Workshop

Building Multi-Source Databases for Comparative Analyses

Survey Data Recycling as an Analytic Framework for Survey Data Reprocessing (I)

The SDR Team
SDR Project, 2017-2021, SMA-1738502

PIs: Craig Jenkins, Irina Tomescu-Dubrow, Maciek Slomczynski – Sociology, OSU, PAN
Han-Wei Shen, Spyros Blanas – Computer Science and Engineering, OSU
Ilona Wysmulek, Sociology, PAN
Joonghyun Kwak, OSU

Computer analyst: Przemek Powalko, PAN

Graduate students: Nika Palaguta, Weronika Boruc, Denys Lavryk - PAN; Yamei Tu, OSU.

Researchers: Marcin W. Zieliński, Marcin Ślarzyński - PAN.

Advisory Board:
Claire Durand, University of Montreal, WAPOR
Peter Granda, University of Michigan, ICPSR
Dean Lillard, Department of Human Sciences, OSU
Malgorzata Mikucka, Mannheim University, MZES
Pamela Paxton, UT Austin
Markus Quandt, GESIS
Create the **SDR database**, a multi-country multi-years data structure for comparative, cross-national research on three main areas:

- Democracy and Political Participation
- Social Capital and Political Participation
- Social Capital and Wellbeing

Develop **methodology** for reprocessing extant survey data into multi-dimensional data structures, such as the SDR database

Develop **analytic tools** for using and analyzing the SDR database
Why is so?

Methodology dimension: agency as antidote to alienation

Part I: inter-survey variability in the context of data reprocessing in general

Part II (after coffee break): ex-post harmonization & inter-survey variability
Selected international survey projects

- Asian Barometer
- Afrobarometer
- Americas Barometer
- Arab Barometer
- Asia Europe Survey
- Caucasus Barometer
- Consolidation of Democracy
- Comparative National Elections Project
- Eurobarometer
- European Quality of Life Survey
- European Social Survey
- European Values Study
- International Social Justice Project
- International Social Survey Programme
- Latinobarometro
- Life in Transition Survey
- New Baltic Barometer
- Political Action II
- Political Action - An Eight Nation Study
- Political Participation and Equality
- Values and Political Change
- World Values Survey
- New Europe Barometer

Selection criteria:

(1) contain measures of political attitudes and behaviors, social capital, and wellbeing + main correlates; (2) non-commercial; (3) designed as cross-national, preferably, multi-wave; (4) national samples are intended as representative of the adult population; (5) English language documentation (study description, codebook, questionnaire); (6) freely available in the public domain.
<table>
<thead>
<tr>
<th></th>
<th>SDR 1</th>
<th>SDR 2</th>
</tr>
</thead>
<tbody>
<tr>
<td># survey projects</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td># waves</td>
<td>89</td>
<td>174</td>
</tr>
<tr>
<td># national surveys</td>
<td>1,721</td>
<td>3,485</td>
</tr>
<tr>
<td># respondents</td>
<td>2,300,000</td>
<td>4,400,000</td>
</tr>
<tr>
<td># countries/territories</td>
<td>142</td>
<td>169</td>
</tr>
<tr>
<td>Time span</td>
<td>1966-2013</td>
<td>1966-2017</td>
</tr>
<tr>
<td># source data files</td>
<td>81</td>
<td>215</td>
</tr>
</tbody>
</table>
SDR framework of analysis

Define, measure and store, as indicators, variability due to:

- source survey quality
- data reprocessing (i.e. ex-post harmonization)

Methodological biases and errors understood as consequences of:

(a) deviations from standards of documenting and preparing survey data suggested in the specialized literature (e.g. Biemer and Lyberg 2003)
(b) inter-survey variability of items measuring the same issue
(c) harmonization procedures
SDR analytic framework – source data quality

Define

Measure

Store as indicators

variability due to deviations from standards of documenting and preparing survey data suggested in the specialized literature (e.g. Biemer and Lyberg 2003)
SDR framework: defining source survey quality

Total Survey Error (TSE) + Survey Process Quality Management (SQM)

3 dimensions of survey quality

a) Quality of the **data records** in national datasets (i.e. computer files)
 - errors can lead to distortion of empirical results.

b) Quality of surveys as reflected in the **survey documentation**
 - inadequate information in documentation reduces confidence in the data

c) Degree of consistency **documentation <-> data records** in the computer file
 - processing errors can affect the overall usability of the survey
Operationalization:

a) **Data Records in the Computer File**: are data records formally correct?

Summary index on the basis of 4 variables:

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are survey weights free of formal errors (not inflating sample size)?</td>
<td>Yes = 1, No = 0</td>
<td></td>
</tr>
<tr>
<td>Do survey cases (respondents) have unique identification numbers (IDs)?</td>
<td>Yes = 1, No = 0</td>
<td></td>
</tr>
<tr>
<td>Is the proportion of missing values for gender and age within the standard limits (< 5%)?</td>
<td>Yes = 1, No = 0</td>
<td></td>
</tr>
<tr>
<td>Is the data file free from repeated cases (duplicates)?</td>
<td>Yes = 1, No = 0</td>
<td></td>
</tr>
</tbody>
</table>

Effect of positive answers (Yes = 1): Less distortion of research results based on the data
<table>
<thead>
<tr>
<th>Var. name</th>
<th>Var. label</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsp_rate_info</td>
<td>Value of response rate is available</td>
<td>0/1</td>
</tr>
<tr>
<td>rsp_rate_value</td>
<td>Value of response rate</td>
<td></td>
</tr>
<tr>
<td>rsp_rate_approx</td>
<td>Value of response rate in the documentation is approximated</td>
<td>0/1</td>
</tr>
<tr>
<td>rsp_rate_calc</td>
<td>Response rate calculated based on numbers provided in the documentation</td>
<td>0/1</td>
</tr>
<tr>
<td>int_mode_info</td>
<td>Information about interview mode is available</td>
<td>0/1</td>
</tr>
<tr>
<td>transl_info</td>
<td>Information on translation method is available</td>
<td>0/1</td>
</tr>
<tr>
<td>transl_value</td>
<td>Information indicates that a professional translation method was employed</td>
<td>0/1</td>
</tr>
<tr>
<td>pret_info</td>
<td>Information about whether or not pretesting was performed is available</td>
<td>0/1</td>
</tr>
<tr>
<td>pret_value</td>
<td>Information indicates that pretesting was performed</td>
<td>0/1</td>
</tr>
<tr>
<td>fctrl_info</td>
<td>Information about whether or not fieldwork control was performed is available</td>
<td>0/1</td>
</tr>
<tr>
<td>fctrl_value</td>
<td>Information indicates that fieldwork control was performed</td>
<td>0/1</td>
</tr>
<tr>
<td>univ_info</td>
<td>Information about the universe is available</td>
<td>0/1</td>
</tr>
<tr>
<td>sample_info</td>
<td>Information about sampling scheme is available</td>
<td>0/1</td>
</tr>
</tbody>
</table>
Operationalization **b) Survey Documentation**: How were the data collected? (for SDR2)

- Info on the type of the sampling scheme
- Info on the type of interview mode
- Summary index of binary indicators
Based on analysis of variable values for 7 variables:

gender, age, year of birth, education levels, years of schooling,

trust in parliament, participation in demonstrations

Do variable values in the codebook correspond to the values in the data file?	Yes=1
Illegitimate Variable Values	No=0
Misleading Variable Values	
Contradictory Variable Values	
Variable Values Discrepancy	
Lack of Variable Value Labels	

Presence of errors, Yes = 1: decreased interpretability of the data
Operationalization: Data Records in the Computer File

Survey weights

Survey weights assign an adjustment number to each respondent. Persons in under-represented get a weight larger than 1, and those in over-represented groups get a weight smaller than 1.

However, some numbers >1 and some numbers < 1 seems suspicious.
MIN&MAX (weight)

Ranges of MIN(wght):

exactly=0 in 42 surveys!
1.91 Philippines (ISSP 1991)

Ranges of MAX(wght):

0.92 Lithuania (NBB 2001)
90.32 New Zealand (ISSP 2007)

These findings prompted us to study weights carefully.

Main work on weights in SDR1 and SDR2 is done by Marcin Zieliński
Frequency of weighting procedures

43.4 % poststratification type of weighting only
8.5 % design type of weighting only
22.9 % combined
25.2 % no information on the type of weighting
Components of wght. factors

Gender (62.4 %)
Age (61.5)
Region (39.3)
Urbanity level (24.8)
Education (18.7)
Economical factors (1.4)

Corrections for HH samples (13.8)
Corrections due to the stratified sampling (21.8)
Quality of weights

Technically “good weight”

MIN(wght) > 0 and MIN(wght) < 1

MAX(wght) > 1 but small

mean(wght) = 1

sd(wght) as small as possible
Consequences

MIN(wght) = 0 : excluding cases

high MAX(wght) : possible bias

mean(wght) <> 1 : inflation or deflation of the net sample size (stnd errors, potential bias)

high sd(wght) : high variance introduced into the data
mean(weight)

70 % mean(wght) != 1

Less strict: 0.999=<= weight <= 1.001
12.7 % bad

e.g.:
Philippines (ASB 2010) = 0.83
Philippines (ISSP 1996) = 3.29
Cross-project perspective

No evident errors:

- Americas Barometer (AMB)
- Comparative National Elections Project (CNEP)
- European Quality of Life (EQLS)
- European Social Survey (ESS)
- World Values Survey (WVS)
Summing up (SDR 1)

National surveys differ in:

• the use of data weighting
• weighting procedure (post-stratification, design, combined)
• composition of weighting factors (gender, age, region, urban, education, economic factors)
• quality of weights (errors in min/max, mean, sd)

Correcting errors and provided recalculated weights
Strategy for SDR2

1. Preserve as much information on weights as possible – coding:
 - the use of data weighting (yes/no)
 - weighting procedure (post-stratification, design, combined)
 - composition of weighting factors (gender, age, region, urban, other)
 - quality of weights (errors in min/max, mean, sd)

2. Providing new weights (Re-weighting as needed due to errors)

Advantages:
re 1 – maximum information for users
re 2 – elimination of errors and standardizing impact on the data
Biblio

Recommended: