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Abstract.  This paper is intended to provide the reader with an introduction to 

ranked set sampling, a statistical technique for data collection that generally 

leads to more efficient estimators than competitors based on simple random 

samples. Methods for obtaining ranked set samples are described and the 

structural differences between ranked set samples and simple random samples 

are discussed.  Properties of the sample mean associated with a balanced ranked 

set sample are developed.  A nonparametric ranked set sample estimator of the 

distribution function is discussed and properties of a ranked set sample analogue 

of the Mann-Whitney-Wilcoxon statistic are presented.  
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1.  INTRODUCTION 

One of the keys to any statistical inference is that the data involved be obtained 

via some formal mechanism that enables the experimenter to make valid judgements on 

the question(s) of interest.  One of the most common mechanisms for obtaining such 

data is that of a simple random sample.  Other more structured sampling designs, such 

as stratified sampling or probability sampling, are also available to help make sure that 

the obtained data collection provides a good representation of the population of 

interest.  Any such additional structure of this type revolves around how the sample 

data themselves should be collected in order to provide an informative image of the 

larger population.  With any of these approaches, once the sample items have been 

chosen the desired measurement(s) is collected from each of the selected items. 

The concept of ranked set sampling is a recent development that enables one to 

provide more structure to the collected sample items, although the name is a bit of a 

misnomer as it is not as much a sampling technique as it is a data measurement 

technique.  This approach to data collection was first proposed by McIntyre (1952) for 

situations where taking the actual measurements for sample observations is difficult 

(e.g., costly, destructive, time-consuming), but mechanisms for either informally or 
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formally ranking a set of sample units is relatively easy and reliable.  In particular, 

McIntyre was interested in improving the precision in estimation of average yield from 

large plots of arable crops without a substantial increase in the number of fields from 

which detailed expensive and tedious measurements needed to be collected.  For 

discussions of some of the settings where ranked set sampling techniques have found 

application, see Patil (1995) and Barnett and Moore (1997). 

 Since its inception with the paper by McIntyre, a good deal of attention has been 

devoted to the topic in the statistical literature, particularly over the past fifteen years.  

Some of this work has been geared toward specific parametric families and some has 

been developed under minimal nonparametric distributional assumptions.  However, 

many of the important concepts and features of the ranked set sampling methodology 

transcend the parametric or nonparametric categories.  We will structure this paper 

around these more general features but make a point to illustrate them with 

nonparametric procedures.  We begin with a description of the basic structure leading 

to collection of a ranked set sample from a single population. 

 

2.  OBTAINING A RANKED SET SAMPLE 

 When we select a simple random sample X1,…,Xn from a fixed population of 

interest, what makes resulting statistical inference procedures appropriate is not the fact 

that each individual measurement in the sample is likely to be representative of the 

population characteristic, say mean or median, of interest.  Rather it is through the 

concept of sampling distributions of the relevant statistics that we should, "on the 
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average", obtain a set of sample observations that are truly representative of the entire 

population.  However, in practice we obtain only a single random sample and the "on 

the average" concept does not help much if the particular population items selected for 

our sample are, in fact, not really very representative of the entire population.  We are 

simply bound by the statistical inferences for this particular sample that go with the "on 

the average" concept unless we are willing to increase our sample size and expand the 

number of sample observations. 

There are a number of ways to address the problems associated with obtaining 

an unrepresentative sample from a population.  One method for dealing with this issue 

is to involve a more structured sampling scheme than simple random sampling.  Such 

approaches include stratified sampling schemes, proportional sampling, and the use of 

concomitant variables to help in selecting appropriate sampling units for measurement.  

All of these approaches provide more structured sample data than that resulting from a 

simple random sample scheme.  Note that this additional structure about which items 

to collect and measure is imposed on our data collection process prior to the actual 

decision, and, as such, is correctly viewed as a sampling technique. 

 On the other hand, despite the name, ranked set sampling is more a data 

collection technique rather than simply a more representative sampling scheme. It 

utilizes the basic intuitive properties associated with simple random samples but it also 

takes advantage of additional information available in the population to provide an 

"artificially stratified" sample with more structure that enables us to direct our attention 

toward the actual measurement of more representative units in the population.  The net 

 5



result is a collection of measurements that are more likely to span the range of values in 

the population than can be guaranteed by virtue of a simple random sample.  

 We now describe how this additional structure is captured in a single ranked set 

sample of k measured observations.  First, an initial simple random sample of k units 

from the population is selected and subjected to ordering on the attribute of interest via 

some ranking process.  This judgement ranking can result from a variety of 

mechanisms, including expert opinion, visual comparisons, or the use of easy-to-obtain 

auxiliary variables, but it cannot involve actual measurements of the attribute of interest 

on the sample units.  Once this judgement ranking of the k units in our initial random 

sample has been accomplished, the item judged to be the smallest is included as the first 

item in our ranked set sample and the attribute of interest will be formally measured on 

this unit.  The remaining k-1 unmeasured units in the first random sample are not 

considered further.  We denote this measurement by X[1], where a square bracket [1] is 

used instead of the usual round bracket (1) for the smallest order statistic because X[1] is 

only the smallest judgment ordered item. It may or may not actually have the smallest 

attribute measurement among our k sampled units.  Note that the remaining (other 

than X[1]) units in our first random sample are not considered further in the selection of 

our ranked set sample or eventual inference about the population.  The sole purpose of 

these other k-1 units is to help select an item for measurement that represents the 

smaller attribute values in the population.  

 Following selection of X[1], a second independent random sample of size k is 

selected from the population and judgement ranked without formal measurement on 
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the attribute of interest.  This time we select the item judged to be the second smallest of 

the k units in this second random sample and include it in our ranked set sample for 

measurement of the attribute of interest.  This second measured observation is denoted 

by X[2].  

 From a third independent random sample we select the unit judgement ranked 

to be the third smallest, X[3], for measurement and inclusion in the ranked set sample.  

This process is continued until we have selected the unit judgement ranked to be the 

largest of the k units in the kth random sample, denoted by X[k], for measurement and 

inclusion in our ranked set sample.  This entire process is referred to as a cycle and the 

number of observations in each random sample, k in our example, is called the set size.  

Thus to complete a single ranked set cycle, we need to judgment rank k independent 

random samples of size k involving a total of k2 sample units in order to obtain k 

measured observations X[1], X[2], …, X[k].  These k observations represent a balanced 

ranked set sample with set size k, where the descriptor balance refers to the fact that we 

have collected one judgement order statistic for each of the ranks i = 1, …, k.  In order to 

obtain a ranked set sample with a desired total number of measured observations km, 

we repeat the entire cycle process m independent time, yielding the data X[1]j, …, X[k]j, 

for j = 1, …, m. 

 

3.  STRUCTURE OF A RANKED SET SAMPLE 

 To understand what makes the ranked set sample (RSS) different from a simple 

random sample (SRS) of the same size, we consider the simple case of a single cycle (m 
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= 1) with set size k and perfect judgement ranking.  In this case, the ranked set sample 

observations are also the respective order statistics.  Let X1, …, Xk denote a simple 

random sample of size k from a continuous population with p.d.f. f(x) and c.d.f. F(x) 

and let   X be a ranked set sample of size k obtained as described in Section 2 from 

k independent random samples of k units each. 

1
*,L, Xk

*  

 In the case of a SRS the k observations are independent and each of them is 

viewed as representing a typical value from the population.  However, there is no 

additional structure imposed on their relationship to one another.  Letting X(1) ≤ X(2) 

≤…≤X(k) be the order statistics associated with these SRS observations, we note that they 

are dependent random variables with joint p.d.f. given by 

 

  
gSRS (x(1), ...,x(k )) = k! f (x(i ))I{−∞< x(1)≤ x(2 )≤L≤x (k ) <∞}(x(1), ...,x(k ))

i=1

k

∏  . 

 

 For the RSS setting, additional information and structure has been provided 

through the judgement ranking process involving a total of k2 sample units.  The k 

measurements  are also order statistics but in this case they are independent 

observations and each of them provides information about a different aspect of the 

population.  The joint p.d.f. for  is given by 

X(1)
* , ..., X(k )

*

X(1)
* , ..., X(k )

*

  g  , RSS(x(1)
* ,..., x(k)

* ) = f( i) (x( i)
* )

i=1

k

∏

where 
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  f( i )(x( i )
* ) =

k!
(i −1)!(k − i)!

[F(x( i)
* )]i−1[1− F(x( i )

* )]k −i f (x( i )
* )  

is the p.d.f. for the ith order statistic for a SRS of size k from the population with p.d.f. 

f(x) and c.d.f. F(x).  It is this extra structure provided by the judgement ranking and the 

independence of the resulting order statistics that enables procedures based on RSS 

data to be more efficient than comparable procedures based on a SRS with the same 

number of measured observations.  On the other hand, these same features also make 

the theoretical development of properties for RSS procedures more difficult than for 

their SRS counterparts.  In the next section, we illustrate both of these aspects via 

comparison of the RSS and SRS sample means.  

4. PROPERTIES OF T

 

HE SAMPLE MEAN 

 Let X = X
k

∑ / k  and i
i=1

X * = X *
k

∑ / k  be the SRS and RSS sample mea , (i )
i =1

n

respectively, for common measured number of observations, k.  It is well known that X  

is an unbiased estimator of the population mean, µ, and that it has variance σ2/k, where 

σ2 is the population variance.  How does X *  compare?  First, we note that the mutual 

' s , i = 1, …, k, enables us to write independence of the X( i
*

)

E[X( i)
* ]

k

∑      and     Var(  E[ X * ]  =  
1
k i =1

X * ) =
1
k2 Var(X( i)

* )
k

∑ .        (1) 
i =1

Moreover, since we have assumed perfect rankings,  is distributed like the ith order 

statistic from a continuous distribution with p.d.f. f(x) and c.d.f. F(x).  Hence, we have 

X( i )
*
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  E[X( i )
* ] = x

k!
(i −1)!(k − i)!

[F(x)
−∞

∞

∫ ]i −1[1 − F(x)]k−i f (x)dx ,     (2) 

for i = 1, …, k. Combining equations (1) and (2), we obtain  

  E[X *] =
1
k

{ kx
i−1

k −1⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−∞

∞

∫
i=1

k

∑ [F(x)]i −1[1 − F(x)]k −i f (x)dx}  

   = x f (x){
i−1

k −1⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

i=1

k

∑
−∞

∞

∫ [F(x)]i−1[1− F(x)]k−i}dx .                (3) 

Letting q = i - 1 in the summation in equation (3) we see that 

   
i−1

k −1⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

i =1

k

∑ [F(x)]i −1[1 − F(x)]k−i =
q

k−1⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

q= 0

k−1

∑ [F(x)]q[1 − F(x)](k −1)−q =1 , 

since the latter sum is just the sum over the entire sample space of the probabilities for a 

binomial random variable with parameters k – 1 and p = F(x). 

Using this fact in equation (3) we obtain 

  E[X *] = xf (x)dx = µ
−∞

∞

∫ . 

Thus, X *  is also an unbiased estimator for µ.   

Of course, there is certainly a difference between these unbiased estimators X  

and X * .  The k components of the SRS average X  are mutually independent and 

identically distributed and each is itself an unbiased estimator for µ.  While the k 

components of the RSS average X *  are also mutually independent, they are not 

identically distributed and none of them (except for the middle order statistic when k is 

odd and the underlying distribution is symmetric about µ) are individually unbiased 

for µ.  Yet the averaging process leaves X *  unbiased.  Interestingly, it is the additional 
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structure associated with the non-identical nature of the distributions for the terms in 

X *  that leads to the improvement in precision for X *  relative to X , as we now show. 

Letting µ(i )
* = E[X( i )

* ] , for i = 1, …, k, we note that 

 E[(X( i )
* − µ)2 ] = E[(X( i )

* − µ(i )
* + µ( i)

* − µ)2 ]  

   = E[(X( i )
* − µ( i )

* )2] + (µ( i )
* − µ)2 ,          (4) 

since the cross product terms are zero.  Combining equations (1) and (4) yields the 

expression 

  Var(X * ) =
1
k2 E[(X( i )

* − µ)2

i =1

k

∑ ] −
1
k2 (µ( i)

* − µ)2

i=1

k

∑ .          (5) 

 Now, proceeding as we did with E[X *] , we see that 

  E[(X( i )
* − µ)2

i =1

k

∑ ] = k(x − µ)2

i −1

k−1⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ [F(x)

−∞

∞

∫ ]i −1[1 − F(x)
i=1

k

∑ ]k− i f (x)dx   

        = k (x − µ)2 f (x){
i −1

k−1⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ [F(x)

i =1

k

∑ ]i −1[1 − F(x)
−∞

∞

∫ ]k− i}dx . 

Once again using the binomial distribution, the interior sum is equal to 1 and we obtain 

  .                      (6) E[(X( i )
* − µ)2 ] = k (x − µ)2

−∞

∞

∫ f (x)dx = kσ 2

i =1

k

∑

Combining equations (5) and (6), it follows that 

  Var(X * ) =
1
k2 {kσ 2 − (µ( i)

* − µ)2

i =1

k

∑ } 

      =
σ 2

k
−

1
k2 (µ( i )

* − µ)2 = Var(X ) −
1
k2 (µ( i)

* − µ)2

i =1

k

∑
i =1

k

∑  

      ≤ Var(X )  ,  since  (µ( i)
* − µ)2

i =1

k

∑ ≥ 0.
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 Hence, in the case of perfect rankings not only is X *  an unbiased estimator, its 

variance is always no larger than the variance of the SRS estimator X  based on the same 

number of measured observations.  In fact, this is a strict inequality unless µ(i )
* = µ  for 

all i = 1, …, k, which is the case only if the judgement rankings are purely random. 

  

5.  OTHER IMPORTANT ISSUES FOR RANKED SET SAMPLES 

 All of the earlier discussion in this paper involved a balanced ranked set sample 

with fixed set size k and perfect judgement rankings.  Of course, these factors can 

clearly affect the performance of ranked set sample estimators and hypothesis tests.  In 

particular, they interact with one another in a variety of ways.  For example, remember 

that each measured ranked set sample observation utilizes additional information 

obtained from its ranking among k – 1 other units from the population.  Clearly this 

additional information is an increasing function of k so long as there are no errors in our 

judgement rankings.  Thus, with perfect judgement rankings we would want to take 

our set size k to be as large as economically possible within available funds. However, it 

is also clear that the likelihood of errors in our judgement rankings is an increasing 

function of the set size as well; that is, the larger k is the more likely we are to 

experience errors in our judgement rankings.  Thus to select the set size k optimally we 

need to be able to both model the probabilities of imperfect judgement rankings and 

then to assess their impact on our RSS statistical procedures.  Initial work in modeling 

imperfect judgement rankings was provided by Bohn and Wolfe (1992).  For a nice 
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general discussion of modeling probabilities of imperfect judgement rankings, the 

interested reader is referred to Presnell and Bohn (1999). 

 Even under perfect judgement rankings, the costs of the various components of 

ranked set sampling, namely, identifying sampling units, ranking of sets of sampling 

units, and eventual measurement of units selected for inclusion in the ranked set 

sample all affect the choice of optimal set size k.  For a basic discussion of these factors 

and optimal set size selection, the reader is referred to Nahhas, Wolfe, and Chen (2002).     

 We have thus far discussed only balanced ranked set samples; that is, ranked set 

samples where each judgement order statistic, ranging from  to , is represented 

once in each cycle.  However, for some situations it is quite reasonable to consider 

unbalanced ranked set samples, where the various judgement order statistics have 

differential representation in a given cycle (but common from cycle to cycle).   

X[1]
* X[k ]

*

 For example, consider an underlying distribution that is unimodal and 

symmetric about its median θ.  Suppose we are interested only in making inferences 

about θ using ranked set sample data based on an odd set size k.  Among all the order 

statistics for a random sample of set size k, we know that the sample median, X
( k+1

2
)
, 

contains the most information about θ.  Thus, to estimate θ in this setting, is it natural to 

consider using the drastically unbalanced ranked set sample where only a single 

judgement order statistic, the judgement median, X
[k+1

2
]

* , is represented in the RSS and it 

is measured all k times in each of the cycles.  For discussion of the pros and cons of 
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balanced versus unbalanced RSS in this setting as well as others, see Özturk and Wolfe 

(2000a, 2000b). 

 Finally, we note that it might be logically appealing to collect more than a single 

judgement ordered item from each ranked set of size k.  However, it is generally not 

statistically optimal to do so unless the cost of the judgement ranking is quite large 

relative to the cost of actual unit measurement.  For most settings where RSS is 

appropriate in the first place, the optimal choice is to collect only a single observation 

from each ranked set of size k.  This is true regardless of whether it is better to collect a 

balanced or an unbalanced ranked set sample.  For more details, see Özturk and Wolfe 

(2000c). 

  

6.  NONPARAMETRIC RANKED SET SAMPLE PROCEDURES 

 The previous discussion in this paper is broadly applicable to both parametric 

and nonparametric methodologies.  For example, the general property of unbiased for 

the sample mean discussed in Section 4 is not dependent on the assumption of any 

particular underlying distribution.  (The variance of the RSS mean is, of course, 

dependent on the underlying distribution through µ, σ2, and the µ(i)'s, i = 1, …, k.)   For 

the remainder of the paper we concentrate solely on a number of important 

nonparametric RSS procedures.   
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6.1.  Distribution Function Estimation and Mann-Whitney-Wilcoxon 

Procedures 

 

 Utilization of information obtained from rankings is clearly part and parcel of the 

ranked set sample concept through the judgement ranking process used to select the 

specific items for measurement.  However, it was not until the seminal paper by Stokes 

and Sager (1988) that a nonparametric approach was considered for analysis of the RSS 

measurements themselves.  In their paper they considered the use of RSS data to 

estimate the distribution function of a population. 

 Let   X , for j = 1, …, m, be the ranked set sample (for set size k and m 

cycles) from a distribution with c.d.f. F(t).  The natural RSS estimator for F(t) considered 

by Stokes and Sager (1988) is the empirical c.d.f. for the RSS data, namely, 

[1] j
* ,L, X[k ] j

*

  F*(t) =
1

mk j=1

m

∑ I(−∞,t ](X[ i] j
*

i=1

k

∑ ) . 

Stokes and Sager show that F*(t) is an unbiased estimator of F(t) and that  

  Var  for all t,             (7) (F*(t))≤Var( ˆ F (t))

where  is the usual empirical c.d.f. for a SRS of equal size mk.  They also show how 

to use the RSS empirical c.d.f. in conjunction with the Kolmogorov-Smirnov statistic to 

provide simultaneous confidence bands for the distribution function F(t).  

ˆ F (t )

 Sparked by the Stokes and Sager (1988) paper, Bohn and Wolfe (1992) initiated 

the development of distribution-free inference procedures based on ranked set samples.  
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They used the Stokes and Sager RSS estimate of the distribution function to develop 

RSS analogs of the Mann-Whitney version of the SRS Mann-Whitney-Wilcoxon two-

sample test and estimation procedures. 

 Once again, let   , for j = 1, …, m, be the ranked set sample (for set size 

k and m cycles) from a distribution with c.d.f. F(t).  In addition, let   Y , for t = 1, 

…, n, be the ranked set sample (for set size q and n cycles) from a second distribution 

with c.d.f. G(t) = F(t-∆), with - ∞ < ∆ < ∞.  Here we assume that both F and G represent 

continuous distributions. Let  and  be the empirical distribution functions 

for the X and Y ranked set samples, respectively, and let Ψ(t) = 1, 0 as t ≥ , < 0.  The RSS 

version of the Mann-Whitney statistic is given by 

X[1] j
* ,L, X[k ] j

*

[1]t
* ,L,Y[q] t

*

Fm ,k
* (t) Gn,q

* (t)

  U   RSS = mnkq Fm,k
* (t)dGn,q

* (t)
−∞

∞

∫

           .       (8) Ψ(Y[s] t
* − X[ i] j

* ) = ( # X ' s≤Y' s in the RSS data)
j =1

m

∑
i=1

k

∑
t =1

n

∑
s=1

q

∑

 To conduct hypothesis tests of the null hypothesis H0: ∆ = 0 against either one- or 

two-sided alternatives, we need some properties of the null distribution of URSS.  For 

this purpose, we assume that we have perfect judgement rankings for both the X and Y 

ranked set samples.  Bohn and Wolfe showed that just as for the SRS setting, the RSS 

Mann-Whitney statistics URSS (with perfect rankings) is distribution-free under H0 over 

the entire class of continuous distributions F.  However, there is a major difference in 

the null distributions and how critical values are obtained for the two settings.  For the 

SRS setting, the mk + nq combined sample X and Y observations are not only mutually 
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independent but they are also identically distributed. Thus it suffices to look at each of 

the 
mk

mk +nq⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  distinct (i. e., unchanged by permutations within the X's and Y's separately) 

ordered arrangements of these combined sample observations and, moreover, they are 

all equally likely.  This makes tabulation of the associated null distribution for the SRS 

Mann-Whitney statistic relatively straightforward. However, the equally likely nature 

of these arrangements does not carry over to the RSS setting, due to the fact that the 

ranked set X's and Y's, while still mutually independent, are no longer identically 

distributed.  For example, even in the case of perfect rankings there is nothing to 

prevent the smallest ordered item from one ranked set from being larger than the 

largest item from a second ranked set. While this probability will generally be small, it 

will not be zero as in the case of SRS.  This means that for RSS data it is no longer 

sufficient to look at the 
mk

mk +nq⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  distinct (i. e., unchanged by permutations within the X's 

and Y's separately) ordered arrangements of the combined sample observations.  

Instead we need to calculate the probability of each of the (mk+nq)! permutations 

separately and then combine them to obtain the null distribution for URSS.  Fortunately 

the probabilities of these (mk+nq)! permutations under RSS still do not depend on the 

form of the common, continuous F ≡ G under H0, although the tabulation can be 

tedious.  We illustrate the necessary computations with a small example. 

Example 1. For a single X and Y cycle (i.e., m = n = 1) and common X and Y set size k 

= q = 2, we must obtain the null probabilities for the 4! = 24 different permutations.  
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Under the assumption of perfect judgement rankings, the RSS observations X(1)1, X(2)1, 

Y(1)1, and Y(2)1 are independent order statistics with joint p.d.f. given by 

 gRSS(x(1), x(2) ,y(1), y(2) ) ={
2!

(i −1)!(2 − i)!
[F(x( i) )]

i−1[1− F(x( i ))]
2−i f (x( i ))

i=1

2

∏ } 

        ×{
2!

(s −1)!(2 − s)!s =1

2

∏ [F(y(s) )]
s −1[1− F(y(s ))]

2−s f (y(s) )}, 

which simplifies to 

gRSS(x(1), x(2) ,y(1), y(2) ) =16[1− F(x(1))][F(x(2))][1 − F(y(1) )][F(y(2) )] f (x( i) ) f (y(s) )
s=1

2

∏
i=1

2

∏  . 

Using this expression for gRSS and straightforward integration, the null probabilities for 

each of the 4! = 24 permutations of X(1)1, X(2)1, Y(1)1, and Y(2)1 can then be computed by 

integrating over the appropriate region.  Thus, for example, the four permutations  {X(1)1 

< Y(1)1 < X(2)1 < Y(2)1}, {X(1)1 < Y(1)1 < Y(2)1 < X(2)1}, {Y(1)1 < X(1)1 < Y(2)1 < X(2)1}, and {Y(1)1 < 

X(1)1 < X(2)1 < Y(2)1} all have the same null probability of occurrence, p, given by 

  = 41/280. p = gRSS (x(1), x(2), y(1), y(2))dx(1)dy(1)dx(2 )dy(2)−∞

y (1)

∫−∞

x (2)

∫−∞

y(2)

∫−∞

∞

∫

 Proceeding in this fashion for all 24 permutations yields the set of null 

probabilities (independent of the form of the continuous common F) and associated 

values of URSS given in Table 1.  Combining the null probabilities for the various 

permutations with the associated values for URSS, we see that the null distribution of 

URSS is given by: 

   P0( URSS = 0 ) = P0( URSS = 4 ) = 1/10, 

  P0( URSS = 1 ) = P0( URSS = 3 ) = 17/90,  and   P0( URSS = 2 ) = 19/45 . 
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Note that the null distribution is symmetric about its mean E0(URSS) = mnkq/2 = 2.  This 

symmetry property holds for the null distribution of URSS for any (m, n, k, q) 

configuration. 

Just as for the SRS setting, the theoretical properties of the RSS Mann-Whitney 

statistic URSS are obtained by using standard results about the general class of U-

statistics.  (See Randles and Wolfe, 1979, for a discussion of U-statistics.)  Let 

   . γ = P(X( i)1 < Y(s )1)
s=1

q

∑
i =1

k

∑

Then γ is a two-sample, multivariate, estimable parameter of degree (1, 1) and URSS/mn 

is the multivariate U-statistic estimator for γ.  Standard U-statistic arguments can then 

be used to establish the following result. 

Result 1. Let N = m + n and set λ = lim
N →∞

(m / N) .  If 0 < λ < 1 and 

lim
N→∞

N
m2n 2 Var(URSS) > 0 , then N

mn
(URSS − E[URSS])  has an asymptotic (N → ∞) normal 

distribution with mean 0 and finite variance σ∞
2 .  An expression for σ∞

2  can be found in 

equation (3.3) in Bohn and Wolfe (1992).  Under the null hypothesis H0: ∆ = 0 we have 

E[URSS] = mknq/2 and the asymptotic variance,σ∞
2 , does not depend on the form of the 

underlying continuous F.  

 

Table 1. Null Probabilities and Values of URSS for the 24 permutations in a RSS 

with m = n = 1 and k = q = 2. 

          Permutation       Null Probability         Value of URSS

      y(2) < y(1) < x(2) < x(1)             17/2520                       0 
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      y(2) < y(1) < x(1) < x(2)               7/360                    0 

      y(1) < y(2) < x(1) < x(2)           137/2520                    0 

      y(1) < y(2) < x(2) < x(1)              7/360                    0 

      y(1) < x(1) < y(2) < x(2)             41/280                    1 

      y(1) < x(2) < y(2) < x(1)              7/360                    1 

      y(2) < x(1) < y(1) < x(2)              7/360                    1 

      y(2) < x(2) < y(1) < x(1)              1/280                    1 

      x(1) < y(1) < y(2) < x(2)             41/280                    2 

      x(1) < y(2) < y(1) < x(2)           137/2520                    2 

      x(2) < y(1) < y(2) < x(1)             17/2520                       2 

      x(2) < y(2) < y(1) < x(1)              1/280                    2 

      y(1) < x(1) < x(2) < y(2)             41/280                    2 

      y(1) < x(2) < x(1) < y(2)           137/2520                    2 

      y(2) < x(1) < x(2) < y(1)             17/2520                       2 

      y(2) < x(2) < x(1) < y(1)              1/280                    2 

      x(1) < y(1) < x(2) < y(2)             41/280                    3 

      x(1) < y(2) < x(2) < y(1)              7/360                    3 

      x(2) < y(1) < x(1) < y(2)              7/360                    3 

      x(2) < y(2) < x(1) < y(1)              1/280                    3 

      x(1) < x(2) < y(1) < y(2)           137/2520                    4 

      x(1) < x(2) < y(2) < y(1)              7/360                    4 

      x(2) < x(1) < y(1) < y(2)              7/360                    4 

      x(2) < x(1) < y(2) < y(1)             17/2520                       4 

    

 For given values of k and q, Result 1 can be used to provide approximate critical 

values for the test of H0: ∆ = 0 based on URSS.  For example, in the special case of m = n 
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(so that λ = 1/2) and k = q = 2, it follows from Bohn and Wolfe (1992) that σ∞
2  = 16/9, so 

that the asymptotic (N→∞) null distribution of   

N
mn

(URSS − E0[URSS]) = 2n(
U RSS

n2 − 2)  is N(0,16/9).  Thus it follows 

that P{ 2n(
URSS

n2 − 2) ≥ z(α )}≈ α , where z(α) is the upper αth percentile for the standard 

normal distribution.  The approximate upper αth percentile for the null distribution of 

URSS is then given by n 3/ 2

2
z(α ) + 2n2  for the setting k = q = 2.   

 Bohn and Wolfe (1992) also provided a point estimator and confidence intervals 

and bounds for ∆ associated with the RSS Mann-Whitney statistic URSS.  In addition, 

they studied the asymptotic (N→∞) relative efficiency (ARE) of inference procedures 

based on URSS relative to the analogous procedures based on the SRS Mann-Whitney 

statistic USRS. 

 In a follow-up paper, Bohn and Wolfe (1994) showed that the statistic URSS is no 

longer distribution-free under the null hypothesis H0: ∆ = 0 when the judgement 

rankings are not perfect.  Using an approximate expected spacings model, they studied 

the effect that imperfect rankings have on the properties of the inferential procedures 

based on URSS.  

  

6.2.  Other Nonparametric Procedures 

 Similar properties have been developed for nonparametric RSS procedures in a 

number of other settings.  Bohn (1996) provides a nice review article that summarizes 
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the early work on such methodology.  Specifically, Hettmansperger (1995) and Koti and 

Babu (1996) discuss inferences associated with the RSS analog of the sign statistic.  Bohn 

(1998) provides similar results for the RSS version of the signed rank statistic.  As with 

the RSS version of the Mann-Whitney statistic, much of the methodological 

development for both the RSS sign and signed rank statistics relies on multivariate U-

statistic theory.  Presnell and Bohn (1999) generalize these results to the entire class of 

RSS U-statistics. 

 

7.  APPLICATIONS OF RSS PROCEDURES 

 Applications of RSS methodology involve several components. First, there is the 

initial process of obtaining the sets of SRSs for judgment ranking.  Any standard 

approach for obtaining SRSs can be used for this step.  Next there is the process of 

obtaining the judgment rankings themselves within each of these SRSs.  A variety of 

mechanisms have been proposed for this purpose ranging from totally subjective 

rankings by experts in the field to the purely objective use of multiple regression or 

logistic regression based on concomitant variables.  Standard software packages can be 

used for these regressions.  Finally, there is the analysis of the RSS data once obtained.  

At least thus far in its development the statistical analysis of RSS data has been 

consistently the same as what is standard for analogous SRS data. While this may 

change as RSS methodology progresses, at this point in time standard software 

packages are sufficient to analyze RSS data once it has been collected.  
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 As an example where RSS methodology can be effectively applied, consider the 

problem of estimation of bone mineral density (BMD) in a human population.  Subjects 

for such a study are plentiful, but measurement of BMD via dual x-ray absorptiometry 

on the selected subjects is expensive. Thus, it is important to minimize the number of 

subjects required for such a study without reducing the amount of reliable information 

obtained about the BMD makeup of the population.  Nahhas, Wolfe, and Chen (2002) 

discuss the selection of an optimal RSS set size for such an application in collaboration 

with Dr. Velimir Matkovic, a researcher in the Bone and Mineral Metabolism 

Laboratory at The Ohio State University.     
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