayes error rate associated with the m mixture densities:

eRCV (z1, ..., zn)

=

m∑
k=1

∑n
i=1 pzi(k)

n
× P

(
arg max

t∈{1,2,··· ,m}

n∑
i=1

pzi(t)fzi(X|t) 6= k

∣∣∣∣∣X ∼ fz1:n(x|k)

)
.

Similarly, in the CSV training, we obtain the following mixture of n− 1 densities as the learned
density for the k-th class when zj is the left-out study:

1∑
i 6=j pzi(k)

∑
i 6=j

pzi(k)fzi(x|k), (2)

where k = 1, · · · ,m. Thus, the analytic error rate associated with CSV is the average of n
cross-study error rates:

eCSV (z1, ..., zn)

=
1

n

n∑
j=1


m∑
k=1

pzj (k) · P

arg max
t∈{1,2,··· ,m}

∑
i 6=j

pzi(t)fzi(X|t) 6= k

∣∣∣∣∣∣X ∼ fzj (·|k)

 .

We also have the following inequality for m-class classification, which is consistent with our
intuition and the experimental results in Ma et al. (2014) where the proof is in the appendix.

Theorem 2. For n ≥ 2, eCSV (z1, ..., zn) ≥ eRCV (z1, ..., zn).

Remark: The proof of the first theorem in Chang & Geman (2015) utilizes a key lemma, which
can be proven effortlessly using the partial order theorem, even for the generalization to multi-
class classification problems. However, extending the original proof of the lemma to multi-class
classification problems is unfeasible.

2.2. Partial order relations for different training scenarios
2.2.1. A training set that contains outliers
We consider a scenario that the conditional densities given classes are estimated based on a
training set that contains outliers generated from different distributions (say f̂(x|i)’s). Therefore,
the underlying densities are equal to f̄(x|i) = εf̂(x|i) + (1− ε)f(x|i), ∀i = 1, · · · ,m, where
ε ∈ [0, 1] is the weight of outlier population. Denote the Bayes classifier associated with the
f̄(x|i) functions as

Hf̄ (x) = arg max
i∈{1,2,··· ,m}

p(i)f̄(x|i).
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If p(i)f̂(x|i) ≥ p(j)f̂(x|j) and p(i)f(x|i) > p(j)f(x|j), then p(i)f̄(x|i) > p(j)f̄(x|j). Thus,
we have Hf̄ ≤ Hf̂ by the partial order theorem. Similarly, we can show that Err(Hf̄ ) is non-
decreasing in ε ∈ [0, 1] and converges to the optimal error rate Err(Ho) as ε tends to 0.

The perturbed densities f̄(x|i) = εf̂(x|i) + (1− ε)f(x|i) can also be viewed as ε-
contamination models in robustness analysis (e.g. He, Simpson, & Portnoy, 1990; Zio & Guarn-
era, 2013; Wellmann & Gather, 1999; Huber, 1981; Maronna, Martin, & Yohai, 2006). This
property demonstrates that the classification error rate is nondecreasing in the contamination
level ε. Hence, the monotonicity property agrees with robustness research and data mining in
that incorporating less contaminated data or more current (more accurate) data in training yields
better classifiers.

2.2.2. Labeling errors in a training set
The traditional training sets are assumed to be of correct labels (classes). However, accounting
for inevitable mislabeling from human labeling mistakes, lack of information, or communication
noise, the impact of label noise has attracted much attention for many years. Many articles focus
on modifying learning methods to eliminate the influence of the label noise (e.g. Brodley &
Friedl, 1999; Lawrence & Scholkopf, 2001; Leung, Song, & Zhang, 2011; Bootkrajang & Kaban,
(2012); Scott, Blanchard, & Handy, 2013; Natarajan et al., 2013; Frenay & Verleysen, 2014). In
this subsection, we study the performance of the Bayes classifiers learned based on training sets
with labeling errors.

Consider an m-class classification problem. Assume that each label, say Y = i, in a train-
ing set has been independently flipped with probability (m− 1)αi to any of the other (m− 1)
classes, each with probability αi. Let α = (α1, α2, · · · , αm) and assume αi ≤ 1/(m− 1) for all
i. Then, as the size of the training set tends to infinity, we assume that asymptotically the follow-
ing distributions are learned: Prior distribution, p̃α(i) = [1− (m− 1)αi]p(i) +

∑
s6=i αsp(s)

and Conditional data distribution,

f̃α(x|i) =
1

p̃α(i)

{
[1− (m− 1)αi]p(i)f(x|i) +

∑
s6=i

αsp(s)f(x|s)
}
. (3)

The Bayes classifier associated with the above distributions is as follows:

H̃α(x) = arg max
i∈{1,2,··· ,m}

p̃α(i)f̃α(x|i)

= arg max
i∈{1,2,··· ,m}

[1− (m− 1)αi]p(i)f(x|i) +
∑
s6=i

αsp(s)f(x|s). (4)

Therefore the classification error rate of H̃α(x) is a function of α = (α1, α2, · · · , αm). Using
the partial order theorem, we discovered the following partial order relation in terms of the max-
imum labeling error rate, denoted by α(1) = max1≤i≤n αi, where the proof is straightforward
and therefore skipped.

Proposition 1. Fix non-maximum αi values and regard the classification error rate as a func-
tion of α(1). Then, Err(H̃α) is nondecreasing in α(1) ∈ [α(2), 1/m), where α(2) is the second
largest αi.

Notice that we can show that when α1 = α2 = · · · = αm < 1
m (i.e., uniform labeling error),

the classification error rate is equal to the optimal classification error rate. Hence, reducing the
non-maximum labeling error rates may result in worse classification because it might increase
the non-uniformity of label noise. For example, for a fixed δ ∈ (0, 1/m), let α1 = δ − ε, and
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αi = δ for all i = 2, · · · ,m, and assume Err(H̃α) ≡ q(ε) is a continuous function of ε. Then
it converges to the optimal classification error rate Err(Ho) when ε tends to zero. If q(ε0) >
Err(Ho) for some ε0 ∈ (0, δ), then q(ε) must be increasing somewhere in (0, ε0). Thus, reducing
the first labeling error rate α1 (i.e., increasing ε) could increase the classification error rate.

In addition, the proposition can be generalized to regression models by replacing p(i)f(x|i)
and p(s)f(x|s) with f(i|x) and f(s|x) respectively in equation (4). Furthermore, other partial
order relations in terms of labeling errors may also be discovered using the partial order theorem.

3. A PARTIAL ORDER RELATION ON FAMILIES OF CLASSIFIERS

Consider a two-class classification problem where class 1 is abnormal and class 2 is normal (e.g.
cancer versus no cancer). Another common approach to comparing classification performance or
powers of statistical hypothesis testing is to compare the ROC performances (i.e. given a fixed
level of false alarm rate we compare the detection rates or discovery rates). Consider the family
of classifiers {Ht(x)} of the following form associated with a test function r(x):

Ht(x) =

{
1 if r(x) ≥ t,
2 if r(x) < t.

In particular, the optimal family of classifiers, denoted by {Ho
t (x)} uses the likelihood ratio

function ro(x) = f(x|1)
f(x|2) as the test function where f(x|1), f(x|2) are conditional densities for

class 1 and class 2, respectively. In this section, we propose a partial order relation on families of
classifiers which is based on the rankings of values of the test function in each family relative to
that in the optimal family of classifiers (known as Neyman Pearson classifiers):

Definition 2. Two families of classifiers {H̄t(x)} and {Ht(x)} associated with two test func-
tions r̄(x) and r(x) are of the relation {H̄t} ≤ {Ht}, if for any distinct x1, x2 ∈ Rd, we have
r̄(x1) > r̄(x2) whenever r(x1) ≥ r(x2) and ro(x1) > ro(x2).

Notice that the minimum of this partial order relation is the optimal family of classifiers,
{Ho(x)}. The following theorem shows that this partial order relation is indeed a partial order
relation corresponding to the ROC performances, in which “smaller” families give better ROC
curves. The following theorem is regarded as the partial order theorem in the previous section.
The proof is in the appendix.

Theorem 3. If {H̄t} ≤ {Ht}, then the ROC performance associated with the family {H̄t(x)}
is better than or at least the same as that associated with the family {Ht(x)}, i.e. for any fixed
false alarm rate, say P (Ht̂(X) = 1|X ∼ f(·|2)) = P (H̄t̄(X) = 1|X ∼ f(·|2)) for some t̂ and
t̄, the detection rate associated with the classifier H̄t̄(x) is greater than or equal to that associ-
ated with the classifier Ht̂(x), P (H̄t̄(X) = 1|X ∼ f(·|1)) ≥ P (Ht̂(X) = 1|X ∼ f(·|1)).

Remark 1: Following this theorem, we can define equivalent classes of classifier families, of
which the associated test functions are of the same rankings of function values in each equivalent
class. In particular, for any test function r(·) with rankings the same as the rankings of ro(·) (the
test function of the optimal family {Ho

t }), r(x1) ≤ r(x2) iff ro(x1) ≤ ro(x2), the family of the
corresponding classifiers is equivalently optimal (i.e. the corresponding ROC curve is exactly the
same as the optimal ROC curve).
Remark 2: If we assume that both false alarm rates P (H̄t(X) = 1|X ∼ f(·|2)) and
P (Ht(X) = 1|X ∼ f(·|2)) are continuous functions of t then this theorem implies that the ROC
curve associated with the classifier family {H̄t̄(x)} is everywhere as least as high as the ROC
curve associated with the classifier family {Ht(x)}.
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Next, we study some of the examples discussed in last section to demonstrate the utility of
this family-version partial order theorem.

3.1. A training set that contains outliers
Consider a two-class classification problem under the setup in Subsection 2.2.1 where we as-
sume that the underlying density for class i is the linearly perturbed density f̄(x|i) = εf̂(x|i) +

(1− ε)f(x|i) and f̂(x|i) is the outlier density of class i. Consider a family of likelihood ratio
classifiers H̄ε

t (x):

H̄ε
t (x) =

{
1 if r̄ε(x) ≥ t,
2 if r̄ε(x) < t,

where r̄ε(x) =
f̄(x|1)

f̄(x|2)
is the test function.

Then, does the ROC performance associated with the family {H̄ε
t (x)} always get better or at

least the same when we eliminate the outlier weight ε? In other words, assuming ε̃ < ε, for a
fixed false alarm rate, say P (H̄ε

t (X) = 1|X ∼ f(·|2)) = P (H̄ ε̃
t̃
(X) = 1|X ∼ f(·|2)) for some

t and t̃, is the detection rate associated with the classifier H̄ ε̃
t̃
(x) always greater than or at least

equal to that associated with the classifier H̄ε
t (x), P (H̄ ε̃

t̃
(X) = 1|X ∼ f(·|1)) ≥ P (H̄ε

t (X) =
1|X ∼ f(·|1))? Unfortunately, against our intuition, it is not true in general unless we include
additional assumptions as in the following two propositions. The proofs can be obtained by
simply applying Theorem 3 and are therefore skipped.

Proposition 2. Assume f̂(·|2) = f(·|2) [or f̂(·|1) = f(·|1)]. Let 0 ≤ ε̃ < ε ≤ 1. Then for
any t and t̃ such that P (H̄ε

t (X) = 1|X ∼ f(·|2)) = P (H̄ ε̃
t̃
(X) = 1|X ∼ f(·|2)), we have

P (H̄ ε̃
t̃
(X) = 1|X ∼ f(·|1)) ≥ P (H̄ε

t (X) = 1|X ∼ f(·|1)).

Proposition 3. Assume f̂(·|2) = f̂(·|1). Let 0 ≤ ε̃ < ε ≤ 1. Then for any t and t̃ such
that P (H̄ε

t (X) = 1|X ∼ f(·|2)) = P (H̄ ε̃
t̃
(X) = 1|X ∼ f(·|2)), we have P (H̄ ε̃

t̃
(X) = 1|X ∼

f(·|1)) ≥ P (H̄ε
t (X) = 1|X ∼ f(·|1)).

In the first example, we assume f̂(·|2) = f(·|2), which means that there are no outliers in
the training set of class 2. This is sometimes feasible in practice. For example, for classification
of “heathy patient samples (class 2) versus cancer patient samples (class 1),” the assumption of
negligible outliers in heathy patient samples is acceptable given a sufficiently large training set of
healthy patients. Thus, the underlying density f̄(·|2) ≈ f(·|2) for healthy patients is nearly fixed.
The underlying density for cancer patients, f̄(x|1) = εf̂(x|1) + (1− ε)f(x|1), can be regarded
as a learning consequence when a fraction ε of the samples in the cancer training set are outliers
from distribution f̂(x|1).

In the second example, we assume f̂(·|1) = f̂(·|2). This assumption is sometimes used in
robustness analysis (see Chen, Gao, & Ren, 2016; Huber, 1965), where the outliers for different
classes or hypotheses are from the same distribution. Thus, the proposition 3.1 can also be applied
to study monotone properties of ROC curves in robustness analysis.

3.2. Labeling errors in a training set
Returning to the example of labeling errors in Subsection 2.2.2, consider the 2-class classification
problem (m = 2) and consider a family of classifiers of the form

Hα
t (x) =

{
1 if rα(x) ≥ t,
2 if rα(x) < t.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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where α = (α1, α2) and where the test function, rα(x) = f̃(x|1)

f̃(x|2)
, is the likelihood ratio associ-

ated with the underlying densities, f̃(x|1) and f̃(x|2), of a training set in which each label i has
been independently flipped with probability αi to one of the other classes. By equation (3), taking
m = 2, we obtain rα(x) = Rα

(1−α1)p(1)f(x|1)+α2p(2)f(x|2)
(1−α2)p(2)f(x|2)+α1p(1)f(x|1) , where Rα = (1−α2)p(2)+α1p(1)

(1−α1)p(1)+α2p(2) .
Notice that p(i) can be viewed as the underlying probability of class i in training data collec-
tion.

To study the ROC performance of {Hα
t } in terms of α, according to Theorem 3, we com-

pare the order of the values of rα(x1) and rα(x2) with the order of ro(x1) and ro(x2) for any
x1, x2. We get that rα(x1) ≤ rα(x2) iff (1− α1 − α2)p(1)p(2)f(x1|1)f(x2|2) ≤ (1− α1 −
α2)p(1)p(2)f(x2|1)f(x1|2). For 0 ≤ α1 + α2 < 1,

rα(x1) ≤ rα(x2)⇐⇒ f(x1|1)

f(x1|2)
≤ f(x2|1)

f(x2|2)
⇐⇒ ro(x1) ≤ ro(x2),

and, therefore, according to Remark 1 above, we find, surprisingly, that the ROC curve associated
with the test function rα(x) is the optimal ROC curve. For 1 < α1 + α2 ≤ 2,

rα(x1) ≤ rα(x2)⇐⇒ f(x1|1)

f(x1|2)
≥ f(x2|1)

f(x2|2)
⇐⇒ ro(x1) ≥ ro(x2),

and, therefore, the corresponding ROC curve is symmetric to the optimal ROC curve with respect
to the point (0.5, 0.5).

4. NUMERICAL EXPERIMENTS

In Section 2.1, we showed that the CSV error rate is greater than the RCV er-
ror rate. To study this variability, we numerically explore the properties of the RCV
and CSV methods for three-class classification problems with models learned from
gene expression data, similar to the two-class experiment discussed in Chang & Ge-
man (2015). We collected microarray gene expression data of breast cancer patients from
(http://watson.compbio.iupui.edu/chirayu/proggene/database/datasources.php), where there are
five platforms corresponding to five studies Z = 1, 2, · · · , 5, each of which included expression
values for more than 6,000 genes with numbers of patients ranging from one hundred to three
hundreds.

For our three-class classification experiments, let Y = 1, 2 and 3 denote “relapse free
survival”, “relapse in three years,” and “relapse after three years” respectively. We first
quantile-normalized the expression data and then selected differentially expressed genes, say
g1, g2, g3 · · · , gp by the following procedure on the entire pooled data: First, for each gene, com-
pute the p-value using the Kruskal-Wallis H test. Then, let g1 be the the gene with smallest
p-value. Let g2 be the gene that has the smallest p-value among those genes whose absolute
correlation with g1 is smaller than 0.25. Let g3 be the gene that has the smallest p-value among
those genes whose absolute correlations with selected genes (i.e., g1, g2) are smaller than 0.25.
Continue this procedure until the next selected gene has a p-value greater than 0.05, and then
we can obtain a set of genes g1, g2, · · · , gp, each of which has p-values smaller that or equal to
0.05 and has absolute correlation less than 0.25 with any other selected gene, where the num-
ber of genes p = 34. Let X = (X1, X2, · · · , Xp) be predictors denoting the corresponding gene
expressions. Then, for each study Z ∈ {1, 2, 3, 4, 5}, we use the logistic lasso algorithm from
the Glmnet package (Qian et al 2013) to obtain 10 to 12 effective predictors and correspond-
ing nonzero coefficients βi’s for the conditional distribution of Y given X , fZ(y|X) and we
learned a multivariate normal distribution fZ(x) for X . Therefore, we obtain a joint distribution
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FIGURE 1: RCV error rates eRCV (n) versus CSV error rates eCSV (n). The blue and red curves show
the RCV error rates eRCV (n) and the CSV error rates eCSV (n) respectively for a particular realization
Z1, · · · , Z10 generated i.i.d. from U{1, 2, 3, 4, 5}, where the number of studies n goes from 2 to 10 and
the underlying distributions are fZi(x, y), i = 1, · · · , 10.

fZ(x, y) for each study Z. The algorithms for training and for the following three experiments
can be downloaded from https://github.com/Lo-Bin/PartialOrder, and the Glmnet package can
be downloaded from https://web.stanford.edu/∼hastie/glmnet matlab/.
Experiment 1. We generate 10 study variables Z1, · · · , Z10 uniformly over {1, 2, 3, 4, 5}.
For this particular realization Z1, · · · , Z10, we compute eRCV (n) = eRCV (Z1, · · · , Zn)
and eCSV (n) = eCSV (Z1, · · · , Zn) using Monte Carlo integrations with joint distributions
fZi(x, y), i = 1, · · · , n, where the number of studies n = 2, · · · , 10. Figure 1 shows that the
CSV error rate is larger than the RCV error rate for all n ∈ {2, · · · , 10}, which is consistent
with Theorem 2. Note that with only two studies Z1, Z2 (i.e., n = 2), both RCV and CSV error
rates are relatively small. However, when adding a third study Z3 (i.e., n = 3), both error rates
are largely increased because the classification task for Z3 is more difficult than that for Z1, Z2.

Experiment 2. Unlike the first experiment where we assumed that the distributions fZi(x, y)’s
are known, this experiment explores what happens when the distributions are unknown and have
to be estimated. For comparison with the previous experiment, we still use same10 study vari-
ables Z1, · · · , Z10 that are generated in Experiment 1. For each study Zi, we generate a training
set of size 150, {(Xik, Yik) : k = 1, · · · , 150} from the true distribution fZi

(x, y), and learn the
distribution based on the training set. Next, we construct those Bayes classifiers using the learned
distributions, denoted by f̂Zi(x, y), i = 1, · · · , 10, and compute the RCV and CSV error rates
using Monte Carlo integration with true distributions fZi(x, y)’s as in Experiment 1. Denote
the new RCV and CSV error rates by êRCV (n) and êCSV (n) respectively. The right and left
panels of Figure 2 show the results of two runs of the algorithm. Since the size of the training
set for each study Zi is only 150, f̂Zi

(x, y) may not be accurate. Thus, the RCV error rates
are larger than in Example 1 because the classifier associated with the RCV approach is based
on the mixture of learned distributions [see equation (1)], 1∑n

i=1 p̂Zi
(y)

∑n
i=1 f̂Zi

(x, y), which is
not accurate. However, the CSV error rates are less affected by the training error. This is be-
cause for each j = 1, · · · , 10, when leaving out study Zj , the classifier associated with CSV is
based on the mixture of the learned distributions [see equation (2)], 1∑

i6=j p̂zi (y)

∑
i 6=j f̂Zi

(x, y),

but the error rate is computed based on the true distribution of study Zj , fZj
(x, y). Hence, we

could sometimes even see the CSV error rate is smaller than the RCV error rate for some n
as shown in the right panel of Figure 2, especially when the mixture of learned distributions

1∑
i6=j p̂zi (y)

∑
i6=j f̂Zi

(x, y) is more similar to fZj
(x, y) than the mixture of true distributions
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FIGURE 2: RCV error rates êRCV (n) versus CSV error rates êCSV (n). The blue and red curves show
the RCV error rates êRCV (n) and the CSV error rates êCSV (n) respectively for the same realization
Z1, · · · , Z10 as in Experiment 1, where the number of studies n goes from 2 to 10, and the underlying
distributions are fZi(x, y), i = 1, · · · , 10, but the distributions used to construct the Bayes classifiers are
the learned distribution f̂Zi(x, y), i = 1, · · · , 10. The left and right panels are two runs of the algorithm.

1∑
i6=j pzi (y)

∑
i6=j fZi

(x, y) to fZj
(x, y).

Experiment 3. Cross-validation is often used as a tool for model selection to select effective
predictors for generalized linear models. For the model used in this section, the multinomial
logistic regression fZ(y|x) for each studyZ ∈ {1, 2, 3, 4, 5} has 10 to 12 predictors with nonzero
effects. There are total 29 predictors with nonzero effects in at least one of the five studies. In this
experiment, we are interested in which of two cross-validation methods, RCV and CSV , better
serves model selections. We generate a pooled dataset which includes 150 i.i.d. pairs (X,Y ) from
each of the five distributions fZ(x, y), Z = 1, · · · , 5. Then using the logistic lasso, we train on
the pooled data to select effective predictors and see if we can discover those 29 predictors. We
use the 10-fold cross-validation (default in Glmnet package) and the cross-study validation to
determine the penalty coefficient λ in the logistic lasso training. Let λRCV and λCSV be the
corresponding determined penalty coefficients. Then two sets of effective predictors are selected
using λRCV and λCSV . LetNRCV andNCSV be the numbers of additional predictors associated
with λRCV and λCSV , where an “additional predictor” is a selected predictor which is not one
of the 29 predictors. Let MRCV and MCSV be the numbers of missed predictors associated with
λRCV and λCSV , where a “missed predictor” is a non-selected predictor which is one of the 29
predictors.

Next, 1,000 simulations are performed to plot histograms of λrcv ,λcsv , (NRCV , NCSV ) and
(MRCV ,MCSV ). As shown in Figure 3, λcsv is often larger than λrcv so that the CSV method
tends to select fewer predictors. This makes sense because when the CSV method evaluates the
likelihood on the left out study, any predictor selected based on the other four studies becomes
a noise term that reduces the likelihood, if the predictor is not an effective predictor of the left
out study. Hence, to avoid selecting such a predictor, the CSV method would prefer to use a
larger penalty coefficient. As a result, the CSV method selects fewer predictors, which causes a
lot more missed predictors, and results in a worse model selection as shown in Figure 4. Notice
that the result from the CSV method being so different from that from the RCV method is due
to the distribution difference between each left out study and the remaining 4 studies. Therefore,
increasing the sample size of each study does not diminish the difference. When increasing the
number of studies,m, the difference still remains to some extent because the mixture distribution
of any m− 1 studies converges to EfZ(x, y) (provided that study variables Zi’s are i.i.d. f(z)
as assumed in Theorem 2), which could still be different from the distribution of a left out study.
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FIGURE 3: Histograms of λrcv and λcsv .

FIGURE 4: Bivariate Histograms for the RCV and CSV methods.

5. DISCUSSION

Many challenges arising from this research have remained unexplored. The first partial or-
der relation discussed in this paper is based on the probability of misclassification Err(H) =
P (H(X) 6= Y ), which is the risk function associated with loss function 1H(X)6=Y , but many
other alternative error measures are available for investigation (e.g. the risk function associated
with the hinge loss). In terms of cross-study validation, study effects can be characterized by the
gap between the error rate of cross-study validation and the randomized cross-validation. There-
fore, with the formulas of these validation error rates given in this paper, further investigation on
theoretical studies of quantifying the study effect can be initiated. Finally, in terms of partial or-
der relations between two families of classifiers, if we quantify ROC performance by calculating
the area under the ROC curve, can we define a useful partial order relation associated with the
area quantification?

As many classification algorithms requires a significant amount of training and classification
implementation, several approximation techniques were developed to simplify the computation
complexity of training and classification implementation, and reduce computational time and
memory usage (e.g., Lee & Huang, 2007; Chang et al., 2013). Therefore, another application
of the partial order relations is to analytically compare the classification performances between
exact computation and its approximation. Moreover, many articles have demonstrated improve-
ments in classification accuracy experimentally, particularly within the literature on ensemble
learning methods such as bagging, boosting, decision trees, stacking, and Bayesian model aver-
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aging. With the partial order relations, theoretical investigation of these improvement methods
as well as other methods of empirical findings is of particular interest for future research.
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APPENDIX

Proof of Theorem 1. Let the h̄i(x) and hi(x) functions be corresponding rate functions
of H̄ and H . Let Ai = {x : Ho(x) = i}, Aij = {x ∈ Ai : H(x) = j} and Aijk = {x ∈ Aij :
H̄(x) = k}. Thus we have Ai = ∪mj=1Aij and Aij = ∪mk=1Aijk. With this notation,

Err(H) =

m∑
i=1

p(i)

m∑
i′=1

∑
j 6=i

Pi(Ai′j), and Err(H̄) =

m∑
i=1

p(i)

m∑
i′=1

m∑
j=1

∑
k 6=i

Pi(Ai′jk).

Now consider

Err(H)− Err(H̄) =

m∑
i=1

p(i)

m∑
i′=1

∑
j 6=i

Pi(Ai′j)−
m∑
i=1

p(i)

m∑
i′=1

m∑
j=1

∑
k 6=i

Pi(Ai′jk)

=

m∑
i=1

m∑
i′=1

∑
j 6=i

m∑
k=1

p(i)Pi(Ai′jk)−
m∑
i=1

m∑
i′=1

m∑
j=1

∑
k 6=i

p(i)Pi(Ai′jk)

=

m∑
i=1

m∑
i′=1

∑
j 6=i

p(i)Pi(Ai′ji)−
m∑
i=1

m∑
i′=1

∑
k 6=i

p(i)Pi(Ai′ik).

Replacing, in the second term, the index i with j and then replacing the index k with i, we have

m∑
i=1

m∑
i′=1

∑
k 6=i

p(i)Pi(Ai′ik) =

m∑
j=1

m∑
i′=1

∑
i 6=j

p(j)Pj(Ai′ji) =

m∑
i=1

m∑
i′=1

∑
j 6=i

p(j)Pj(Ai′ji),

where the second equality is obtained by interchanging the order of summation in the triple sum.
Therefore,

Err(H)− Err(H̄) =

m∑
i=1

m∑
i′=1

∑
j 6=i

[
p(i)Pi(Ai′ji)− p(j)Pj(Ai′ji)

]
if x ∈ Ai′ji, H(x) = j and H̄(x) = i so that we have hj(x) ≥ hi(x) and h̄j(x) ≤ h̄i(x). Be-
cause H̄ ≤ H , we must have hoj(x) ≤ hoi (x) [i.e. p(j)f(x|j) ≤ p(i)f(x|j)] if hj(x) ≥ hi(x)

and h̄j(x) ≤ h̄i(x). Therefore,

p(i)Pi(Ai′ji)− p(j)Pj(Ai′ji) =

∫
Ai′ji

[
p(i)f(x|i)− p(j)f(x|j)

]
dx ≥ 0.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



14 LO-BIN CHANG Vol. xx, No. yy

Hence, Err(H)− Err(H̄) ≥ 0, and the proof is completed. �

Proof of Theorem 2. For each j ∈ {1, 2, · · · ,m}, consider the following
two classifiers: Hj(x) = arg maxt∈{1,2,··· ,m}

∑
i6=j pzi(t)fzi(x|t) and H̄(x) =

arg maxt∈{1,2,··· ,m}
∑n
i=1 pzi(t)fzi(x|t). Regarding pzj (k) and fzj (x|k) as prior prob-

ability p(k) and conditional density f(x|k) defined in the beginning of Section 2 for
k = 1, · · · ,m, we can get that if

∑
i 6=j pzi(t1)fzi(x|t1) ≥

∑
i 6=j pzi(t2)fzi(x|t2) and hot1(x) =

pzj (t1)fzj (x|t1) > hot2(x) = pzj (t2)fzj (x|t2), then we have
∑n
i=1 pzi(t1)fzi(x|t1) >∑n

i=1 pzi(t2)fzi(x|t2). Therefore, H̄(x) ≤ Hj(x) and according to the par-
tial order theorem,

∑m
k=1 pzj (k) · P

(
Hj(X) 6= k|X ∼ fzj (·|k)

)
≥
∑m
k=1 pzj (k) ·

P
(
H̄(X) 6= k

∣∣X ∼ fzj (·|k)
)
. This implies

eCSV (z1, ..., zn) =
1

n

n∑
j=1

m∑
k=1

pzj (k) · P
(
Hj(X) 6= k|X ∼ fzj (·|k)

)
≥ 1

n

n∑
j=1

m∑
k=1

pzj (k) · P
(
H̄(X) 6= k

∣∣X ∼ fzj (·|k)
)

(1)

Moreover,

P

(
H̄(X) 6= k

∣∣∣∣X ∼ 1∑n
i=1 pzi(k)

n∑
i=1

pzi(k)fzi(·|k)

)

=

∫
{x:H̄(x)6=k}

1∑n
i=1 pzi(k)

n∑
i=1

pzi(k)fzi(x|k)dx

=
1∑n

i=1 pzi(k)

n∑
i=1

pzi(k)

∫
{x:H̄(x)6=k}

fzi(x|k)dx

=
1∑n

i=1 pzi(k)

n∑
i=1

pzi(k)P
(
H̄(X) 6= k|X ∼ fzj (·|k)

)
.

Thus we can rewrite equation (1) and obtain

eCSV (z1, ..., zn) ≥
m∑
k=1

∑n
i=1 pzi(k)

n
· P
(
H̄(X) 6= k

∣∣∣∣X ∼ fz1:n(x|k)

)
= eRCV (z1, ..., zn).

�

Proof of Theorem 3. Let r(x) and r̂(x) be the test functions associated with H(x)
and Ĥ(x), and assume that t̂ and t̄ are thresholds such that Ht̂ and H̄t̄ have the same
false alarm rate, P (Ht̂(X) = 1|X ∼ f(·|2)) = P (H̄t̄(X) = 1|X ∼ f(·|2)). Define A = {x :
Ht̂(x) = 1} = {x : r(x) ≥ t̂}, B = {x : H̄t̄(x) = 1} = {x : r̄(x) ≥ t̄}, D = A ∩B, Ã = A \
D, and B̃ = B \D. By the assumption of t̂ and t̄, we have

∫
A
f(x|2)dx =

∫
B
f(x|2)dx and thus∫

Ã

f(x|2)dx =

∫
B̃

f(x|2)dx. (2)
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Similarly, to prove P (H̄t̄(X) = 1|X ∼ f(·|1)) ≥ P (Ht̂(X) = 1|X ∼ f(·|1)), it is sufficient
to show that

∫
Ã
f(x|1)dx ≤

∫
B̃
f(x|1)dx. Since Ã = {x : r̄(x) < t̄} ∩ {x : r(x) ≥ t̂} and

B̃ = {x : r̄(x) ≥ t̄} ∩ {x : r(x) < t̂}, for any x1 ∈ Ã, x2 ∈ B̃, we have r(x1) ≥ t̂ > r(x2)
and r̄(x1) < t̄ ≤ r̄(x2) so by the definition of partial order relation {H̄t} ≤ {Ht}, we get
f(x1|1)
f(x1|2) ≤

f(x2|1)
f(x2|2) . Therefore, there exists t∗ ≥ 0 such that, for any x1 ∈ Ã, x2 ∈ B̃, we

have f(x1|1)
f(x1|2) ≤ t

∗ ≤ f(x2|1)
f(x2|2) . Hence, we get f(x|1) ≤ t∗f(x|2) for any x ∈ Ã, which im-

plies
∫
Ã
f(x|1)dx ≤

∫
Ã
t∗f(x|2)dx, and t∗f(x|2) ≤ f(x|1) for any x ∈ B̃, which implies∫

B̃
t∗f(x|2)dx ≤

∫
B̃
f(x|1)dx. By equation (2), together with the above two implied inequali-

ties, we complete the proof. �
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