
Introduction to Unix

Part 2: Looking into a file
Now we want to see how the files are structured. Let's look into one.

more

$ more fe_03_06596.txt

0.59 1.92 A-f: hello
1.96 2.97 B-m: ((hello))
2.95 3.98 A-f: hello
3.71 5.43 B-m: my name is kevin gonzales
5.49 7.30 A-f: hi this is carol
6.95 8.35 B-m: carol okay carol
8.42 9.44 A-f: [laughter]
9.56 11.27 A-f: well that was fast
12.48 13.79 B-m: uh hello
13.47 14.85 A-f: yeah i'm here
14.58 15.53 B-m: okay
16.81 25.87 A-f: um so do you think that public or private school

To see more of the file, hit the "return" key.

It seems that we have one utterance per line. Participants are coded as A and B, and we have gender
information (as -f or -m tagged to the participant code). The numbers at the beginning of the lines are the
start and end time of the utterance.

Ok, we have a pretty decent understanding of how the file is structured. How do we quit this?

"q" -- easy :-)

Let's look at the second file. People are lazy... Using the "tab" key, Unix will fill the rest of the command for
you. So let's try this.

$ more f [Then hit "tab"]

Magical, isn't it?

Now we just type "01", and hit "tab" again, and we are seeing the content of the file "fe_03_06501.txt".

Another small trick: Using the up and down arrows, we can repeat commands we just typed (there is a
history of the commands we typed).

less (doesn't exist in Windows)
We can also use the "less" command to look into the file.

$ less fe_03_06596.txt

What's the difference between "more" and "less"? How can I find the answer to this question?

Look at the manual!

$ man less

DESCRIPTION
 Less is a program similar to more (1), but which allows backward move-
 ment in the file as well as forward movement. Also, less does not have
 to read the entire input file before starting, so with large input
 files it starts up faster

wc (Measure-Object for PowerShell)
Can we roughly quantify the amount of data that's available here? E.g., how many files do we have? How
many words? We can count stuff easily with the "wc" command.

I. What happens when we type the "wc" command?

$ wc fe_03_06501.txt

173 2729 14055 fe_03_06501.txt

Tell me what these numbers mean. How do you find the answer?

That's right: we look at the manual.

$ man wc

NAME
 wc -- word, line, character, and byte count

SYNOPSIS
 wc [-clmw] [file ...]

DESCRIPTION
 The wc utility displays the number of lines, words, and bytes contained in each input
 file, or standard input (if no file is specified) to the standard output. A line is
 defined as a string of characters delimited by a <newline> character. Characters
 beyond the final <newline> character will not be included in the line count.

So what are the different numbers we see?

• 173 is the number of lines in the file "fe_03_06501.txt"

• 2,729 is the number of words in the file "fe_03_06501.txt"

• 14,055 is the number of bytes in the file "fe_03_06501.txt"

Now I want to know how many words I have in this whole directory "065", and not only for this particular
file. We will use * which serves as a wildcard character. So *.txt will mean "anything that ends with .txt"

How is a word defined?

$ wc *.txt

19178 252415 1324595 total

II. Can we know how many files we have in this "065" directory?

We can list the directory content and count the output.

We use the vertical bar "|" to connect two commands together so that the output from one command
becomes the input of the next command. Two (or more) commands connected in this way form what's
called a pipe.

$ ls | wc

100 100 1600

So we have 100 files in the "065" directory.

Now count the number of files in the "058" directory.

Exercise
How many files and how many words do we have in total in the Fisher directory?

Part 3: Going further
There are other useful Unix commands, and you might want to take a look at Unix for Poets.

But for our purpose, we just want to be able to navigate the directory tree and have quick peeks into files.
Sometimes a file might be really big, and you don't want to open it in Word ;-)

The "grep" command ("Select-String" in PowerShell) might be quite useful to you but we will not insist too
much on this. Regular expressions are quite handy but tricky too (see xkcd comic). Just for the fun of it, I
will quickly illustrate what you can do with regular expressions.

"grep" stands for Globally search a Regular Expression and Print. It searches plain-text data for lines
matching a regular expression. The syntax is the following:

grep regular_expression filename

We can first try regular expressions in an interactive mode. We will type "grep" followed by the regular
expression we want to look for, then "enter". We can then type some text (one line), and hit enter. If the
regular expression matches the text, the line will be echoed back to us. If not, nothing will happen.

grep "hello"
hello
hello #echoed back to us

hello dave
hello dave #echoed back to us

dave
 #nothing is happening

Use ctrl-C to quit.

It can be useful to use some colors, to see what exactly gets matched. Do to this, we add the option
"--color=auto":

grep --color=auto "hello"

Using "grep", we can have an idea of how much people laugh in these conversations. How would we do
this?

Remember the first file we looked at:

$ cd
$ cd Downloads/Fisher/065/
$ more fe_03_06596.txt

http://www.researchgate.net/publication/228560160_Unix_for_Poets/file/79e415120007ae7efb.pdf
http://xkcd.com/1171/

0.59 1.92 A-f: hello
1.96 2.97 B-m: ((hello))
2.95 3.98 A-f: hello
3.71 5.43 B-m: my name is kevin gonzales
5.49 7.30 A-f: hi this is carol
6.95 8.35 B-m: carol okay carol
8.42 9.44 A-f: [laughter]
9.56 11.27 A-f: well that was fast
12.48 13.79 B-m: uh hello
13.47 14.85 A-f: yeah i'm here
14.58 15.53 B-m: okay
16.81 25.87 A-f: um so do you think that public or private school

Laughter is coded explicitly in the transcriptions as [laughter]. Using "wc", we know how many lines a file
contains. If we can count how often [laughter] appears in these lines, then we will have an idea of the
proportion of utterances containing laughter.

Let's make sure we are working on the same directory here. Let's start with 065.

$ grep "\[laughter\]" *.txt

We need to use the backslash character to escape the bracket character which has a special meaning in
regular expressions. But here we want its literal meaning as a character. (If we type [xyz] without escaping
the brackets, it will match any line that contains the letter x, y or z.)

Now how do we get the line count?

$ grep "\[laughter\]" *.txt | wc

1482 23609 161959

How many total lines do we have in the "065" directory?

$ wc *.txt

19178 252415 1324595 total

So roughly 8% of the utterances in the files from the "065" directory contain laughter.

Perhaps we want to do this on all the files in all the directories.

$ cd ../
$ grep -R "\[laughter\]" ./ | wc

1681 26608 186119

-R stands for recursive

./ refers to the current directory

Getting the number of lines of all the files in all the directories is a bit trickier, and I will not enter into the
details, but here is a command to do it.

$ find . -name "*.txt" | xargs wc

29734 362020 1902592 total

	Part 2: Looking into a file
	more
	less (doesn't exist in Windows)
	wc (Measure-Object for PowerShell)

	Exercise
	Part 3: Going further

