
Starting with R
R is an integrated suite of software facilities for data manipulation, calculation, statistics and graphical
display.

R is extremely useful to deal with structured data of the following format: each line is a data point and
each column contains some information about that data point (you can think of an Excel spreadsheet).
Typically, annotated data or results from experiments will have this format.

In this unit, we will give you a preliminary taste of R, and hopefully make you want to learn more about it.
We will look at the English dative alternation. In English, you can either say The teacher gave the toys to
the children using an object and a prepositional phrase (henceforth NP_PP), or you can say The teacher
gave the children the toys using two objects (henceforth the NP_NP construction). For the examples
above, the thing that gets given (the toys) is referred to as the theme and the children is the recipient.

Bresnan et al. (2007) proposed a model of the factors that affect the choice of dative construction for adult
data: length of the theme and recipient, animacy of these, lexical expression, etc. Here we are going to
look at a database of dative constructions by children. The goal of the project was to identify whether
children are sensitive to the same factors as adults. We will start by investigating the child database
child_dative.csv, which you can download from Carmen. The database contains both dative constructions
uttered by children as well as by the adult caretakers of these children. You can read more about this
study in Marie-Catherine de Marneffe, Scott Grimm, Inbal Arnon, Susannah Kirby and Joan Bresnan.
2012. "A statistical model of grammatical choices in child production of datives sentences". Language and
Cognitive Processes 27(1):25-61.

A good starting point for the material we are going to cover is the first chapter of Harald R. Baayen.
(2008). "Analyzing Linguistic Data. A Practical Introduction to Statistics Using R." Cambridge University
Press.

Basics
Launch R. We get a R console in which we will be able to type. The R prompt is ">".

We will want to load data from our computer, so we need to know where we are. By default, the working
directory is the user home directory. The function getwd() gives you the current working directory. So on
my laptop this is what I get:

> getwd()
[1] "/Users/mcdm"

On the computer lab machines, you will get:

> getwd()
[1] "Users/buckeye"

If you want, you can change the working directory. Go to "Misc" > "Change working directory". This will
open a file system browser which allows you to choose the folder you want as you working directory (e.g.,
the directory where the files you will want to load in R live).

As with Python, we can just use R as a calculator.

> 5 + 3 * 2
[1] 11

> sqrt(81)
[1] 9

http://www.r-project.org/
http://dx.doi.org/10.1080/01690965.2010.542651
http://dx.doi.org/10.1080/01690965.2010.542651
http://dx.doi.org/10.1080/01690965.2010.542651
http://www.sfs.uni-tuebingen.de/~hbaayen/publications/baayenCUPstats.pdf
http://www.sfs.uni-tuebingen.de/~hbaayen/publications/baayenCUPstats.pdf
http://www.sfs.uni-tuebingen.de/~hbaayen/publications/baayenCUPstats.pdf

Again, remember that people are lazy. If you type the beginning of a command and hit the "tab" key, R will
fill it for you. It is also very useful when you don't fully remember the exact command but are pretty sure of
how it starts!

We can have variables to which we assign a value.

> x = 5
> x
[1] 5

On top of the = sign, R also allows left-arrow and right-arrow as assignment operator.

> x <- 5 + 2
> x
[1] 7

> 5 + 5 -> y
> y
[1] 10

Reading and accessing data
But we don't really care about calculators ;-) What we want is to explore data. The child dative database
mentioned above is a CSV file (comma-separated values). Each line has the same number of fields,
separated by a comma. The easiest way to deal with files in R is to have them under this "CSV" format. If
you have an Excel table, you can save it as a CSV file. R has a function read.csv() that allows us to load
such files. The function takes one obligatory argument: the file you want to load. You need to give the
path to that file relative to the working directory.

> read.csv("Downloads/child_dative.csv")

What happens when I do this? The content of the file gets printed to the console, but that's it. This isn't
very useful. We will want to do stuff with that data. We need to store it. So we will choose a variable name
and assign to it the output of the read.csv function.

> dative = read.csv("Downloads/child_dative.csv")

We can look in the manual to have a better idea of what read.csv is doing.

> help(read.csv)

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to lines and variables to fields in the file.

Usage

read.table(file, header = FALSE, sep = "", quote = "\"'",
 dec = ".", row.names, col.names,
 as.is = !stringsAsFactors,
 na.strings = "NA", colClasses = NA, nrows = -1,
 skip = 0, check.names = TRUE, fill = !blank.lines.skip,
 strip.white = FALSE, blank.lines.skip = TRUE,
 comment.char = "#",
 allowEscapes = FALSE, flush = FALSE,
 stringsAsFactors = default.stringsAsFactors(),
 fileEncoding = "", encoding = "unknown", text)

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
 fill = TRUE, comment.char="", ...)

...

We can see that by default it will assume a HEADER row (meaning that the first line of the file will
contains the names of the fields) and that the separator is a comma.

It is good practice to always make sure that everything is loaded properly. Take a peek at the start of the
dataset.

> head(dative)

 PID File Age Age.numeric Age_group Line Group Child Speaker
 1 26 abe064 3;0.29 3.08 2 NA child abe abe
 2 27 abe064 3;0.29 3.08 2 NA child abe abe
 3 41 abe109 3;6.13 3.54 2 NA child abe abe
 4 42 abe109 3;6.13 3.54 2 NA child abe abe
 5 546 abe142 3;10.14 4.30 3 NA child abe abe
 6 45 abe112 3;6.22 3.56 2 NA child abe abe
 Sentence Prime
 1 " hey # come give me a hug ." NP
 2 " give me a hug # please ." NP
 3 I'll show you the little bottle . NP
 4 I'm gon (t)a show you the little bottle over across the street do you wan(t) (t)a come over across the street ? NP
 5 can I show you this one now ? NP
 6 give it back to me . PP
 Prime_line Repetition SameVerb Prime_distance Prev_dative_constr Prime_Speaker Prime_verb Verb
 1 oh come give me a hug 1 1 10 NP FAT give give
 2 hey # come give me a hug 1 1 6 NP FAT give give
 3 I'll show you the little bottle 1 1 2 NP CHI show show
 4 I'll show you the little bottle 1 1 2 NP CHI show show
 5 ok I wan(t) (t)a show you this one . 1 1 5 NP CHI show show
 6 give it back to me 1 1 1 PP CHI give give
 Theme Recipient Theme.givenness Rec.givenness Theme.animacy Rec.animacy Theme.toy.animacy Rec.toy.animacy
 1 a hug me given given 0 1 0 1
 2 a hug me given given 0 1 0 1
 3 the little bottle you given given 0 1 0 1
 4 the little bottle over across the street you given given 0 1 0 1
 5 this one you new given 0 1 0 1
 6 it to me given given 0 1 0 1
 Theme.pron Rec.pron Theme.length Rec.length Construction
 1 lexical pronoun 2 1 NP
 2 lexical pronoun 2 1 NP
 3 lexical pronoun 3 1 NP
 4 lexical pronoun 7 1 NP
 5 pronoun pronoun 2 1 NP
 6 pronoun pronoun 1 1 PP

You can also look at the end of the dataset:

> tail(dative)

In most cases, the data you load is a dataset you are familiar with (probably built by you!), so you probably
know how much lines this dataset contains. You can check that with the nrow function. This function takes
one argument: the object you want to count lines of.

> nrow(dative)
[1] 1353

Remember what we did for Python. We could check the type of objects. We can do the same here using
the "class" function.

> class(dative)
[1] "data.frame"

You can think of a data frame as a matrix. Think of a Battleship game! We can easily access a cell by
specifying the row and the column.

Let's first try this on a toy example which we will create from scratch. We will create 2 vectors and put
them together to create a data frame:

> names = c("Marie", "Micha", "Olivier")
> ages = c(35, 31, 32)
> d = data.frame(names, ages)

> d
 names ages
1 Marie 35
2 Micha 31
3 Olivier 32

By definition a data frame contains vectors of same length. What happens if we do this?

> ages = c(35, 31, 32, 4)
> d = data.frame(names, ages)

We get an error message telling us that we are trying to construct a data frame with vectors of different
lengths. Build the data frame properly again.

Now we can access the age of Marie for example. It is in cell (1,2):

> d[1,2]

We can also access a whole row or a whole column:

> d[1,] # getting the first row
> d[,2] # getting the second column

Going back at getting Marie's age: more realistically we will not know in which cell it is. But we will know
that we want to get the age corresponding to the value "Marie" for names. We specify a column using the
$ sign:

> d$names

So to get the age of Marie, we will specify which row we want to look at, and specify which column we
want in that row. Let's do this step by step. What does the following get us?

> d[d$names == "Marie",]

Now we specify the column we want:

> d[d$names == "Marie",]$ages

How do you get the names of people below 35?

We can also easily add another column to the data frame:

> genders = c("f", "m", "m")
> d = cbind(d, genders)

And now, how do we take the subset of men only?

> men = d[d$genders == "m",]

We can also use the subset function to do this. We will specify the condition which we want the data to
satisfy. Rows satisfying the condition will be kept.

> men2 = subset(d, genders == "m")

Two other useful commands are the names and levels ones. Look at the manual to see what they do and
try them on our toy dataset we just made.

What happens if we try the levels function on the genders column in our original data frame? And what
about the men subset?

Note that levels is defined for a categorical variable only.

> levels(men$genders)
[1] "f" "m"

That's something worth knowing about R. Unless you explicitly told R to drop the levels when subsetting
the data, it keeps the original levels. To drop the levels, do:

> droplevels(men)
> men = droplevels(men)

Now try again the levels function. Looks better, right?

> levels(men$genders)
[1] "m"

Data exploration
Let's go back to our dative data. A method that can be quite useful to look at what we have in the data is
the summary one:

> summary(dative)

 PID File Age Age.numeric Age_group Line
 Min. : 1.0 nina05.cha: 26 2;11.28: 32 Min. :1.900 Min. :1.000 Min. : 14.0
 1st Qu.: 209.0 nina46.cha: 21 2;6.17 : 30 1st Qu.:2.490 1st Qu.:1.000 1st Qu.: 693.5
 Median : 412.0 nina48.cha: 20 2;3.18 : 28 Median :2.950 Median :1.000 Median :1475.0
 Mean : 483.4 adam08.cha: 19 2;0.10 : 26 Mean :3.040 Mean :1.596 Mean :1516.5
 3rd Qu.: 718.0 nina04.cha: 19 3;1.4 : 26 3rd Qu.:3.250 3rd Qu.:2.000 3rd Qu.:2253.0
 Max. :1244.0 nina07.cha: 18 4;2.17 : 25 Max. :5.383 Max. :3.000 Max. :4385.0
 (Other) :1230 (Other):1186 NA's :530
 Group Child Speaker Sentence Prime
 cds :823 abe : 75 *MOT :629 who \002\005(1)\002\006gave it to you ? : 7 0 :894
 child:530 adam :429 adam :221 give me ride . : 5 NP:356
 naomi : 21 nina :146 who \002\005(1)\002\006gave them to you ? : 5 PP:103
 nina :613 *INV :124 give me it . : 4
 sarah : 19 abe : 75 \002\005(1)\002\006give it to me . : 3
 shem :163 *URS : 35 come here # and \002\005(1)\002\006give it to me .: 3
 trevor: 33 (Other):123 (Other) :1326
 Prime_line Repetition SameVerb Prime_distance Prev_dative_constr
 :1147 Min. :0.00000 Min. :0.0000 none :561 :875
 ??? Couldn't find it : 3 1st Qu.:0.00000 1st Qu.:1.0000 :328 NP :326
 give me ride : 3 Median :0.00000 Median :1.0000 1 :154 PP : 88
 give her milk . : 2 Mean :0.03769 Mean :0.9109 2 :100 NP question: 24
 give me it . : 2 3rd Qu.:0.00000 3rd Qu.:1.0000 3 : 50 imperative : 7
 give me that broken one !: 2 Max. :1.00000 Max. :1.0000 4 : 45 NP relative: 7
 (Other) : 194 NA's :1151 (Other):115 (Other) : 26
 Prime_Speaker Prime_verb Verb Theme Recipient Theme.givenness Rec.givenness
 :880 :879 give:1095 it : 176 me :323 given:763 given:1144
 *MOT :149 give :393 show: 258 them : 34 you :269 new :590 new : 209
 *CHI : 72 show : 65 something: 28 him : 90
 CHI : 65 bring : 4 that : 25 her : 86
 CH : 41 send : 3 some : 22 to me : 59
 MO : 38 tell : 3 one : 21 to you : 51
 (Other):108 (Other): 6 (Other) :1047 (Other):475
 Theme.animacy Rec.animacy Theme.toy.animacy Rec.toy.animacy Theme.pron Rec.pron
 Min. :0.00000 Min. :0.0000 Min. :0.00000 Min. :0.0000 lexical:1045 lexical: 351
 1st Qu.:0.00000 1st Qu.:1.0000 1st Qu.:0.00000 1st Qu.:1.0000 pronoun: 308 pronoun:1002
 Median :0.00000 Median :1.0000 Median :0.00000 Median :1.0000
 Mean :0.02217 Mean :0.9076 Mean :0.06726 Mean :0.9815
 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000
 Max. :1.00000 Max. :1.0000 Max. :1.00000 Max. :1.0000
 Theme.length Rec.length Construction
 Min. : 1.00 Min. :1.000 NP:1014
 1st Qu.: 1.00 1st Qu.:1.000 PP: 339
 Median : 2.00 Median :1.000
 Mean : 2.18 Mean :1.113
 3rd Qu.: 2.00 3rd Qu.:1.000
 Max. :15.00 Max. :7.000

What is great about this command is that we see how the values of the variables are interpreted by R.
This is very important. Let's look at what is happening with the animacy variable. Right now it is seen as a
numeric variable. How is it coded? Let's look at it:

> dative$Theme.animacy

It is coded as a binary variable with 0 and 1. But the 0s and the 1s are interpreted as integers right now,
which is not good. This is actually a categorical variable: we could have coded it with "animate" and
"inanimate" for example, instead of "1" and "0". We can force R to see it as such:

> dative$Theme.animacy = as.factor(dative$Theme.animacy)

We will do it for the recipients too:

> dative$Rec.animacy = as.factor(dative$Rec.animacy)

> class(dative$Theme.animacy)
[1] "factor"

Re-run the summary function on the dative data frame. What is different now?

Assume that this 0 and 1 coding is confusing you. You can easily change that. There are multiple ways to
do this. Here is one: we will add a new column to our data frame, and put in it the values we want
("animate" if the Theme.animacy was 1, "inanimate" if the Theme.animacy was 0):

create a new column with "animate" as value
> dative$Theme.animacy2 = "animate"

where Theme.animacy was 0, we change the "animate" value to "inanimate"
> dative[dative$Theme.animacy == "0",]$Theme.animacy2 = "inanimate"

make sure we have a categorical variable
> dative$Theme.animacy2 = as.factor(dative$Theme.animacy2)

Now let's look into more details what is happening in the dative constructions uttered by children only. To
simplify the expression of the commands, we will create a subset containing only the data for the children.

> child = subset(dative, Group == "child")

Now create a subset with the child-directed speech data. How many dative constructions do we have per
subsets?

> nrow(child)
[1] 530

Here are some questions that we might ask ourselves:

1. What are the verbs in this database?

This information was already in the output of the summary method. We can also use the levels function.
How?

2. How often do we have pronominal recipients in the different constructions, for the adults and for the
children?

To answer this, we will create what is called a contingency table or cross tabulation: it just displays the
frequency distribution of some variables. This is done with the xtabs function in R:

> xtabs(~ Rec.pron + Construction, data = child)
 Construction
Rec.pron NP PP
 lexical 50 56
 pronoun 358 66

> xtabs(~ Rec.pron + Construction, data = cds)
 Construction
Rec.pron NP PP
 lexical 139 106
 pronoun 467 111

3. When we did some statistical modeling to see which factors influenced children's construction
choice, animacy didn't turn out to be significant. Look at the data and try to see why this actually
makes sense. We want to get the frequency distribution of the animacy of the recipient per
construction.

4. We can also look at how given and new themes are expressed (pronouns or lexical noun phrases).
Let's look at this for children as well as for adults:

> xtabs(~ Theme.pron + Theme.givenness, data = child)
 Theme.givenness
Theme.pron given new
 lexical 215 182
 pronoun 114 19

> xtabs(~ Theme.pron + Theme.givenness, data = cds)
 Theme.givenness
Theme.pron given new
 lexical 266 382
 pronoun 168 7

It seems quite different. We can easily do a chi-square test on this :-)

Data visualization
We might also want to visualize the data with graphs. Just to show you some of the basic plotting
functions in R, we can try the following.

Make a bar plot of the lengths of the themes in the child data:

> barplot(xtabs(~ child$Theme.length))

We can specify x-axis and y-axis labels if we want:

> barplot(xtabs(~ child$Theme.length), xlab = "Number of words in theme", ylab = "Number of utterances")

How do we add a global title for the graph? Look in the manual:

> help(barplot)

Let's say we want to look together at a barplot of the theme lengths for the children and one for the adults.
We can define how many panels we want using par. We will set the parameter mfrow to the matrix of
panels we want:

> par(mfrow = c(1,2)) # this create a 1 x 2 matrix
> barplot(xtabs(~ child$Theme.length))
> barplot(xtabs(~ cds$Theme.length))

Perhaps it would be more insightful to see how the length of the theme patterns per construction:

> barplot(xtabs(~ child$Construction + child$Theme.length))

Mmh, we might want to add a legend here. I never remember how to do this, but I just look in the manual!

> barplot(xtabs(~ child$Construction + child$Theme.length), legend.text = TRUE)

I don't really like stacked bars... This isn't that helpful visually. Can we juxtapose them perhaps? Look in
the manual! Add labels to the graph too.

	Basics
	Reading and accessing data
	Data exploration
	Data visualization

