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Abstract

This paper establishes various results involving functions of integrated processes.
Two theorems - that improve similar results by Park and Phillips - are proven for
averages of functions of an integrated process that has not been rescaled by the square
root of sample size. In addition, two results are given that characterize asymptotic
behavior of averages of non-integrable functions of rescaled integrated processes; the
observations close to the pole take over asymptotic behavior in that case. Throughout,
we make the assumption that the innovations of the integrated process are a linear
process.

1 Introduction

This paper proves three results about functions of integrated processes. Our first result is
an extension of a result in Park and Phillips (1999), where it is proven that for integrable
functions T (.) and for I(1) processes xt,

n−1/2

n∑
t=1

T (xt)
d−→ (

∫ ∞

−∞
T (s)ds)L(1, 0),
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where L(t, s) is a two-parameter stochastic process called (Brownian) local time. The re-
markable thing about this result is that it establishes limit theory for a function of an I(1)
process that has not been rescaled by n−1/2. Park and Phillips establish the above result
under some regularity conditions on the I(1) process xt and the integrable function T (.). In
this paper, we show that Park and Phillips’ regularity conditions for the above result can be
relaxed and also that their result can be extended to yield, for 0 ≤ α < 1/2,

n−1/2−α

n∑
t=1

T (n−αxt)
d−→ (

∫ ∞

−∞
T (s)ds)L(1, 0).

A central tool for the proof of this first result is a lemma that was recently established in
de Jong (2004). Also in Park and Phillips (1999), it is shown that for functions T (.) that
satisfy

T (λx) = ν(λ)H(x) + R(x, λ)

under conditions on R(., .) that basically serve to ensure asymptotic negligibility of

ν(n1/2)−1n−1

n∑
t=1

R(xt, n
1/2),

we have

ν(n1/2)−1n−1

n∑
t=1

T (xt)
d−→

∫ 1

0

H(σW (r))dr,

where σ2 = limn→∞ n−1Ex2
n. Again the interesting aspect of the above result is the fact

that it considers integrated processes that have not been rescaled by n−1/2. Functions T (.)
that satisfy the appropriate condition are coined asymptotically homogeneous by Park and
Phillips. The asymptotically homogeneous condition is trivially satisfied for T (x) = |x|a for
a ≥ 0, but is general enough to also deal with functions such as T (x) = |x|a log |x| for all
a ≥ 0. In this paper, we show the more general result that whenever for functions H(.) and
ν(.) we have

ν(λ)−1T (λx) → H(x) as λ →∞
in L1 sense, we have for 0 ≤ α < 1/2, under regularity conditions,

ν(n1/2−α)−1n−1

n∑
t=1

T (n−αxt)
d−→

∫ 1

0

H(σW (r))dr.
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Therefore, we show that Park and Phillips’ class of asymptotically homogeneous functions
can be extended, and we consider n−αxt for 0 ≤ α < 1/2 instead of xt as the argument for
T (.).
A third result that is proven in this paper concerns averages of the type

n−1

n∑
t=1

|n−1/2xt|−mI(n−1/2xt > cn)

and

n−1

n∑
t=1

|n−1/2xt|−mI(|n−1/2xt| > cn),

where m > 1. While it has been shown in de Jong (2004) and Pötscher (2004) that under
regularity conditions for locally integrable functions T (.) we have

n−1

n∑
t=1

T (n−1/2xt)
d−→

∫ 1

0

T (σW (r))dr,

it is yet unknown what happens to functions T (.) that are not integrable. Using a “clipping
device” involving a deterministic sequence cn that converges to 0 with n, it will be proven
that for m > 1,

(m− 1)c1−m
n n−1

n∑
t=1

|σ−1n−1/2xt|−mI(σ−1n−1/2xt > cn)
d−→ L(1, 0),

and also that

(1/2)(m− 1)c1−m
n n−1

n∑
t=1

|σ−1n−1/2xt|−mI(|σ−1n−1/2xt| > cn)
d−→ L(1, 0).

2 Assumptions and result for integrable functions

Identically to Park and Phillips (1999), linear process conditions for xt are assumed and

xt = xt−1 + wt,

where wt is generated according to

wt =
∞∑

k=0

φkεt−k
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where εt is assumed to be a sequence of i.i.d. random variables with mean zero, and where
it is assumed that

∑∞
k=0 φk 6= 0. In addition, we will assume that x0 is an arbitrary random

variable that is independent of all wt, t ≥ 1. The main assumptions used in this paper are
Assumption 2.1 and 2.2 from Park and Phillips (1999):

Assumption 1
∑∞

k=0 k1/2φk < ∞ and Eε2
t < ∞.

Assumption 2

(a)
∑∞

k=0 k|φk| < ∞ and E|εt|p < ∞ for some p > 2.

(b) The distribution of εt is absolutely continuous with respect to the Lebesgue measure and
has characteristic function ψ(s) for which lims→∞ sηψ(s) = 0 for some η > 0.

Assumption 1 guarantees that n−1/2x[rn] ⇒ σW (r) where “⇒” denotes weak convergence in
C[0, 1], i.e. the space of functions that are continuous on [0, 1]. Define W 0

n = n−1/2x[rn].

Then by the Skorokhod representation there exists a Wn(.) such that Wn
d
= W 0

n and
supr∈[0,1] |Wn(r) − W (r)| as−→ 0. Assumption 2 in addition also guarantees a convergence
rate for supr∈[0,1] |Wn(r)−W (r)|; see Park and Phillips (1999, Lemma 2.3). This result justi-
fies that proving our results for Wn(.) suffices. Several of the manipulations in the proofs of
the results in this paper require the use of local time L(., .). Local time is a random function
satisfying

L(t, s) = lim
ε→0

(2ε)−1

∫ t

0

I(|W (r)− s| < ε)dr.

See Park and Phillips (1999, p. 271-272) and Chung and Williams (1990, Ch. 7) for more
details regarding local time.
Park and Phillips (1999) establish the following result for integrable functions of integrated
random variables:

Theorem 1 Suppose that T (.) is integrable and Assumption 2 holds with p > 4. If T (.) is
square integrable and satisfies the Lipschitz condition

|T (x)− T (y)| ≤ c|x− y|l

over its support for some constants c and l > 6/(p− 2), then

n−1/2

n∑
t=1

T (xt)
d−→ (

∫ ∞

−∞
T (s)ds)L(1, 0).
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For differentiable functions T (.), we need to set l = 1, implying that we need p > 8 in order
for the theorem to work. In order to improve the above result, we needed the following useful
lemma, that was established in de Jong (2004):

Lemma 1 Under Assumption 2, for all y ∈ R, δ > 0, and n ≥ M for some value of M ,

P (y ≤ n−1/2xn ≤ y + δ) ≤ Cδ, (1)

where C and M do not depend on y, δ, or n.

Using this lemma, we were able to improve Park and Phillips’ result and show the following
quite general result:

Theorem 2 Suppose Assumption 2 holds. Also assume that |T (x)| ≤ R(x), and assume
that R(.) is integrable, continuous on R, and monotone on (0,∞) and (−∞, 0). If T (.) is
continuous, then for 0 ≤ α < 1/2,

n−1/2−α

n∑
t=1

T (n−αxt)
d−→ (

∫ ∞

−∞
T (s)ds)L(1, 0).

Compared to Park and Phillips’ theorem, we have completely removed their Lipschitz-
continuity condition and weakened it to continuity, and in addition, their requirement on
p has been removed. Also, weights n−α for 0 ≤ α < 1/2 are allowed for. While no R(.)
function such as present in Theorem 2 is explicitly used in their Theorem 1, from Park
and Phillips’ proof it is clear that existence of such a function is implied. Therefore, The-
orem 2 is a “clean” improvement to Park and Phillips’ Theorem 1. A simple example of a
function T (.) that satisfies our conditions but violates those of Park and Phillips (1999) is
T (x) = (1− x2)1/2I(−1 ≤ x ≤ 1).

3 Asymptotically homogeneous functions

In this section, we improve Park and Phillips’ (1999) result for asymptotically homogeneous
functions. Park and Phillips assume that

T (λx) = ν(λ)H(x) + R(x, λ)

and they show that

ν(n1/2)−1n−1

n∑
t=1

T (xt)
d−→

∫ 1

0

H(σW (r))dr

if either
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a. |R(x, λ)| ≤ a(λ)P (x), where lim supλ→∞ a(λ)/ν(λ) = 0 and P is locally integrable, or

b. |R(x, λ)| ≤ b(λ)Q(λx), where lim supλ→∞ b(λ)/ν(λ) < ∞ and Q is locally integrable and
vanishes at infinity, i.e. Q(x) → 0 as |x| → ∞.

In this paper, we redefine their notion of an asymptotically homogeneous function, as follows:

Definition 1 A function T (.) is called asymptotically homogeneous if for all K > 0 and
some function H(.),

lim
λ→∞

∫ K

−K

|ν(λ)−1T (λx)−H(x)|dx = 0.

Obviously from the dominated convergence theorem it follows that if for some ν(.) and H(.),
pointwise in x,

ν(λ)−1T (λx) → H(x) as λ →∞
and |ν(λ)−1T (λx)| ≤ G(x) for a locally integrable function G(.), then T (.) is asymptotically
homogeneous. Below, we will call a function monotone regular if for some {a1, . . . , aq}, T (.)
is monotone on (aj, aj+1) for j = 0, . . . , q (setting a0 = −∞ and aq+1 = ∞).
The main result of this section is the following:

Theorem 3 Suppose Assumption 1 holds. Also assume that T (.) is asymptotically homoge-
neous. In addition, assume that H(.) is continuous and T (.) is monotone regular. Then, for
0 ≤ α < 1/2,

ν(n1/2−α)−1n−1

n∑
t=1

T (n−αxt)
d−→

∫ 1

0

H(σW (r))dr =

∫ ∞

−∞
H(σs)L(1, s)ds.

It is also possible to show that our definition of an asymptotically homogeneous function is
more general than Park and Phillips’. Under Assumption a. above,

∫ K

−K

|ν(λ)−1T (λx)−H(x)|dx = ν(λ)−1

∫ K

−K

|R(x, λ)|dx

≤ a(λ)ν(λ)−1

∫ K

−K

P (x)dx → 0
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as λ →∞ if P (.) is locally integrable. Under Assumption b. above,

∫ K

−K

|ν(λ)−1T (λx)−H(x)|dx = ν(λ)−1

∫ K

−K

|R(x, λ)|dx

≤ b(λ)ν(λ)−1

∫ K

−K

Q(λx)dx → 0

as λ →∞, because lim supλ→∞ b(λ)ν(λ)−1 < ∞ and limλ→∞
∫ K

−K
Q(λx)dx = 0 by bounded-

ness of Q(.) (which is also assumed in Park and Phillips (1999)). Therefore, obviously the set
of functions that is “asymptotically homogeneous” in this paper is wider than in Park and
Phillips (1999). But clearly, most functions that one may expect to be useful for applications
should be expected to already be in Park and Phillips’ class of asymptotically homogeneous
functions, and the main achievement of our analysis is the redefinition of the class of asymp-
totically homogeneous functions to as large as possible a collection of functions. It appears
to us that the above result should be close to the limits of what should be possible in this
setting, and for the authors of this paper, it is hard to see how the above definition of the
class of asymptotically homogeneous functions can be relaxed further to yield an even larger
function class that generates similar behavior.

4 Nonintegrable functions

In de Jong (2004) and Pötscher (2004) it is proven that under regularity conditions, in spite

of possible poles in T (.), as long as
∫ K

−K
|T (x)|dx < ∞ for all K > 0, we have

n−1

n∑
t=1

T (n−1/2xt)
d−→

∫ 1

0

T (σW (r))dr.

These results raise the question as to what will happen if a nonintegrable function of an
integrated process is used for T (.) in statistics of the form

n−1

n∑
t=1

T (n−1/2xt).

This issue appears to have never been tackled before in either the statistics or the econo-
metrics literature. This section explores this issue for functions

T (x) = |x|−mI(x > 0)
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and

T (x) = |x|−m,

for m > 1. As it turns out and is perhaps to be expected, the observations “close to zero”
take over the limit behavior of the statistic in this case. We will need a “clipping device” and
we construct statistics similar to those constructed in Park and Phillips (1999) for integrable
functions. Our first result is the following:

Theorem 4 Let cn = n−(2p+1)/3p+η for some η > 0 such that −(2p + 1)/3p + η < 0. In
addition, assume that

T (x) = |x|−m

for some m > 1. Let dn =
∫ 1

cn
T (x)dx. Then under Assumption 2,

d−1
n n−1

n∑
t=1

T (σ−1n−1/2xt)I(σ−1n−1/2xt > cn)
d−→ L(1, 0).

Clearly, in the above theorem dn = (m−1)−1(c1−m
n −1), but we choose the above formulation

to bring out better where our rescaling factor dn originates from.
The proof of the following “two-sided” version of the above theorem is analogous and there-
fore omitted:

Theorem 5 Let cn = n−(2p+1)/3p+η for some η > 0 such that −(2p+1)/3p+ η < 0. Assume
that

T (x) = |x|−m

for some m > 1. Let dn = 2
∫ 1

cn
T (x)dx. Then under Assumption 2,

d−1
n n−1

n∑
t=1

T (σ−1n−1/2xt)I(|σ−1n−1/2xt| > cn)
d−→ L(1, 0).

The above theorems leave the issue wide open to what function class the above theorem can
be extended. The line of proof employed in the Appendix may allow for some generalization,
but it is not clear to the authors what the outer limits are for which a result as the above
might hold.

As a referee pointed out, it may also be of interest to attempt to show convergence towards
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∫ 1

0
W (r)−1dr. Note that this is expression is well-defined while the limit as ε approaches

zero from above of
∫ 1

ε
|W (r)|−1dr does not exist; the former result can be seen to follow from

the occupation time formula and a modulus of continuity type result for the Brownian local
time. The techniques used in this paper however seem not suited towards proving a result
of this type.

Proofs

Throughout this section, to improve readability, we will assume for every proof that σ2 = 1.
Below we use the following definitions, which are identically to Park and Phillips (1999):

Nn(νn; a, b) =

∫ 1

0

I(a ≤ νnWn([rn]) ≤ b)dr = n−1

n∑
t=1

I(a ≤ νnWn(t/n) ≤ b),

and

N(νn; a, b) =

∫ 1

0

I(a ≤ νnn
−1/2W (r) ≤ b)dr.

In the proofs below, M and C are the constants from Lemma 1. The following lemma from
Park and Phillips (1999) was needed in order to prove our results.

Lemma 2 Under Assumption 2, as n →∞,

E(Nn(νn; 0, δ)−Nn(νn; kδ, (k + 1)δ))2 ≤ c(δn−1ν−1
n )(1 + kδ2n log(n)ν−2

n )

and

Nn(νn; 0, πn) = N(νn; 0, πn) + op(n
−(2p−1)/3p+ε)

for πn ≥ νnn
−2(p+1)/3p and any ε > 0.

Proof:

See Park and Phillips (1999). ¤

We are now in a position to prove the main theorems of this paper.
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Proof of Theorem 2:

Define TK(x) = T (x)I(|x| ≤ K), T ′
K(x) = T (x)I(x > K), and T ′′

K(x) = T (x)I(x < −K).
We will show that

lim
K→∞

lim sup
n→∞

E|n−1/2−α

n∑
t=1

T ′
K(n−α+1/2Wn(t/n))| = 0 (2)

and the same argument, mutatis mutandis, will hold for n−1/2−α
∑n

t=1 T ′′
K(n−α+1/2Wn(t/n)).

Then, we will show that for all K > 0,

n−1/2−α

n∑
t=1

TK(n−α+1/2Wn(t/n))
d−→ (

∫ K

−K

T (s)ds)L(1, 0), (3)

and the result then follows (for a formal proof that this is sufficient, see for example the start
of the proof of Theorem 1 of de Jong (2004)). Let M be as defined in Lemma 1. To show
the result of Equation (2), note that for all K > 0,

|n−1/2−α

M∑
t=1

T (n−α+1/2Wn(t/n))I(n−α+1/2Wn(t/n) > K)| ≤ Mn−1/2−αR(K) → 0

as n →∞, and

E|n−1/2−α

n∑
t=M+1

T (n−α+1/2Wn(t/n))I(n−α+1/2Wn(t/n) > K)|

= E|
∞∑

j=1

n−1/2−α

n∑
t=M+1

T (n−α+1/2Wn(t/n))I(Kj < n−α+1/2Wn(t/n) ≤ K(j + 1))|

≤ E

∞∑
j=1

n−1/2−α

n∑
t=M+1

R(Kj)I(Kjt−1/2nα < t−1/2n1/2Wn(t/n) ≤ K(j + 1)t−1/2nα)

≤
∞∑

j=1

n−1/2

n∑
t=1

R(Kj)CKt−1/2

≤ C(sup
n≥1

n−1/2

n∑
t=1

t−1/2)K
∞∑

j=1

R(Kj)
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= C ′
∫ ∞

1

R(K[j])d(Kj)

= C ′
∫ ∞

K

R(K[x/K])dx = C ′
∫ 2K

K

R(K[x/K])dx + C ′
∫ ∞

2K

R(K[x/K])dx

≤ C ′(KR(K) +

∫ ∞

K

R(x)dx) → 0

as K →∞, where C ′ = C supn≥1 n−1/2
∑n

t=1 t−1/2, and KR(K) → 0 under the assumptions
of the theorem because

R(2K)K ≤
∫ 2K

K

R(x)dx ≤
∫ ∞

K

R(x)dx → 0

as K → ∞. The first inequality follows from the assumed boundedness of |T (.)| by R(.)
and the assumed monotonicity of R(.), and the second is an application of Lemma 1. This
completes the proof of the result of Equation (2). The remainder of the proof follows the line
of proof of Park and Phillips (1999, proof of Theorem 5.1), but some modifications will be
made. In order to show the result of Equation (3) and thereby make the proof of Theorem
2 complete, define for δ > 0

T δ(x) =

∫ K/δ−1

−K/δ

T (jδ)I(jδ ≤ n−α+1/2Wn(t/n) ≤ (j + 1)δ)dj,

and note that for all K > 0,

∫ K/δ−1

−K/δ

I(jδ ≤ n−α+1/2Wn(t/n) ≤ (j + 1)δ)dj = I(|n−α+1/2Wn(t/n)| ≤ K),

and therefore

E|n−1/2−α

n∑
t=1

(TK(n−αxt)− T δ(n−αxt))|

= E|
∫ K/δ−1

−K/δ

n−1/2−α

n∑
t=1

(T (jδ)− T (n−αxt))I(jδ ≤ n−α+1/2Wn(t/n) ≤ (j + 1)δ)dj|

≤ sup
x∈[−K,K]

sup
x′∈[−K,K]:|x−x′|≤δ

|T (x)− T (x′)|
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×E

∫ K/δ−1

−K/δ

n−1/2−α

n∑
t=1

I(jδ ≤ n−α+1/2Wn(t/n) ≤ (j + 1)δ)dj

= sup
x∈[−K,K]

sup
x′∈[−K,K]:|x−x′|≤δ

|T (x)− T (x′)|n−1/2−α

n∑
t=1

×P (−nαt−1/2K ≤ t−1/2n1/2Wn(t/n) ≤ nαt−1/2K)

≤ sup
x∈[−K,K]

sup
x′∈[−K,K]:|x−x′|≤δ

|T (x)− T (x′)|n−1/2

n∑
t=1

2CKt−1/2

≤ 2C ′K sup
x∈[−K,K]

sup
x′∈[−K,K]:|x−x′|≤δ

|T (x)− T (x′)| → 0

as δ → 0 by continuity of T (.), where the second inequality is Lemma 1. Therefore, we can
consider n−1/2−α

∑n
t=1 T δ(n−α+1/2Wn(t/n)) instead of n−1/2−α

∑n
t=1 TK(n−α+1/2Wn(t/n)). Now

n−1/2−α

n∑
t=1

T δ(n−α+1/2Wn(t/n))

=

∫ K/δ−1

K/δ

T (jδ)n−1/2−α

n∑
t=1

I(jδ ≤ n−α+1/2Wn(t/n) ≤ (j + 1)δ)dj

=

K/δ−1∑

−K/δ

T (jδ)n1/2−αNn(n1/2−α; jδ, (j + 1)δ),

and

|
∫ K/δ−1

−K/δ

T (jδ)n1/2−αNn(n1/2−α; jδ, (j + 1)δ)dj

−
∫ K/δ−1

−K/δ

T (jδ)djn1/2−αNn(n1/2−α; 0, δ)| = op(1)

because by the Cauchy-Schwartz inequality,

E(

∫ K/δ−1

−K/δ

T (jδ)n1/2−αNn(n1/2−α; jδ, (j + 1)δ)dj −
∫ K/δ−1

−K/δ

T (jδ)djn1/2−αNn(n1/2−α; 0, δ))2
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≤ n1−2α

∫ K/δ

−K/δ

R(jδ)2dj

∫ K/δ

−K/δ

E(Nn(n1/2−α; jδ, (j + 1)δ)−Nn(n1/2−α; 0, δ))2dj

≤ n1−2α

∫ K/δ

−K/δ

R(jδ)2dj

∫ K/δ

−K/δ

c(δn−3/2+α)(1 + |j|δ2 log(n)n2α)dj

≤ n−1/2−α(1/δ)(

∫ K

−K

R(s)2ds)c2K(1 + Kδn2α log(n)) = o(1),

where the second inequality is Lemma 2. Therefore, it suffices to consider
∫ K/δ−1

−K/δ

T (jδ)djn1/2−αNn(n1/2−α; 0, δ) = δ−1

∫ K−δ

−K

T (s)dsn1/2−αNn(n1/2−α; 0, δ).

Now note that

|n1/2−αNn(n1/2−α; 0, δ)− n1/2−αN(n1/2−α; 0, δ)| = op(n
1/2−αn−(2p−1)/3p)

= op(n
(1−p/2)/(3p)) = op(1)

by the second part of Lemma 2. Therefore,

|
∫ K−δ

−K

T (s)dsn1/2−αNn(n1/2−α; 0, δ)−
∫ K−δ

−K

T (s)dsn1/2−αN(n1/2−α; 0, δ)| = op(1),

implying that it suffices to analyze

(

∫ K−δ

−K

T (s)ds)(δ−1n1/2−αN(n1/2−α; 0, δ)).

As n →∞,

δ−1n1/2−αN(n1/2−α; 0, δ) → L(1, 0) almost surely,

as explained in the text following Lemma 2.5 of Park and Phillips (1999). In addition, as
δ → 0, by continuity of T (.),

∫ K−δ

−K

T (s)ds →
∫ K

−K

T (s)ds.

Therefore,

n−1/2−α

n∑
t=1

TK(n−αxt)
d−→ (

∫ K

−K

T (s)ds)L(1, 0),
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implying that the condition of Equation (3) is now verified. This completes the proof. ¤

For the proof of Theorem 3, we need the following lemma:

Lemma 3 Under Assumption 1,

sup
x∈R

|n−1

n∑
t=1

I(Wn(t/n) ≤ x)−
∫ 1

0

I(W (r) ≤ x)dr| as−→ 0.

Proof of Lemma 3:

For n large enough, supr∈[0,1] |Wn(r)−W (r)| ≤ δ almost surely for any δ > 0, implying that
for n large enough

sup
x∈R

|n−1

n∑
t=1

I(Wn(t/n) ≤ x)−
∫ 1

0

I(W (r) ≤ x)dr|

= sup
x∈R

|
∫ 1

0

I(Wn([rn]/n) ≤ x)−
∫ 1

0

I(W (r) ≤ x)dr|

≤ sup
x∈R

|
∫ 1

0

I(x− δ ≤ W (r) ≤ x + δ)dr|

≤ sup
x∈R

∫ x+δ

x−δ

L(1, s)ds ≤ 2δ sup
s∈R

|L(1, s)|

where the equality follows from the occupation times formula (see Park and Phillips (1999,
Lemma 2.4)) and because sups∈R |L(1, s)| is a well-defined random variable. Since δ can be
chosen arbitrarily small, the result now follows. ¤
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Proof of Theorem 3:

Because sup1≤t≤n |Wn(t/n)| = Op(1), it now suffices to show that for any K > 0,

ν(n1/2−α)−1n−1

n∑
t=1

T (n−α+1/2Wn(t/n))I(|Wn(t/n)| ≤ K)

d−→
∫ 1

0

H(W (r))I(|W (r)| ≤ K)dr =

∫ K

−K

H(s)L(1, s)ds.

Now, by Lemma 3, n−1
∑n

t=1 I(n−1/2xt ≤ x) ⇒ ∫ 1

0
I(W (r) ≤ x)dr. By the Skorokhod Repre-

sentation Theorem, we can assume without loss of generality that supx∈R |n−1
∑n

t=1 I(Wn(t/n) ≤
x)− ∫ 1

0
I(W (r) ≤ x)dr| = cn

as−→ 0. Now for all δ > 0, let

S1nδ = S1n = ν(n1/2−α)−1n−1

n∑
t=1

T (n−α+1/2Wn(t/n))I(|Wn(t/n)| ≤ K)

= ν(n1/2−α)−1

∫ K/δ−1

−K/δ

n−1

n∑
t=1

T (n−α+1/2Wn(t/n))I(jδ ≤ Wn(t/n) ≤ (j + 1)δ)dj,

S2nδ = ν(n1/2−α)−1

∫ K/δ−1

−K/δ

T (n1/2−αjδ)n−1

n∑
t=1

I(jδ ≤ Wn(t/n) ≤ (j + 1)δ)dj,

S3nδ = ν(n1/2−α)−1

∫ K/δ−1

−K/δ

T (n1/2−αjδ)

∫ 1

0

I(jδ ≤ W (r) ≤ (j + 1)δ)drdj,

S4nδ = ν(n1/2−α)−1

∫ K/δ−1

−K/δ

T (n1/2−αjδ)δL(1, jδ)dj

= ν(n1/2−α)−1

∫ K−δ

−K

T (n1/2−αs)L(1, s)ds,

S5nδ = S5 =

∫ K

−K

H(s)L(1, s)ds =

∫ 1

0

H(W (r))I(|W (r)| ≤ K)dr.

We will show that limδ→0 lim supn→∞ |Sjnδ − Sj+1,nδ| = 0 almost surely for j = 1, . . . , 4. By
the monotone regular condition, we can act as if T (.) is monotone without loss of generality.
For |S1 − S2nδ| we then have

lim sup
n→∞

|S1 − S2nδ|

15



≤ lim sup
n→∞

ν(n1/2−α)−1

∫ K/δ−1

−K/δ

n−1

n∑
t=1

|T (n−α+1/2Wn(t/n))− T (n1/2−αjδ)|

×I(jδ ≤ Wn(t/n) ≤ (j + 1)δ)dj

≤ lim sup
n→∞

ν(n1/2−α)−1

∫ K/δ−1

−K/δ

n−1

n∑
t=1

|T (n1/2−α(j + 1)δ)− T (n1/2−αjδ)|

×I(jδ ≤ Wn(t/n) ≤ (j + 1)δ)dj

≤ lim sup
n→∞

∫ K/δ−1

−K/δ

|ν(n1/2−α)−1T (n1/2−α(j + 1)δ)

−ν(n1/2−α)−1T (n1/2−αjδ)−H((j + 1)δ) + H(jδ)|dj

+

∫ K/δ−1

−K/δ

|H((j + 1)δ)−H(jδ)|dj =

∫ K−δ

−K

|H(x + δ)−H(x)|dx,

and as δ → 0, the last term disappears because of continuity of H(.), the second inequality
follows from monotonicity of T (.), and the third by our definition of an asymptotically
homogeneous function. To show that limδ→0 lim supn→∞ |S2nδ−S3nδ| = 0 almost surely, note
that

|ν(n1/2−α)−1

∫ K/δ−1

−K/δ

T (n1/2−αjδ)(n−1

n∑
t=1

I(jδ ≤ Wn(t/n) ≤ (j + 1)δ)

−
∫ 1

0

I(jδ ≤ W (r) ≤ (j + 1)δ)dr)dj|

≤ 2cnν(n1/2−α)−1

∫ K/δ−1

−K/δ

|T (n1/2−αjδ)|dj

≤ 2cnδ−1

∫ K

−K

|ν(n1/2−α)−1T (n1/2−αx)−H(x)|dx + 2cnδ−1

∫ K

−K

|H(x)|dx = o(1)

almost surely under our assumptions and by the definition of cn. For |S3nδ − S4nδ| we have

|S3nδ − S4nδ|
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≤ ν(n1/2−α)−1

∫ K/δ

−K/δ

δ|T (n1/2−αjδ)|(δ−1

∫ 1

0

I(jδ ≤ W (r) ≤ (j + 1)δ)dr − L(1, jδ))dj

≤ ν(n1/2−α)−1

∫ K/δ

−K/δ

δ|T (n1/2−αjδ)|dj sup
|x|≤K

|δ−1

∫ 1

0

I(x ≤ W (r) ≤ x+δ)dr−L(1, x)|.(4)

By the earlier argument,

sup
n≥1

sup
δ>0

ν(n1/2−α)−1

∫ K/δ

−K/δ

δ|T (n1/2−αjδ)|dj < ∞,

and therefore it suffices to show that as δ → 0,

sup
|x|≤K

|δ−1

∫ 1

0

I(x ≤ W (r) ≤ x + δ)dr − L(1, x)| → 0.

By the occupation times formula, the above expression satisfies

sup
|x|≤K

|δ−1

∫ x+δ

x

L(1, s)ds− L(1, x)| = sup
|x|≤K

|δ−1

∫ x+δ

x

(L(1, s)− L(1, x))ds|

≤ sup
|x|≤K

sup
s∈[x,x+δ]

|L(1, s)− L(1, x)| → 0 as δ → 0

by uniform continuity of L(1, .) on [−K, K]. Finally, for |S4nδ − S5|, we have

lim
n→∞

|
∫ K

−K

(ν(n1/2−α)−1T (n1/2−αs)−H(s))L(1, s)ds|

≤ sup
|s|≤K

|L(1, s)| lim
n→∞

∫ K

−K

|ν(n1/2−α)−1T (n1/2−αs)−H(s)|ds = 0

by the definition of an asymptotically homogeneous function, which completes the proof. ¤

The following lemma is needed for the proof of Theorem 4.

Lemma 4 For any sequence bn such that cn = o(bn), under the assumptions of Theorem 4,

lim
δ→0

lim
n→∞

∞∑
j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn)d−1
n δcn = 1.
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Proof of Lemma 4:

This result follows because

∞∑
j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn)d−1
n δcn

=

∫ ∞

j=0

T ([j]δcn)I(([j] + 1)δcn > cn)I([j]δcn ≤ bn)d−1
n δcndj

≤
∫ ∞

j=0

T ((j − 1)δcn)I((j + 1)δcn > cn)I((j − 1)δcn ≤ bn)d−1
n δcndj

=

∫ ∞

x=0

T (x)I(x + 2δcn > cn)I(x ≤ bn)d−1
n dx

= (

∫ 1

x=cn

T (x)dx)−1

∫ bn

x=cn(1−2δ)

T (x)dx.

Now because T (x) = |x|−mI(x > 0), the last expression equals

(m− 1)(c1−m
n − 1)−1(m− 1)−1((cn(1− 2δ))1−m − b1−m

n )

= (c1−m
n − 1)−1((cn(1− 2δ))1−m − b1−m

n ),

and because m > 1 and cn = o(bn), the result now follows. A similar argument will hold for
a lower bound, which then completes the proof of the lemma. ¤

Proof of Theorem 4:

Note that, for bn = c
1−1/m−α
n for some α > 0 small enough that bn → 0 and d−1

n T (bn) → 0 as
n →∞,

d−1
n n−1

n∑
t=1

T (Wn(t/n))I(Wn(t/n) > cn)

= d−1
n n−1

n∑
t=1

T (Wn(t/n))I(Wn(t/n) > cn)I(Wn(t/n) ≤ bn)
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+d−1
n n−1

n∑
t=1

T (Wn(t/n))I(Wn(t/n) > bn),

and the second term is op(1) because

d−1
n n−1

n∑
t=1

T (Wn(t/n))I(Wn(t/n) > bn)

≤ d−1
n T (bn) → 0

by assumption. Now note that trivially, for all δ > 0,

d−1
n n−1

n∑
t=1

T (Wn(t/n))I(Wn(t/n) > cn)I(Wn(t/n) ≤ bn)

=
∞∑

j=0

d−1
n

∫ 1

0

T (Wn(r))I(Wn(r) > cn)I(Wn(r) ≤ bn)I(jδcn ≤ Wn(r) < (j + 1)δcn)dr.

An upper bound for the last term is

∞∑
j=0

T (jδcn)d−1
n

∫ 1

0

I(Wn(r) > cn)I(Wn(r) ≤ bn)I(jδcn ≤ Wn(r) < (j + 1)δcn)dr

≤
∞∑

j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn)d−1
n

∫ 1

0

I(jδcn ≤ Wn(r) < (j + 1)δcn)dr

=
∞∑

j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn)d−1
n Nn(1; jδcn, (j + 1)δcn).

Similarly, a lower bound is

∞∑
j=0

T ((j + 1)δcn)I(jδcn > cn)I((j + 1)δcn ≤ bn)d−1
n Nn(1; jδcn, (j + 1)δcn).

We will only consider the upper bound and determine its limit, but the argument for the
lower bound is identical and renders the same limit. By Lemma 2,

E

∞∑
j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn)d−1
n |Nn(1; jδcn, (j + 1)δcn)−Nn(1; 0, δcn)|
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≤
∞∑

j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn)d−1
n (c(δcn/n)(1 + (j(δcn)2n log(n))))1/2

≤ (d−1
n δcn

∞∑
j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn))

×δ−1c−1
n (c(δcn/n)(1 + ((bn/(δcn))(δcn)2n log(n))))1/2. (5)

Now, by Lemma 4,

lim
δ→0

lim sup
n→∞

d−1
n δcn

∞∑
j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn) = 1,

and therefore the expression of Equation (5) converges to zero in probability if

c−2
n ((cn/n) + (cn/n)((bn/(cn))(cn)2n log(n))) → 0.

First, note that by assumption c−1
n n−1 → 0, and that the second part of the above expression

is

O(bn log(n)) = o(1)

by assumption. Therefore, it suffices to consider

∞∑
j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn)d−1
n δcn(Nn(1; 0, δcn)/(δcn)).

Now by the comment following Lemma 2.5 in Park and Phillips (1999),

Nn(1; 0, δcn)/(δcn) = L(1, 0) + op(1)

if δcn ≥ n−(2p−1)/3p+η for some η > 0, which is the case by assumption for n large enough.
Therefore, we only need consider

L(1, 0)d−1
n δcn

∞∑
j=0

T (jδcn)I((j + 1)δcn > cn)I(jδcn ≤ bn).

Now by Lemma 4, it follows that by choosing δ arbitrarily small, the limit distribution will
be arbitrarily close to L(1, 0); and noting that the same argument will work for the lower
bound, this suffices to prove the result. ¤
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