Assessing Quality of Survey Data: Overview
Survey quality framework

“Fitness for use” paradigm (Juran & Gryna 1980):
Survey quality as understood by both data producers and by data users.
Hence,

2 distinct elements of quality (as general concept):
(a) freedom from deficiencies;
(b) Responsiveness to users’ needs

Survey quality as a multidimensional concept
Common Dimensions of Survey Quality

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Total survey error is minimized</td>
</tr>
<tr>
<td>Credibility</td>
<td>Data are considered trustworthy by the survey community</td>
</tr>
<tr>
<td>Comparability</td>
<td>Demographic, spatial, and temporal comparisons are valid</td>
</tr>
<tr>
<td>Usability/Interpretability</td>
<td>Documentation is clear and metadata are well-managed</td>
</tr>
<tr>
<td>Relevance</td>
<td>Data satisfy users needs</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Access to the data is user friendly</td>
</tr>
<tr>
<td>Timeliness/Punctuality</td>
<td>Data deliveries adhere to schedules</td>
</tr>
<tr>
<td>Completeness</td>
<td>Data are rich enough to satisfy the analysis objectives without undue burden on respondents</td>
</tr>
<tr>
<td>Coherence</td>
<td>Estimates from different sources can be reliably combined</td>
</tr>
</tbody>
</table>

Source: Biemer 2010, p. 109

Total Survey Error (TSE) as part of the Accuracy dimension

[CSDI](http://ccsg.isr.umich.edu/quality.cfm) guidelines for quality & examples of indicators of quality (adapted from Eurostat's standard quality indicators): ccsg.isr.umich.edu/quality.cfm

Appendix A
Total Survey Error (TSE)

\[TSE = SE + NE \]

- **SE** = due to selecting a sample instead of the entire population
- **NE** = due to mistakes or system deficiencies

\[SE = \text{even if the sample is well constructed (& does not needs repairs), there may me a considerable difference btw. estimated values and true (population) values of the distribution properties} \]
Fitness of use & TSE

TSE - NE

Specification Concepts Objectives
Frame error Omissions Erroneous inclusions
Non-response error Whole unit Item
Measurement error Respondent Interviewer Instrument
Processing error Data entry Coding Weighting

Fitness for Intended Use
- Cost
- Burden
- Professionalism
- Design Constraints

Comparability
Coherence
Relevance
Accuracy
Timeliness
Accessibility
Interpretability

Total Survey Error
- Construct Validity
- Measurement Error
- Processing Error
- Coverage Error
- Sampling Error
- Nonresponse Error
- Adjustment Error

Measurement
Representation
The Survey Process Quality Management framework

To obtain quality products, quality processes are necessary. The latter require quality management at (a) the overall study level; and (b) the national organization level.

Survey production process quality assessment requires:
- use of quality standards;
- collection of standardized study metadata, question metadata, and process paradata
Metadata = information that describes data.
In our project: info. about sample, response rates, translation, pretesting, control of fieldwork to control for the quality of the survey as reflected in the survey documentation.

Paradata = empirical measurements about the process of creating survey data themselves:
- visual observations of interviewers, administrative records about the data collection process, computer-generated measures about the process of the data collection, external supplementary data about sample units, observations of respondents themselves about the data collection.

CSDI -> recommended elements of process quality management relevant to each element of the survey lifecycle
ccsg.isr.umich.edu/quality.cfm Appendix B
Survey quality-control indicators in SDR

• Survey documentation

• (In)consistencies btw. the resources defining variables and their values (e.g. codebooks and questionnaires) on one hand, and data records in the computer file on the other

• Computer data records
<table>
<thead>
<tr>
<th>General Survey Documentation: How is the quality of national surveys reflected in data documentation</th>
<th>Answers</th>
</tr>
</thead>
</table>
| Does the survey documentation provide information on the *response* rate? | Yes = 1
No = 0 |
| Was the *questionnaire* back-translated or translation checked in some other way? | Yes = 1
Else = 0 |
| Is there any evidence that the *questionnaire* was pre-tested? | Yes = 1
Else = 0 |
| Does the documentation show that the *fieldwork* was controlled? | Yes = 1
Else = 0 |

Marta and Matt’s presentation today

Effect of item value = 0: Reduction of confidence in the data
<table>
<thead>
<tr>
<th>Specific Data Description: How have the data been defined?</th>
<th>Answers</th>
</tr>
</thead>
</table>
| Do variable values in the codebook correspond to values in the data file? | Yes = 0
No = 1 |
<p>| Eight binary variables describing discrepancies between data description and the data file (Ilona and Olena’s presentation tomorrow) | |
| Effect of negative answers (No = 1): Decrease of interpretability of the data | |</p>
<table>
<thead>
<tr>
<th>Computer Data File: Are the data formally correct?</th>
<th>Answers</th>
</tr>
</thead>
</table>
| Do survey cases (respondents) have unique identification numbers (IDs)? | Yes = 0
No = 1 |
| **Are survey weights free of formal errors?**
(Marcin’s presentation yesterday) | Yes = 0
No = 1 |
| Is the proportion of missing values for gender and age within the standard limits (< 5%)? | Yes = 0
No = 1 |
| Is the data file free from repeated cases (duplicates)?
(Przemek’s presentation tomorrow) | Yes = 0
No = 1 |

Effect of negative answers (No = 1) : Possible distortion of the research results based on the data