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Abstract
A discourse typically involves numerous entities, but few are mentioned more than once. Dis-

tinguishing those that die out after just one mention (singleton) from those that lead longer lives
(coreferent) would dramatically simplify the hypothesis space for coreference resolution models,
leading to increased performance. To realize these gains, we build a classifier for predicting the
singleton/coreferent distinction. The model’s feature representations synthesize linguistic insights
about the factors affecting discourse entity lifespans (especially negation, modality, and attitude
predication) with existing results about the benefits of “surface” (part-of-speech and n-gram-based)
features for coreference resolution. The model is effective in its own right, and the feature represen-
tations help to identify the anchor phrases in bridging anaphora as well. Furthermore, incorporating
the model into two very different state-of-the-art coreference resolution systems, one rule-based and
the other learning-based, yields significant performance improvements.

1. Introduction

Karttunen imagined a text interpreting system designed to keep track of “all the individuals, that is,
events, objects, etc., mentioned in the text and, for each individual, record whatever is said about it”
(Karttunen, 1976, p. 364). He used the term discourse referent to describe these abstract individuals.
Some discourse referents are easily mapped to specific entities in the world, as with most proper
names. Others are indeterminate in the sense that they are compatible with many different real-world
entities, as with indefinites like a train. In either case, discourse referents can enter into anaphoric
relations in discourse; even if we do not know exactly what real-world object a train picks out in
We heard a train in the distance . . . , we can nonetheless refer to it with subsequent pronouns and
ascribe properties to it (. . . It had a loud horn).

Not all discourse referents enjoy repeat appearances in the discourse. Some lead long lives
and appear in a wide variety of discourse contexts, whereas others never escape their birthplaces,
dying out after just one mention. The central question of this paper is what factors influence the
lifespan of a discourse referent. We focus on noun phrases, which are the most direct identifiers
of discourse referents in English. More specifically, we seek to predict whether a given discourse
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referent will be coreferent (mentioned multiple times in a given discourse) or singleton (mentioned
just once). The ability to make this distinction based on properties of the noun phrases used to
identify these referents (henceforth, mentions) would benefit coreference resolution models, by sim-
plifying the hypothesis space they consider when predicting anaphoric links, and it could improve
performance on other tasks that require accurately tracking discourse entities, including textual en-
tailment (Delmonte, Bristot, Piccolino Boniforti, & Tonelli, 2007; Giampiccolo, Magnini, Dagan,
& Dolan, 2007) and discourse coherence (Hobbs, 1979; Grosz, Joshi, & Weinstein, 1995; Kehler,
2002; Barzilay & Lapata, 2008; Prasad, Dinesh, Lee, Miltsakaki, Robaldo, Joshi, & Webber, 2008).

The existing literature provides numerous generalizations relevant to the singleton/coreferent
distinction. It is known, for example, that the internal syntax and morphology of the phrase used
to establish the discourse referent provide important clues as to the lifespan of that referent (Prince,
1981a, 1981b; Wang, McCready, & Asher, 2006). Information structuring is also important; certain
grammatical and discourse roles correlate with long lifespans (Chafe, 1976; Hobbs, 1979; Walker,
Joshi, & Prince, 1997; Beaver, 2004). Features based on these insights have long been integrated
into coreference resolution systems. Our contribution is to explore the interaction of all of these
features with semantic operators like negation, modals, and attitude predicates (know, be certain,
wonder). Such interactions were Karttunen’s primary focus (Karttunen, 1973, 1976), and they have
long dominated work on dynamic approaches to linguistic meaning (Kamp, 1981; Heim, 1982,
1992; Roberts, 1990; Groenendijk & Stokhof, 1991; Bittner, 2001). Here, we highlight the impor-
tance of such interactions for predicting the lifespans of discourse referents in actual text.

Our approach also capitalizes on the results of Durrett and Klein (2013) and Hall, Durrett, and
Klein (2014) concerning the power of “surface” features for natural language processing (NLP)
tasks. Those authors show that large sets of easily extracted part-of-speech (POS) and n-gram-
based features can achieve results that are at least as good as those achieved with hand-engineered
linguistic features. We therefore investigate the contribution of surface features for predicting the
lifespan of discourse entities. We find that surface features alone have substantial predictive value
for this task, but that adding more specialized linguistic features leads to reliable performance gains.
This suggests that some of the linguistic constraints relevant for lifespan prediction go beyond what
can be approximated with surface-level information given available data.

The first step in our analysis is to bring the insights from linguistic theories together into a
single logistic regression model — the lifespan model — and assess their predictive power on real
data. We show that the linguistic features generally behave as the existing literature leads us to
expect, and that the model itself is effective at predicting whether a given mention is singleton or
coreferent. The second step is to bring in surface features to obtain a more predictive model. We then
provide an initial assessment of the engineering value of making the singleton/coreferent distinction
by incorporating our lifespan model into two very different, state-of-the-art coreference resolution
systems: the rule-based Stanford coreference system (Lee, Peirsman, Chang, Chambers, Surdeanu,
& Jurafsky, 2011) and the learning-based Berkeley coreference system (Durrett & Klein, 2013). For
both, adding our features results in a significant improvement in precision on the CoNLL-2011 and
CoNLL-2012 Shared Task data, across all the standardly used coreference resolution measures, and
we see reliable boosts in recall as well.

This article subsumes and extends the work of Recasens, de Marneffe, and Potts (2013). The
specific differences are as follows. First, freed of NAACL’s tight space constraints, we provide a
much more in-depth linguistic analysis of the various features in our lifespan model, and include
more details throughout. Second, we examine the contribution of surface features to the lifespan
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model. Third, we assess the value of the lifespan model for predicting which phrases will act as
anchors in bridging anaphora. Fourth, to give a fuller evaluation of the coreference applications
of our model, we incorporate our best lifespan model into a learning-based system (the Berkeley
coreference system), complementing our previous results on the rule-based Stanford coreference
system. Fifth, we use the most recent version of the CoNLL scorer (v8.0), which includes results
according to BLANC and fixes a bug that incorrectly boosted B3 and CEAF scores by a few points.
Sixth, we benefit from Kummerfeld and Klein’s (2013) error analysis tool to gain deeper insights
into the errors that our lifespan model helps with.

2. Linguistic Insights

This section briefly summarizes previous research on anaphora resolution, discourse structure, and
discourse coherence in the linguistic literature. Our goal is to obtain a clear picture of how the
lifespan of a discourse referent is shaped by features of its mentions — not only their local mor-
phosyntactic features but also features of the syntactic and semantic environments in which they
occur. The insights we gather in this section inform the design of the feature extraction functions
in our lifespan model (Section 5) and in turn shape our contributions to the Stanford and Berkeley
coreference systems (Section 8).

Karttunen (1976) was primarily concerned with the ways in which the semantic scope of an
indefinite influences the lifespan of its associated discourse referent. In the three-sentence discourse
(1), the indefinite an exam question in sentence 1 has text-level scope. As a result, its associated
discourse referent is free to lead a long life, linking with a mention that is also at the text-level
(sentence 2) and one that is embedded below negation (sentence 3).

(1) Kim read over an exam question. It was hard. He didn’t understand it.

In contrast, as Karttunen observed, if an indefinite is interpreted in the scope of negation, then
it is typically available for anaphoric reference inside that negative environment, as in (2), but not
outside of it, as in (3). (We use # to mark discourses that are incoherent on the intended construal.)

(2) Kim didn’t understand an exam question even after reading it twice.

(3) Kim didn’t understand an exam question. #It was too hard.

Of course, (3) has a coherent construal on which an exam question is interpreted as taking wide-
scope with respect to negation (‘there is a question Kim didn’t understand’). Such inverse scope
readings are often disfavored, but they become more salient when modifiers like certain and par-
ticular are included (Fodor & Sag, 1982; Schwarzschild, 2002), or where the mention contains
a positive polarity item, that is, an item like some or tons of that resists scoping under negation
semantically (Baker, 1970; Israel, 1996, 2001):

(4) Kim didn’t understand a particular exam question. She pondered it for hours to no avail.

(5) Kim didn’t understand some exam question. She pondered it for hours to no avail.

Conversely, using a negative polarity item (NPI) like any inside the indefinite mention essen-
tially ensures a narrow-scope reading (Ladusaw, 1996; Israel, 2004), which leads to an impossible-
to-resolve anaphoric link for simple variants of (3):

(6) Kim didn’t understand any exam question. #It was too hard.
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The pattern Karttunen saw in all this is that semantic scope and anaphoric potential are inti-
mately related: a given mention can participate in anaphoric relationships within its scope, but not
outside of it. Broadly speaking, this is familiar from quantificational binding in logical languages
(Cresswell, 2002) and variable scope in the control structures of programming languages (Muskens,
van Benthem, & Visser, 1997). Thus, an indefinite with text-level scope has free reign, whereas one
inside the scope of an operator like negation is restricted to links that do not span the outer bound-
aries of that scopal environment. These are semantic generalizations that might not be directly
reflected in the surface syntax, but interpretive preferences and internal morphosyntactic features of
the mention can help to disambiguate the intended logical form.

Karttunen (1976) immediately generalized his observations about negation and discourse refer-
ence to modal auxiliaries and non-factive attitude predicates like want and claim. The following are
based on his original examples:

(7) Bill can make a kite. #It has a long string.

(8) John wants to catch a fish. #Do you see it from here?

(9) Sandy claims that Jesse bought a bicycle. #It has a green frame.

As with negation, the pattern makes intuitive sense. Bill’s abilities regarding kite construction do
not involve any specific kite, and hence the first sentence of (7) does not automatically establish the
right sort of discourse referent. Similarly, wanting to catch a fish does not guarantee the salience (or
even existence) of a fish, and Sandy might be so unreliable as a source that a bicycle has no status
outside of the semantic scope of claim.

All of (7)–(9) cohere if the indefinite is interpreted outside of the scope of the relevant semantic
operator. The relative preferences for surface and inverse scope are harder to characterize than they
were with negation, because they are influenced in complex ways by the semantics and pragmatics
of the attitude predicate, the reliability of the source of the information, and the nature of the con-
versational issues and goals. For example, if the speaker of (9) regards Sandy as a reliable source
regarding Jesse’s bike buying, then a bicycle will likely attain text-level scope as a by-product of
‘Jesse bought a bicycle’ becoming a text-level commitment. Karttunen (1973) discusses these pat-
terns, observing that, in many contexts, pragmatic pressures encourage embedded content to become
elevated to the text level in this way. De Marneffe, Manning, and Potts (2012) study newspaper data
in which this is an extremely common pattern because the attitude verbs tend to function as evi-
dential markers for the source of the embedded content (Rooryck, 2001; Simons, 2007). We will
see later that attitude predicates seem to encourage long lifespans in the OntoNotes data too (the
majority of which is news-like), arguably as a result of just these pragmatic factors.

We have so far restricted attention to anaphoric links in which an indefinite establishes a new
discourse referent and a pronoun refers to it. Our observations carry over directly to links from in-
definites to definite noun phrases, which linguistic theories treat roughly as pronouns with additional
descriptive content (for discussion, see the work of Elbourne, 2008). Other mention-patterns tend to
be quite different, though. Where discourse referents are established by definites or named entities,
the interactions with negation and other operators are simpler because definites and named entities
do not interact scopally with these operators (but see the work of Aloni, 2000, for related issues
involving presupposition and intensionality). Thus, such anaphoric connections are unconstrained
by the factors we have been discussing. Conversely, truly quantified phrases like no student and ev-
ery linguist are severely limited, not only by their interaction with other operators but also by their
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own deficiencies when it comes to establishing discourse referents. There are cases in which these
expressions establish new discourse referents, but they seem to be infrequent and unusual (Wang
et al., 2006).

Cross-cutting the above considerations are factors that have long been central to studies of coref-
erence and anaphora within computational linguistics and NLP. For instance, animate nouns are
generally the most likely to lead long discourse lives, whereas mentions that refer to abstract ob-
jects like quantities, percentages, and other measures tend to be singleton. We assume that these
statistical patterns derive, not from narrow linguistic constraints, but rather from general cognitive
biases concerning how people conceptualize and discuss different kinds of objects. However, there
is evidence that these biases can make their way into the grammars of specific languages in the
form of morpho-semantic phenomena like obviation (Aissen, 1997) and differential object marking
(Aissen, 2003).

The syntactic environment in which the phrases occur will also modulate their anaphoric po-
tential and hence their lifespans. For example, Prince (1981b) reports that semantically indefinite
phrases using this, as in There was this guy in the back row, are highly likely to be referred to in
a subsequent clause. Similarly, Chafe (1976) shows that information structuring choices are also
predictive of whether a given noun phrase will serve as the antecedent for later referential devices.
There are also close correlations between being in a syntactic topic position and leading a long dis-
course life (Grosz et al., 1995; Beaver, 2004); for a focused evaluation of these ideas for handling
coreference, see the work of Beaver (2007).

We seek to incorporate all of the above observations into our lifespan model. There are ad-
ditional patterns from the literature that we do not pursue, because they are too infrequent in our
data. For example, Karttunen (1976) also identified a natural class of counterexamples to his ba-
sic scope generalizations: certain sequences of intensional predicates support exceptional anaphoric
links, a phenomenon that was later studied systematically under the heading of modal subordination
(Roberts, 1990, 1996):

(10) Frank wants to marry a rich linguist. #She is kind.

(11) Frank wants to marry a rich linguist. She should be kind.

In addition, mentions inside parenthetical clauses are less likely to introduce long-term discourse
referents, due to the likelihood that the parenthetical clause itself conveys only secondary content as
compared with the main clause that hosts it (Potts, 2005). Thus, while anaphoric links into and out
of parentheticals are possible (AnderBois, Brasoveanu, & Henderson, 2010; Potts, 2012), they seem
to arise relatively rarely, a valuable piece of practical advice for appositive-rich texts like scientific
papers but unfortunately not one we could put into action here.

Karttunen’s observations helped set the agenda for dynamic approaches to semantics for the next
few decades (Kamp, 1981; Heim, 1982; Groenendijk & Stokhof, 1991). That literature refined and
extended his observations in numerous ways. Taken together, the findings suggest that intensional
operators and negation interact in complex ways with discourse anaphora. By default, we expect
phrases introduced in the scope of such operators to lead short lifespans, but it is possible for them
to take wide-scope with respect to those operators, which broadens the range of anaphoric links they
can establish. Such readings are favored or disfavored by the pragmatics of the situation as well as
the lexical and syntactic nature of the phrases involved. In what follows, we seek to model these
interactions and use them to inform a lifespan model.
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3. Previous Engineering Efforts and Quantitative Evaluations

The above insights have inspired NLP researchers to try to predict the roles that different mentions
will play in coreference chains. Previous work in this area can be subdivided into detecting four
different targets: non-referential mentions, non-anaphoric mentions, discourse-new mentions, and
non-antecedent mentions. The terminology has not always been used in a consistent way in lin-
guistics or NLP, but we believe that the results can ultimately be brought together. Here, we aim to
clarify the terminology and find common insights behind the various features that have been used.
We are the first to single out the singleton/coreferent detection task as such, but our work finds
important antecedents in the existing literature.

3.1 Non-referential Mentions

Some noun phrases do not refer to a discourse referent but rather just fill a syntactic position. In
English, the canonical example of a non-referential NP is the expletive pronoun it, as in It is obvious
that we will succeed. Some lexical NPs do not introduce a discourse referent either, such as a
linguist in Pat is a linguist: while the mention Pat does introduce a discourse referent, a linguist
simply predicates something of her. Detecting such non-referential uses plays a role in coreference
resolution: since these NPs do not pick out discourse referents (new or existing), they cannot enter
into any anaphoric relations of the kind under consideration here.

Early work in non-referentiality detection focuses on the pronoun it, aiming to distinguish ref-
erential uses from non-referential ones. Paice and Husk (1987) develop a rule-based system, Evans
(2001) uses a supervised approach, and Müller (2006) focuses on the use of it in spoken dialog.
These studies mainly employ lexico-syntactic features of the immediate surrounding context of the
pronoun. Similarly, Bergsma, Lin, and Goebel (2008) explore a system that uses Web-count fea-
tures derived from the Google n-grams data (Brants & Franz, 2006) to capture the most frequent
subjects that can replace the pronoun it: for referential cases (e.g., it is able to), other words than it
will be frequent in the n-grams, such as he is able to or China is able to, whereas for non-referential
cases, the pronoun it will likely be the most frequent subject (e.g., it is important to).

More recently, Bergsma and Yarowsky (2011) develop the NADA system, which improves on
Bergsma et al. (2008) by incorporating lexical features. The lexical features indicate the presence
or absence of some strings at specific positions around the pronoun: three-grams to five-grams
spanning the pronoun; two tokens before the pronoun to five tokens after the pronoun with their
positions; any token within twenty tokens to the right of the pronoun; and any token within ten
tokens to the left of the pronoun that is a named entity or belongs to the following list: that, this,
and, said, says, it, It, its, itself. Using both types of features, lexical and Web-count, they achieve
85% accuracy on different datasets.

Byron and Gegg-Harrison (2004) apply some of the linguistic insights highlighted by Karttunen
(Section 2) to the special case of pronoun resolution, seeking to discard non-referential indefinite
NPs from the set of potential antecedents for pronouns. They use a hard filter for non-referential
mentions, looking at the presence of indefinites, negation, apposition (hand-labeled), modals, ad-
jectival phrases or predication adjuncts (tagged ‘-CLR’ in the Penn Treebank), predicates of copular
verbs (tagged ‘-PRD’), and noun phrases that express a value. They found that removing non-
referential mentions gave a small boost in performance for pronoun resolution.
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3.2 Non-anaphoric Mentions

Non-anaphoric NPs are those whose interpretation does not depend on a previous mention in the
text. For example, the phrase the new Scorsese movie that stars De Niro in (12) (while manifesting
many kinds of context dependence) does not depend on any other overt phrases in order to capture all
of its descriptive content. In contrast, the movie in (13) crucially links back to the previous sentence
for its descriptive content; it superficially involves just the predicate ‘movie’, but it is construed as
having the additional property ‘seen by the speaker the previous night’.

(12) Last night, I watched the new Scorsese movie that stars De Niro.

(13) Last night, I watched a movie and read a paper. The movie was directed by Scorsese.

There is no direct correspondence between anaphora and coreferentiality. Coreferent mentions
can be non-anaphoric (as in a text containing multiple tokens of the phrase The White House), and
anaphoric mentions can be coreferent or non-coreferent (van Deemter & Kibble, 2000). Cases of
bridging anaphora (Clark, 1975) like (14) involve non-coreferent anaphora. Here, the ceiling is
interpreted as the ceiling of the room mentioned in the previous sentence, and thus it is anaphoric to
the room without being coreferent with it or any other phrase in the discourse.

(14) I looked into the room. The ceiling was very high.

We return to such cases in Section 6, where we use our lifespan model to characterize the sense in
which bridging anchors like the room lead longer lifespans than a count of their strictly coreferent
mentions would suggest.

Poesio, Uryupina, Vieira, Alexandrov-Kabadjov, and Goulart (2004) and Poesio, Alexandrov-
Kabadjov, Vieira, Goulart, and Uryupina (2005) summarize previous approaches to non-anaphoricity
detection, which they refer to as discourse-new detectors. Vieira and Poesio (2000) focus on def-
inite NPs and use syntactic heuristics based on pre- and post-modification to distinguish between
anaphoric and non-anaphoric NPs. Modification is a good indicator of anaphoricity; heavily modi-
fied phrases like the new Scorsese movie that stars De Niro tend to be non-anaphoric, whereas short
phrases with general descriptive content like the movie tend to be anaphoric. Bean and Riloff (1999)
also focus on definite NPs: in addition to syntactic heuristics based on pre- and post-modification,
they use techniques mining lists of likely non-anaphoric NPs (such as the presence of NPs in the first
sentence of a document). Compared to Vieira and Poesio (2000), they obtain substantially higher
recall (with recall and precision figures around 80%).

In their non-anaphoricity detector, Poesio et al. (2005) use a head feature (distance between
NPs with identical heads), syntactic features (e.g., occurring inside an appositive or copular clause,
being post-modified), capitalization of the mention, presence of the mention in the first sentence of
a Web page, position of the mention in the text, and the probability of the mention being definite as
computed from the Web using the technique of Uryupina (2003). They find that the most important
features are the head feature and the definiteness probabilities.

3.3 Discourse-New Mentions

Discourse-new mentions are those that introduce a new entity into the discourse (Prince, 1981b;
Fraurud, 1990). The entity might be singleton or involve a chain of coreferring mentions in which
the first phrase is the discourse-new one and the rest are considered discourse-old. Cast as an
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information status task, the goal of discourse-new mention detection is to find discourse referents
which were not previously available to the hearer/reader; e.g., see the work of Nissim (2006).

Ng and Cardie (2002) develop a discourse-new classifier that targets every kind of NP using a
variety of feature types: lexical (string and head matching, conjunction), morpho-syntactic (defi-
niteness, quantification, number), grammatical (appositional or copular context, modifier structure,
proper-noun embedding), and shallow semantic (e.g., WordNet features). They incorporate the
classifier into their coreference resolution system, pre-filtering NPs that are tagged as discourse-
new. However, this pre-filtering ultimately hurts coreference resolution system performance: even
though precision increases, recall drops considerably. In Section 8.2.3, we report similar results
for our model instantiated with discourse-new pre-filtering, but we find that the recall drop can be
avoided if filtering is applied only when the mention under analysis is tagged as discourse-new and
the antecedent candidate is tagged as singleton.

Ng and Cardie’s (2002) work is cast as non-anaphoricity detection, but their model is perhaps
better described as trying to distinguish coreferent mentions from those that are singleton or initiate
coreference chains. More specifically, they write, “a positive instance is created for each NP that is
involved in a coreference chain but is not the head of the chain” (Ng & Cardie, 2002, p. 3), which
picks out non-initial members of coreference chains. Conversely, “a negative instance is created for
each of the remaining NPs” (Ng & Cardie, 2002, p. 3), i.e., those without any antecedents.

Uryupina (2009) proposes a discourse-new mention detector for any kind of NP. The classifier
relies on features falling into three categories she defines: ‘lexical’ (number of words in the men-
tion), ‘syntactic’ (POS, number, person, determiner, pre- and post-modification), ‘semantic’ (gen-
der, semantic class), and ‘salience’ (grammatical role, position in the sentence and in the paragraph).
In addition, she includes some of Karttunen’s features as implemented by Byron and Gegg-Harrison
(2004). Her classifier also checks for mentions with identical heads, and distance between these.
Only the syntactic and head features deliver improvements to a majority baseline (which marks
each NP as discourse-new), performing almost as well as all the features together. Uryupina notes,
however, that most of the features, and especially those based in Karttunen’s ideas, have not been
designed for discourse-new mention detection.

Both Ng and Cardie (2002) and Uryupina (2009) integrated their discourse-new detector into a
coreference resolution system in a pipeline manner. For a joint approach to discourse-new detection
and coreference resolution, see the work of Denis and Baldridge (2007).

3.4 Non-antecedent Mentions

As Uryupina (2009) observes, for coreference resolution, what matters is the fact that some NPs are
unavailable as antecedents. She therefore builds a classifier that marks NPs as likely antecedents
or not. Her system is based on the same features as her discourse-new detector described above
(Section 3.3). For non-antecedenthood detection, only the syntactic and semantic features lead
to a significant precision improvement over a majority baseline (which marks each NP as non-
antecedent), with the syntactic features alone performing as well as all the features together.

3.5 Our Approach: Singletons

Our model cross-cuts these four categories. Unlike previous models of non-referentality, ours is
not restricted to pronouns or to indefinite NPs, but tries to identify any kind of non-referential NP
as well as any referential NP whose referent is mentioned only once (i.e., singleton). Thus, all
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MENTIONS

Dataset Docs Tokens Coreferent Singletons

Training 2,802 1.3M 152,974 181,274
Development 343 160K 18,855 23,140
Test 348 170K 19,407 23,657

Table 1: CoNLL-2012 Shared Task data statistics. We added singletons (noun phrases not anno-
tated as coreferent), which account for 55% of the referents in the development set.

non-referential NPs fall into our singleton class. On the other hand, there is no strict correspon-
dence between our singleton/coreferent distinction and the non-anaphoric/anaphoric distinction,
since anaphoricity is based on whether the mention relies on a previous one for its interpretation,
whereas the singleton/coreferent divide is based on how long the lifespan of an entity is. Similarly,
discourse-new mentions can either be coreferent or singleton in our classification, depending on
whether the entity is mentioned again or not.

In terms of feature representations, we have tried to stay as close as possible to Karttunen’s
original insights: we extract the features from full syntactic parses, seeking to remain faithful to the
underlying semantic relationships involved, and we include feature interaction terms to capture the
complex set of dependencies reviewed above in Section 2. This approach allows us to both evaluate
those linguistic ideas quantitatively and to assess their practical contributions to full coreference
systems.

4. Data

The data used throughout this paper come from the CoNLL-2012 Shared Task data (Pradhan, Mos-
chitti, Xue, Uryupina, & Zhang, 2012), which included the 1.6M English words from OntoNotes
v5.0 (Pradhan & Xue, 2009) with several common layers of annotation (coreference, parse trees,
named-entity tags, etc.). The OntoNotes corpus contains documents from seven different domains:
broadcast conversation (20%), broadcast news (13%), magazine (7%), newswire (21%), telephone
conversation (13%), weblogs and newsgroups (15%), and pivot text (11%). Most of these genres
are news-like, with the exception of the pivot texts (which come from the New Testament) and the
telephone conversations. We used the training, development, and test splits as defined in the shared
task (Table 1). Since the coreference annotations of OntoNotes do not contain any singleton men-
tions, we automatically marked as singleton all the noun phrases not annotated as coreferent. We
excluded verbal mentions.

Because we mark as singleton all the noun phrases not annotated as coreferent, our definition of
singletons includes non-referential noun phrases such as it in It is raining, and president in He served
as president for two terms (Section 3.1). This makes practical sense: the starting point of most
coreference resolution systems is to take all noun phrases as possible candidates for coreference
and subsequently find the clusters that are coreferent with one another. The more phrases we can
accurately identify as singleton, the more phrases we can exclude from this clustering step, which
should translate directly into performance gains.
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Figure 1: Distribution of referent lifespans in the 2012 OntoNotes development set.

5. Predicting Lifespans with Linguistic Features

We now describe our model for predicting the lifespan of discourse referents using the linguistic
factors proposed in Section 2. The model makes a binary distinction between discourse referents
that are not part of a coreference chain (singleton) and those that are part of one (coreferent). The
distribution of lifespans in our data is shown in Figure 1.

This plot gives the number of entities associated with a single mention, the number associated
with two mentions, and so forth. The fact that singletons so dominate the data suggests that the bi-
nary singleton/coreferent division is a natural one. The propensity toward singletons also highlights
the relevance of detecting singletons for a coreference system. Following Bergsma and Yarowsky
(2011), we use a logistic regression model, which has been shown to perform well on a range of
NLP tasks. We fit the logistic regression model in R (R Development Core Team, 2013) on the train-
ing data, coding singletons as ‘0’ and coreferent mentions as ‘1’. Thus, throughout the following
tables of coefficient estimates, positive values favor coreferent mentions and negative values favor
singletons. We turn now to describing and motivating the features of this model.

5.1 Morphosyntax of the Mention

Table 2 summarizes the features from our model that concern the internal morphology and syntactic
structure of the mention, giving their coefficient estimates. In all the tables, if not indicated oth-
erwise, the coefficient estimates are significant at p < 0.001. We use ∗ to indicate significance at
p < 0.05, and † to indicate estimates with p ≥ 0.05. The morphosyntactic features include type
(‘pronoun’, ‘proper noun’, ‘common noun’), animacy, named-entity tag, person, number, quantifi-
cation (‘definite’, ‘indefinite’, ‘quantified’), and number of modifiers of the mention. Many are
common in coreference systems (Recasens & Hovy, 2009), but our model highlights their influence
on lifespans. Where available, we used gold annotations to derive our features, since our primary
goal is to shed light on the relevance of the features claimed to influence lifespans.
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The morphosyntactic features were operationalized using static lists and lexicons as well as the
Stanford dependencies as output by the Stanford parser (version 2.0.3; de Marneffe, MacCartney, &
Manning, 2006) on the gold constituent trees. The features are extracted in the following way:

Type The type feature captures whether the mention is a pronoun, proper noun, or common noun.
The value is determined by the gold POS tag of the mention and its named-entity tag.

Animacy We set animacy values (‘animate’, ‘inanimate’, ‘unknown’) using a static list for pro-
nouns, named-entity tags (e.g., PERSON is animate whereas LOCATION is not), and a dictionary
bootstrapped from the Web (Ji & Lin, 2009).

Person Person values (‘1’, ‘2’, ‘3’) are assigned only to pronouns (identified by POS tag), using
a static list. Mentions that are not pronouns get a value of ‘0’.

Number The number value (‘singular’, ‘plural’, ‘unknown’) is based on a static list for pronouns,
POS tags, Bergsma and Lin’s (2006) static dictionary, and named-entity tags. (Mentions marked
as a named entity are considered singular with the exception of organizations, which can be both
singular and plural and get the value ‘unknown’.)

Quantification As we discussed in Section 2, indefinites and definites can be given a referential
semantics that pairs naturally with discourse anaphora, whereas the anaphoric possibilities of truly
quantified terms are restricted. To operationalize quantification and decide whether a mention is
definite, indefinite, or quantified, we use the dependencies to find possible determiners, possessors,
and numerical quantifiers of a mention. A mention is ‘definite’ if it is a named entity, if it has a
possessor (e.g., car in John’s car is definite), or if its determiner is definite (the), demonstrative,
or possessive. A mention is ‘quantified’ if it has a numerical quantifier (e.g., two cars) or if its
determiner is all, both, neither or either. All other mentions are ‘indefinite’.

Number of modifiers We added a feature counting how many modifiers the mention has, seek-
ing to capture a correlation with specificity and referentiality. As modifiers, we counted adjectival,
participial, infinitival, and prepositional modifiers as well as relative clause modifiers, noun com-
pounds, and possessives. (Thus, there are four modifiers in the phrase a modern multifunctional
business center costing 60 million yuan.)

Named entities Our model also includes named-entity features for all of the 18 OntoNotes entity-
types, with ‘NER = O’ true of non-named-entities. We used the gold entity-type annotation.

Table 2 summarizes the coefficient estimates we obtain for these features. In broad terms, the
picture is as one would expect from the taxonomy of given and new defined by Prince (1981b) and
assumed throughout dynamic semantics (Kamp, 1981; Heim, 1982): pronouns depend on anaphoric
connections to previous mentions for disambiguation and thus are likely to be coreferent. This is
corroborated by the positive coefficient estimate for ‘Type = pronoun’.

Few quantified phrases participate in discourse anaphora (Partee, 1987; Wang et al., 2006),
accounting for the association between quantifiers and singletons (as measured by the negative
coefficient estimate for ‘Quantifier = quantified’).

The negative coefficient for indefinites is initially surprising. As seen in Section 2, theories
stretching back to Karttunen (1976) say that indefinites excel at establishing new discourse entities
and so should be frequent participants in coreference chains, but here the association with such
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Feature Coefficient Feature Coefficient

Type = pronoun 1.17 NER = GPE 3.46
Type = proper noun 1.89 NER = LANGUAGE 2.56
Animacy = inanimate −1.36 NER = LAW 2.85
Animacy = unknown −0.39 NER = LOCATION 2.83
Person = 1 1.04 NER = MONEY 0.05 †
Person = 2 0.13 NER = NORP 0.82
Person = 3 1.62 NER = O 4.17
Number = singular 0.61 NER = ORDINAL −0.90
Number = unknown 0.17 NER = ORGANIZATION 3.39
Quantifier = indefinite −1.43 NER = PERCENT 0.88
Quantifier = quantified −1.25 NER = PERSON 2.28
Number of modifiers −0.39 NER = PRODUCT 2.64
NER = DATE 1.83 NER = QUANTITY −0.02 †
NER = EVENT 2.89 NER = TIME 1.53
NER = FACILITY 2.94 NER = WORK OF ART 2.42

Table 2: Internal morphosyntactic features of the lifespan model. † indicates a non-significant co-
efficient (p ≥ 0.05); no sign indicates a significant coefficient (p < 0.001).

chains is negative. We return to this in Section 5.3, where we argue that interactions with semantic
operators explain this fact.

The behavior of the named-entity (NER) features is closely aligned with previous models and
our theoretical discussion above. As a rule, named entities behave like ‘Type = proper noun’ in as-
sociating with coreferent mentions. The exceptions are MONEY, ORDINAL, NORP (for nationalities
and religions), PERCENT, and QUANTITY, which seem intuitively unlikely to participate in corefer-
ence chains. The person, number, and animacy features together suggest that singular animates are
excellent coreferent noun phrases.

The one real surprise for us here concerns the feature ‘Number of modifiers’. Inspired by obser-
vations of Fodor and Sag (1982) and Schwarzschild (2002), we expected this feature to positively
correlate with being coreferent. Our reasoning was that increased modification would likely result
in increased specificity, thereby making the associated discourse referent more identifiable and more
distinctive. The opposite seems to hold in our data. However, we hesitate to conclude from this that
the original hypothesis is mistaken. Rather, we suspect that our model is just insufficiently sensitive
to interactions between modifier counts and the lexical semantics of the modifiers themselves.

5.2 Grammatical Role of the Mention

Synthesizing much work in Centering Theory and information structuring, we hypothesized that
coreferent mentions are likely to appear as core verbal arguments and favor sentence-initial (topic-
tracking) positions (Ward & Birner, 2004). To capture these insights, we used the grammatical
relation of the mention given by the Stanford dependencies on gold constituents, and the sentence
position of the mention.
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Feature Coefficient Feature Coefficient

Sentence Position = end −0.22 Relation = noun argument 0.56
Sentence Position = first 0.03 † Relation = other −0.67
Sentence Position = last −0.31 Relation = root −0.61
Sentence Position = middle −0.11 Relation = subject 0.65
In coordination −0.48 Relation = verb argument 0.32

Table 3: Grammatical role features of the lifespan model. † indicates a non-significant coefficient
(p ≥ 0.05); no sign indicates a significant coefficient (p < 0.001).

Sentence position Sentence position was determined based on the raw string: ‘first’ indicates that
the mention is the first word of the sentence, ‘end’ the last word, and ‘begin’, ‘middle’, and ‘last’
indicate whether the mention is situated in the first, second, or last third of the sentence, respectively.

Relation To distinguish among grammatical relations, we check whether the mention is a ‘sub-
ject’, ‘adjunct’ (which includes prepositional objects, adverbial modifiers, and temporal modifiers),
‘verb argument’ (which includes direct and indirect objects, clausal complements, adjectival com-
plements and attributes), or ‘noun argument’ (which includes relative clauses, appositions, posses-
sives, noun compounds, and adjectival modifiers).

In coordination We also indicated whether or not the mention is a conjunct to see whether being
inside a coordinate phrase affects coreference in ways that go beyond the grammatical role of the
containing phrase.

The coefficient estimates in Table 3 support our general hypotheses: arguments make good discourse
referents, subjects best of all, whereas sentence-final positions disfavor coreference. In addition, we
note that the model identifies a negative correlation between coordination and coreference.

5.3 Semantic Environment of the Mention

Table 4 highlights the complex interactions between discourse anaphora and semantic operators in-
troduced in Section 2. These interactions have been a focus of logical semantics since Karttunen
(1976), whose guiding observation is semantic: an indefinite interpreted inside the scope of a nega-
tion, modal, or attitude predicate is generally unavailable for anaphoric reference outside of the
scope of that operator. Heim (1992) also relates the anaphoric properties of NPs to scope-taking
and the entailments of attitude predications.

We do not have direct access to semantic scope, but we expect syntactic scope to correlate
strongly with semantic scope. We therefore used dependency representations to define features
capturing syntactic scope for negation, modal auxiliaries, and a broad range of attitude predicates
(181 verbs and 374 nouns from Saurı́, 2008). Technically, for a given mention, we produce a
‘negation’, ‘modal’ or ‘under attitude verb’ feature according to the presence of pre-defined negation
or modality markers (such as not, can, may) or attitude predicates (e.g., accuse, allege, doubt, say)
in the dependency path. For example, the NP relief will be given a ‘negation’ feature in while the
financial storm shows no sign of relief today, since it is under the scope of no sign. Similarly, the
mention scientific and technological companies is in the scope of the modal auxiliary would and the
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Feature Coefficient

Presence of negation −0.18
Presence of modality −0.22
Under an attitude verb 0.10
AttitudeVerb * (Type = pronoun) 0.41
AttitudeVerb * (Type = proper noun) 0.10
AttitudeVerb * (Quantifier = indefinite) −0.19
AttitudeVerb * (Quantifier = quantified) 0.10 †
Modal * (Type = pronoun) 0.13 ∗
Modal * (Type = proper noun) 0.35
Modal * (Quantifier = indefinite) −0.00 †
Modal * (Quantifier = quantified) 0.17 †
Negation * (Type = pronoun) 1.07
Negation * (Type = proper noun) 0.30
Negation * (Quantifier = indefinite) −0.36
Negation * (Quantifier = quantified) −0.39 †
Negation * (Number of modifiers) 0.11

Table 4: Semantic environment features and interactions in the lifespan model. † indicates a non-
significant coefficient (p ≥ 0.05); no sign indicates a significant coefficient (p < 0.001); ∗
indicates significance at p < 0.05.

attitude verb said in firms from Taiwan said that they would establish scientific and technological
companies in the zone, and so it receives ‘modal’ and ‘under attitude verb’ features.

Table 4 summarizes our model’s semantic environment features and their interactions. The in-
teraction terms added to the model follow the previous linguistic literature: we expect that the scope
of the semantic operators (negation, modality and attitude predicate) will interact with the inter-
nal syntax of the mention, specifically with its type and its definiteness/quantification. The results
are beautifully aligned with our guiding linguistic hypotheses. First, negation and modality both
negatively correlate with coreference, as expected given the constraints they impose on lifespans.
Interacting these semantic features with those for the internal syntax of mentions also yields the
expected results: since proper names and pronouns are not scope-taking, they are largely unaffected
by the environment features, whereas indefinites, which are affected by scope, emerge as even more
restricted, just as Karttunen and others would predict.

The coefficient values for attitude predicates and their interactions seem anomalous in light of
the semantics of these items. In Section 2, we noted that non-factive attitude predicates like say
cannot offer semantic guarantees that mentions in their scope will survive outside that scope. This
might lead one to think that they will be biased against long-lived mentions, when in fact we see the
opposite. However, we also observed that pragmatic factors often facilitate exceptional anaphoric
dependencies in attitude predications. Karttunen (1973) referred to this as the ‘leakiness’ of these
predicates — information introduced in their scope seems often to percolate up to the text level in
a wide range of contexts (Rooryck, 2001; Simons, 2007; Harris & Potts, 2009). Since the lifespan
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# FEATURES SINGLETON COREFERENT ACCURACY

Recall Precision F1 Recall Precision F1

LINGUISTIC 123 80.2 77.5 78.8 71.4 74.6 73.0 76.3
SURFACE 73,393 80.2 79.9 80.0 75.3 75.6 75.4 78.0
COMBINED 73,516 81.1 80.8 80.9 76.4 76.6 76.5 79.0
CONFIDENT 73,516 56.0 89.8 69.0 48.2 90.7 62.9 52.5

Table 5: Recall, precision, F1 and accuracy for the three different sets of features on the OntoNotes
development set. CONFIDENT is the COMBINED model in which singleton is predicted if
Pr < 0.2 and coreferent if Pr > 0.8.

model is trained on real usage data, it is not surprising that it reflects these pragmatic factors rather
than just the lexical semantics (de Marneffe et al., 2012).

As noted earlier, features in Table 4 are not standardly used in coreference systems. Uryupina
(2009) notes that the Karttunen features she implemented (see Section 3) do not significantly im-
prove the performance of her discourse-new mention and non-antecedent detectors. Contrary to
Uryupina, adding the features in Table 4 to a model which only incorporates the features described
in Table 2 and Table 3 results in a significantly better model (likelihood ratio test, p < 0.001). The
accuracy on the CoNLL-2012 development set also improves when adding the Karttunen features
(McNemar’s test, p < 0.001).

5.4 Results

As highlighted above, the lifespan model we built from the OntoNotes data confirms the claims by
Karttunen and others concerning how semantic operators interact with specific kinds of mention.
This is novel quantitative evidence for such theories. The model also successfully learns to tease
singleton and coreferent mentions apart, suggesting that it has practical value for NLP applications.
The first row of Table 5 summarizes the linguistic model performance on the development set of
the OntoNotes data described in Section 4, giving precision, recall, and F1 measures for singleton
and coreferent mentions. The accuracy of the model is 76.3%. A majority baseline, predicting all
mentions as singletons, leads to an accuracy of 55.1%.

6. Extension to Bridging

The lifespan model suggests a new perspective on bridging anaphora, which we discussed briefly
in Section 3.2 using example (14), repeated here:

(15) I looked into the room. The ceiling was very high.

The anchor phrase the room is superficially singleton in this discourse, but its intuitive lifespan
is longer: it makes salient a discourse referent for the ceiling of the room, which the ceiling in
the second sentence then refers to. The bridging relationship keeps the room alive as a discourse
referent, extending its lifespan, though not in a way that can be read directly off of the text. Together
with the basic tenets of the lifespan model, these observations suggest a testable hypothesis about
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bridging: even when bridging anchors are superficially singleton (henceforth, singleton anchors),1

our lifespan model should tend to classify them as coreferent, since the model is not designed to
detect later mentions per se, but rather to capture more abstract information about the roles that
entities play in discourse.

OntoNotes does not contain annotations for bridging anaphora, so evaluating this hypothesis is
not straightforward. However, Hou, Markert, and Strube (2013) annotated 50 of the WSJ texts in
OntoNotes for bridging information, yielding annotations for 663 bridging anchors. Of these, 145
are singleton anchors in the sense that we identify them (Section 4) and thus can be used to assess
our model’s ability to detect the abstract sense in which bridging anchors are long-lived.

Ideally, we would simply run our trained lifespan model on these examples. This proves in-
effective, though, because (outside of Hou et al.’s data) the OntoNotes annotations treat singleton
anchors as singleton, meaning that our trained lifespan model is optimized on data that obscure the
distinction of interest. Nonetheless, we expect the feature representations that form the backbone of
the lifespan model to be able to distinguish true singletons from singleton anchors if given the right
kind of training data. The small number of relevant bridging annotations poses some obstacles to
pursuing this idea, but we sought to navigate around them as follows: using the annotated corpus
of Hou et al., we extract all 145 of the singleton anchors and then sample an additional 145 true
singletons from those documents (from a total of 5,804 such cases). This yields a data set that we
can be confident makes the relevant distinction. We then randomly divide this data set into 80%
training data and 20% testing data, and conduct a standard classifier evaluation. We use a logistic
regression classifier, employing recursive feature elimination with cross-validation (Guyon, Weston,
& Barnhill, 2002), as implemented by Pedregosa et al. (2011), to try to find a compact model that
is effective for the small data set. The model used an `2 regularizer with a penalty of 0.5, though
`1 regularization and changes to the penalty delivered essentially the same results, both with and
without the recursive feature elimination step.

Because these train and test sets are small, performance varies greatly depending on the nature
of the true singleton sample, so we repeat this experiment 1,000 times and average the results. With
this procedure, our lifespan feature representations achieve a mean F1 of 65% (standard error 0.002;
mean precision 62%, mean recall 0.69%), indicating our lifespan-based features are sensitive to the
distinction between singleton anchors and true singletons. This finding further bolsters the design
of the lifespan feature representations and also shows that “lifespan” is deeper and more abstract
than merely counting referents. Given the right kind of annotations, we believe our model could be
extended to provide an even fuller treatment of bridging, which is governed partly by its own mix
of linguistic and contextual factors (Hawkins, 1978; Prince, 1981b; Schwarz, 2009).

7. Predicting Lifespans with Surface Features

Durrett and Klein (2013) and Hall et al. (2014) showed that, on the tasks of coreference resolution
and parsing, a large quantity of surface-level information can not only implicitly model some lin-
guistic features, but also capture other patterns in the data that are not easily identified manually.
Given the large amount of annotated data available in the OntoNotes corpus, we might expect a
sufficient amount of surface-level data to capture some of the linguistic insights hand-engineered in

1. Some bridging anchors also have literal coreferent mentions, as in I looked into the room. It was empty, and the
ceiling was very high., where the room is coreferent with it in addition to providing discourse support for the ceiling.
We set aside such cases in our bridging experiments.
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the lifespan model defined above. We therefore tested how a model using POS tags and n-grams
fares on the lifespan task.

We used the following features in this surface model: the lemmas of all the words in the mention,
the POS tags of all the words in the mention, the POS tag of the head of the mention, and the lemma
and POS tags of the two words preceding and following the mention (with dummy BEGIN and END

words to mark the beginning and end of sentences). As suggested by Durrett and Klein (2013), such
features might capture information encoded in the NER tag, number, person, and sentence position.

The surface model’s performance is reported in the second row of Table 5. For all models in
Table 5, the `2 regularization penalty was chosen via five-fold cross-validation on the training data.
For the linguistic model, using the tuned `2 regularization penalty rather than the default one makes
almost no difference, but it substantially improves performance for the models with more features.
We additionally experimented with different algorithms for feature selection, but found that the
results were invariably best, for all our models, when we retained their full sets of features. The last
row of the table gives the performance of a model in which we combine both the linguistic and the
surface features to evaluate whether the surface features alone cover all the information captured by
the linguistic features, or whether the linguistic features have additional predictive value.

The surface model performs better than the linguistic-only model, especially for the coreferent
category. However, the small number of linguistically-motivated features yields results in the same
range as those obtained with the large number of features in the surface model, which might be
of importance for tasks where only a small amount of annotated data is available, such as in the
bridging experiment in Section 6. (The obvious trade-off here is that the surface features are easier
to specify and implement.) As shown in the COMBINED row of Table 5, combined with the surface
feature set, the linguistically-motivated features give a statistically significant boost in performance.
This suggests that the surface features miss certain long-distance interactions between discourse
anaphora and semantic operators — interactions that the linguistic features explicitly encode.

Our best model for predicting lifespan is the combined one. Instead of using the standard 0.5
threshold as decision boundary, we can also make use of the full distribution returned by the logis-
tic regression model and rely only on confident decisions. The resulting CONFIDENT model is a
COMBINED one that predicts singleton if Pr < 0.2 and coreferent if Pr > 0.8. The threshold values
reported here are the best trade-off we found between a precision score close to 0.90 without losing
too much in recall. As expected, by using such a highly confident model, we increase precision,
though at a cost to recall. Which kind of model is preferred will depend on the application; as noted
by Ng (2004) and Uryupina (2009), when incorporating the lifespan model in downstream NLP
applications, we often want highly accurate predictions, which favors a model like CONFIDENT.

8. Application to Coreference Resolution

To further assess the value of the lifespan model for NLP applications, we now incorporate the best
feature combination into two state-of-the art coreference resolution systems: the Stanford system
(Lee et al., 2011) and the Berkeley system (Durrett & Klein, 2013). In both cases, the original
model serves as our baseline, and we focus on the extent to which the lifespan model contributes
to improvements to that baseline. This allows us to quantify the power and effectiveness of the
lifespan model in two very different systems — a rule-based one (Stanford) and a learning-based
one (Berkeley).
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8.1 Evaluation Measures

To evaluate the incorporation of the lifespan model into the coreference systems, we use the English
development and test sets from the CoNLL-2011 and CoNLL-2012 Shared Tasks. Although the
CoNLL shared tasks evaluated systems on only multi-mention (i.e., non-singleton) entities, we can
still expect the lifespan model to help: by stopping singletons from being linked to multi-mention
entities, we expect to see an increase in precision. Our evaluation uses the measures given by the
CoNLL scorer:

• MUC (Vilain, Burger, Aberdeen, Connolly, & Hirschman, 1995): Link-based metric that
measures how many links the gold and system partitions have in common.

• B3 (Bagga & Baldwin, 1998): Mention-based metric that measures the proportion of mention
overlap between gold and predicted entities.

• CEAF-φ3 (Luo, 2005): Mention-based metric that, unlike B3, enforces a one-to-one align-
ment between gold and predicted entities.

• CEAF-φ4 (Luo, 2005): The entity-based version of the above metric.

• CoNLL (Denis & Baldridge, 2009; Pradhan, Ramshaw, Marcus, Palmer, Weischedel, & Xue,
2011): Average of MUC, B3 and CEAF-φ4.

• BLANC (Recasens & Hovy, 2011): Link-based metric that takes the mean of coreference
and non-coreference links, thereby rewarding (but not over-rewarding) singletons.

We use the new CoNLL coreference scorer (Pradhan, Luo, Recasens, Hovy, Ng, & Strube, 2014,
version 8.0), which fixes a bug in previous versions concerning the way gold and predicted mentions
are aligned when evaluating on automatically predicted mentions. The new scorer does not modify
either the gold or system output, but implements the measures as originally proposed, and extends
BLANC to successfully handle predicted mentions, following Luo, Pradhan, Recasens, and Hovy
(2014).

8.2 Incorporating the Lifespan Model into the Stanford Coreference System

The Stanford system was the highest-scoring system in the CoNLL-2011 Shared Task (Pradhan
et al., 2011), and was also part of the highest-scoring system (Fernandes, dos Santos, & Milidiú,
2012) in the CoNLL-2012 Shared Task (Pradhan et al., 2012). It is a rule-based system that includes
a total of ten rules (or “sieves”) for entity coreference, such as exact string match and pronominal
resolution. The sieves are applied from highest to lowest precision, each rule adding coreference
links. In each coreference resolution sieve, the document’s mentions are traversed left to right. To
prune the search space, if a mention has already been linked to another one by a previous sieve,
only the mention that is first in textual order is considered by the subsequent sieves. Furthermore,
mentions that are headed by an indefinite pronoun (e.g., some, other) or start with an indefinite
determiner (a, an) are discarded if there is no antecedent that has the exact same string. Each
mention is compared to the previous mentions in the text until a coreferent antecedent is found
(according to the current sieve) or the beginning of the text is reached. Candidates are sorted using
a left-to-right breadth-first traversal of the parse tree, which favors subjects and syntactic salience
in general.

The lifespan model can improve coreference resolution in two different ways: (i) mentions clas-
sified as singletons should not be considered as either antecedents or coreferent, and (ii) mentions
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classified as coreferent should be linked with other mention(s). By successfully predicting single-
tons (i), we can enhance the system’s precision; by successfully predicting coreferent mentions (ii),
we can improve the system’s recall. Here we focus on (i) and use the lifespan model for detecting
singletons. This decision is motivated by two factors. First, given the large number of singletons
(Figure 1), we are more likely to see a gain in performance from discarding singletons. Second, the
multi-sieve nature of the Stanford coreference system does not make it straightforward to decide
which antecedent a mention should be linked to even if we know that it is coreferent.

To integrate the singleton model into the Stanford coreference system, we depart from previous
work by not letting a sieve consider whether a pair of mentions is coreferent if both mentions are
classified as singletons by our CONFIDENT model and the mentions are not a named entity. In doing
this, we discard 29% of the NPs under consideration. Experiments on the development set yielded
higher performance when not taking into account named entities. Performance was higher with the
CONFIDENT model than with the STANDARD model.

We therefore use the lifespan model to help coreference resolution as a pre-filtering step to
coreference resolution, discarding mentions tagged as singletons by the lifespan model. Previous
work on incorporating a non-referentiality or discourse-new detection module as a pre-processing
step for coreference resolution has shown mixed results, as we discussed in Section 3. The general
arguments for pipeline vs. joint approaches apply here: pipeline approaches prevent recovering from
errors earlier in the pipeline, but joint approaches tend to increase model complexity and associated
optimization challenges, and they do not easily allow separating different modules, which makes
feature design and error analysis more difficult as well. In any case, in the context of the Stanford
system’s sieve-architecture, it is more natural to add the lifespan model as a pre-filtering step.

8.2.1 RESULTS

Table 6 summarizes the performance of the Stanford system on the CoNLL-2011 and CoNLL-2012
development and test sets. To evaluate the incorporation of the lifespan model in a realistic setting,
we use the automatic parses, and the POS and NER tags provided in the CoNLL documents. All the
scores are on automatically predicted mentions. The baseline is the Stanford coreference system,
and ‘w/ Lifespan’ is that system extended with our lifespan model to discard singletons, as explained
above. Stars indicate a statistically significant difference (Wilcoxon signed-rank test, p < 0.05)
according to jackknifing (10 partitions of the development set or the test set, balanced over the
different domains2 of the corpus). As expected, the lifespan model significantly increases precision
(up to +4.0 points) but decreases recall (by −0.7 points). Overall, however, the gain in precision is
higher than the loss in recall, and we obtain a significant improvement of 0.4–1.5 points in the F1
score of all evaluation measures.

8.2.2 ERROR ANALYSIS

Kummerfeld and Klein (2013) provide a useful tool for automatically analyzing and categorizing
errors made by coreference resolution systems. The tool identifies seven intuitive error types: span
error, conflated entities (entity mentions that do not corefer are clustered together), extra entity
(entities that are not in the gold data are added), extra mention (the system incorrectly introduces

2. As mentioned in Section 4, the OntoNotes corpus contains documents from seven different domains and coreference
performance has been shown to vary highly depending on the domain (Pradhan et al., 2012).
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CoNLL MUC B3 CEAF-φ4
Stanford F1 R P F1 R P F1 R P F1

2011 DEV SET
Baseline 51.49 58.00* 55.97 56.97 48.01* 49.81 48.89 54.27* 44.03 48.62
w/ Lifespan 52.23* 57.57 57.72* 57.65* 47.45 51.62* 49.45* 53.46 46.27* 49.60*
Discourse-new 51.52 56.30 58.98* 57.61* 45.51 52.33* 48.68 48.63 47.93* 48.28

2011 TEST SET
Baseline 50.55 60.09* 56.09 58.02 47.57* 47.91 47.74 52.28* 40.90 45.89
w/ Lifespan 51.58* 59.75 58.32* 59.03* 47.06 50.18* 48.57* 51.42 43.50* 47.13*
Discourse-new 51.26* 58.92 59.71* 59.31* 45.72 51.06* 48.25* 47.41 45.1* 46.22

2012 DEV SET
Baseline 55.26 61.36* 65.26 63.25 48.35* 57.05 52.34 53.86* 47.01 50.20
w/ Lifespan 55.77* 60.99 66.70* 63.72* 47.87 58.57* 52.68* 53.10 48.91* 50.92*
Discourse-new 53.63 60.71 63.27 61.96 47.25 54.42 50.58 49.35 47.41* 48.36

2012 TEST SET
Baseline 53.31 62.05* 61.35 61.70 48.00* 52.66 50.22 52.29* 44.36 48.00
w/ Lifespan 54.58* 61.31 65.61* 63.39* 46.91 57.05* 51.49* 51.03 46.87* 48.86*
Discourse-new 53.01 61.22 62.73* 61.97 46.72 53.62* 49.93 48.38 45.92* 47.12

(a)

CEAF-φ3 BLANC
Stanford R P F1 R P F1

2011 DEV SET
Baseline 57.11* 52.50 54.71 45.04* 46.84 45.14
w/ Lifespan 56.55 54.43* 55.47* 44.37 48.65* 45.85*
Discourse-new 54.02 55.67* 54.83 42.59 49.57* 45.60

2011 TEST SET
Baseline 55.57* 49.56 52.39 46.46* 47.51 46.12
w/ Lifespan 55.04 51.80* 53.37* 45.98 49.53* 47.06*
Discourse-new 53.2 53.08* 53.14* 44.87 50.82* 47.33*

2012 DEV SET
Baseline 56.59* 57.22 56.90 48.78* 56.47 51.94
w/ Lifespan 56.11 58.75* 57.40* 48.23 57.94* 52.36*
Discourse-new 55.00 56.18 55.58 48.11 54.12 50.73

2012 TEST SET
Baseline 56.12* 53.46 54.76 49.08* 54.48 50.88
w/ Lifespan 54.98 56.69* 55.82* 47.69 59.15* 52.28*
Discourse-new 54.43 54.78* 54.60 47.95 55.81* 51.14*

(b)

Table 6: Performance of the Stanford system on the CoNLL-2011 and CoNLL-2012 development
and test sets. Scores (v8.0 of the CoNLL scorer) are on automatically predicted mentions,
using the CoNLL automatic annotations. Stars on the ‘w/ Lifespan’ and ‘Discourse-new’
rows indicate a significant difference from the baseline (Wilcoxon signed-rank test, p <
0.05).
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Error System Gold

Conflated entities

scientists1 scientists1
they1 they1

his family2
they1 they2

Extra entity various major Hong Kong media –
no media –

Extra mention
a book –
the book the book
it it

(a) Errors affecting precision.

Error System Gold

Divided entity

scientists1 scientists1
they1 they1
his family2 his family2
they1 they2

Missing entity – a network
– it

Missing mention
two mothers two mothers
their their
– two mothers who lost very loved ones

(b) Errors affecting recall.

Table 7: Illustration of the error types provided by Kummerfeld and Klein’s (2013) system: errors
made by the Stanford coreference system on the CoNLL-2012 development set.

a mention as coreferent in a cluster),3 divided entity (an entity is split into two or more different
clusters),4 missing entity (the system fails to detect an entity), and missing mention (an entity is
missing one of its mentions). Table 7 illustrates the error types we are interested in,5 showing errors
made by the Stanford system, separated into those affecting precision and those affecting recall.

We ran Kummerfeld and Klein’s (2013) system on the Stanford output to quantify the improve-
ment obtained by incorporating the lifespan model into the coreference system for the CoNLL-2012
development set. Figure 2 shows the difference in errors between the original Stanford coreference
system and the system in which the lifespan model is integrated. The lifespan model generally
reduces errors affecting precision, most notably by getting rid of some spurious entities (“Extra
entity”). The top three errors in Table 7 — all precision-related — are fixed by integrating the lifes-
pan model into the Stanford system. On the other hand, the bottom two errors — recall-related —

3. The distinction between the two categories conflated entities and extra mention makes sense in a corpus like
OntoNotes where singletons are not annotated: the former occurs when the system clusters one or more mentions
from a multi-mention entity into an incorrect entity, whereas the latter occurs when the system incorrectly clusters
with others a mention that is truly part of a singleton entity (and so not annotated in the gold).

4. A conflated-entities error and a divided-entity error often co-occur.
5. The “span error” category is not relevant in the comparison here: both systems (with and without lifespan) work on

the same predicted mentions.
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Missing mention

Missing entity

Divided entities

Extra mention

Extra entity

Conflated entities

with lifespan

with lifespan

with lifespan

with lifespan

with lifespan

with lifespan

Stanford alone

Stanford alone

Stanford alone

Stanford alone

Stanford alone

Stanford alone

1158

877

2021

523

728

1607

1154

830

2038

535

897

1635

Figure 2: Number of errors for the Stanford coreference system (with and without the lifespan
model) on the CoNLL-2012 development set.

are introduced by the lifespan model. However, the cumulative gain in error reduction across error
categories results in a significant improvement in overall coreference performance.

8.2.3 USING THE LIFESPAN MODEL AS A DISCOURSE-NEW MENTION CLASSIFIER

As we discussed in Section 3.3, previous work (Ng & Cardie, 2002; Uryupina, 2009) reports a
loss in coreference resolution performance when pre-filtering discourse-new mentions, i.e., single-
ton mentions as well as mentions that start a coreference chain. To mimic such pre-filtering, we
incorporate the lifespan model into the Stanford system in the following way: only mentions that
our model does not classify as singletons are considered by every sieve and hypothesized to corefer
with some other previous mention, while discourse-new mentions are removed from consideration.
When we do so, we also see a performance loss, as shown in the ‘Discourse-new’ rows of Ta-
ble 6. There are no clear significant gains across the measures, compared to the performance of the
standard Stanford system (‘Baseline’ rows). The improvements we do see in Table 6 result from
pre-filtering pairs of mentions both of which our lifespan model classifies as singletons. This stricter
constraint seems to balance out the loss of pre-filtering too many mentions at this early stage.

8.3 Incorporating the Lifespan Model into the Berkeley Coreference System

The Berkeley coreference system (Durrett & Klein, 2013; Durrett, Hall, & Klein, 2013) is currently
the highest scoring coreference system that is publicly available. It uses a mention-synchronous
framework: for each mention, the system either chooses one antecedent or decides that the mention
starts a new cluster (perhaps leading to a singleton cluster). It is a log-linear model in which features
are extracted over mentions to decide whether or not the mentions are anaphoric, and features are
extracted over pairs of mentions to decide whether or not the pairs corefer. The baseline we compare
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against takes the best feature set, the ‘FINAL’ one, as reported by Durrett and Klein (2013), which
combines a large number of lexicalized surface features as well as semantic features.

To incorporate the lifespan model into the Berkeley system, we use the probabilities of the
mentions given by the lifespan model. For each pair of mentions, we add lifespan features by
adding the lifespan probability for each mention. We also add a singleton feature if both mentions
have a lifespan probability below 0.2, and a coreferent feature if both mentions have a lifespan
probability above 0.8. Unlike the Stanford architecture, where exploiting the coreferent predictions
is not straightforward (Section 8.2), the learning-based setup of the Berkeley system allows us to
make use of the lifespan probabilities without focusing only on singleton-class prediction.

Instead of incorporating the lifespan probabilities from the lifespan model, we also tried adding
to the Berkeley system all features from the lifespan model not already present in the Berkeley
system (i.e., all the features in Table 3 and Table 4). However, while it did lead to significant
improvements for the CoNLL 2012 development data, it did not for the CoNLL 2012 test data.
Moreover, overall results were less good than when incorporating the probabilities in the manner
described above.

8.3.1 RESULTS

Table 8 shows the results of the Berkeley system on the CoNLL 2011 and 2012 development and
test sets. As with the Stanford system, all the scores are on automatically predicted mentions. We
use the automatic POS tags, parse trees, and NER annotations provided in the CoNLL data both
for training and testing. We restrict training to the training data only.6 The baseline is the ‘FINAL’
Berkeley coreference system, and ‘w/ Lifespan’ is the same system extended with the lifespan,
singleton and coreferent features, as explained above. Significance is computed in the same way as
for the Stanford system (we created 10 partitions of the development set or the test set, balanced
over the different domains of the corpus).

In the learning-based context of the Berkeley system, the lifespan model increases precision as
well as recall, leading to a final improvement in the CoNLL score of 1.0 to 2.0 points. Since we
use the lifespan model for predicting both singleton and coreferent mentions, we manage to im-
prove both precision and recall. This provides additional empirical support for splitting coreference
resolution into an entity-lifespan task that predicts which mentions refer to the long-lived entities
in a discourse and a coreference task that focuses on establishing coreference links between these
mentions.

8.3.2 ERROR ANALYSIS

Parallel to our analysis of the Stanford coreference system output, we ran Kummerfeld and Klein’s
(2013) system on the Berkeley output. Figure 3 shows the difference in errors between the origi-
nal Berkeley coreference system (‘FINAL’ feature set) and that system enhanced with the lifespan
model. The enhanced system commits fewer errors affecting precision (upper part of Figure 3),

6. We also tried training on the gold POS tags, parse trees, and NER annotations provided in the CoNLL data, but
using the automatic annotations at test time. This does not make any difference for the original Berkeley system.
When incorporating the linguistic features (either the lifespan probabilities or all features from the lifespan model
not already in the Berkeley system), such a setting does lead to significant improvements over the baseline. However,
improvements do not hold consistently across the development and test sets: when compared to results obtained with
training on automatic annotations, training on gold improves the performance of the linguistically informed systems
only for the test set.
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CoNLL MUC B3 CEAF-φ4
Berkeley F1 R P F1 R P F1 R P F1

2011 DEV SET

Baseline 59.72 62.67 70.22 66.23 52.19 62.54 56.90 53.77* 58.43 56.00
w/ Lifespan 61.03* 64.78* 72.24* 68.30* 54.65* 63.28* 58.65* 52.89 59.83* 56.15

2011 TEST SET

Baseline 59.06 64.14 71.68 67.70 50.81 61.31 55.56 51.66* 56.34 53.90
w/ Lifespan 59.65* 64.96* 73.29* 68.87* 51.78* 62.38* 56.59* 49.89 57.62* 53.48

2012 DEV SET

Baseline 61.49 69.06 71.32 70.17 57.10 60.55 58.78 55.20* 55.80 55.50
w/ Lifespan 63.42* 70.76* 74.30* 72.49* 59.35* 62.79* 61.02* 54.74 58.94* 56.76*

2012 TEST SET

Baseline 61.06 69.17 71.96 70.54 55.77 60.50 58.04 53.82* 55.37 54.58
w/ Lifespan 62.15* 70.42* 74.07* 72.20* 56.87* 62.21* 59.42* 52.64 57.20* 54.83

(a)

CEAF-φ3 BLANC
Berkeley R P F1 R P F1

2011 DEV SET

Baseline 58.82 65.37 61.92 50.38 59.93 54.73
w/ Lifespan 59.29* 66.36* 62.63* 52.83* 62.92* 57.37*

2011 TEST SET

Baseline 56.71 63.01 59.70 49.11 59.67 53.88
w/ Lifespan 56.37 63.96* 59.93 50.66* 61.87* 55.68*

2012 DEV SET

Baseline 62.29 64.01 63.14 60.32 60.79 60.53
w/ Lifespan 62.65 66.18* 64.37* 62.19* 63.80* 62.86*

2012 TEST SET

Baseline 60.83 63.12 61.95 57.70 61.79 59.68
w/ Lifespan 61.05* 64.68* 62.81* 58.92* 63.93* 61.32*

(b)

Table 8: Performance of the Berkeley system on the CoNLL 2011 and CoNLL 2012 development
and test sets. Scores (v8.0 of the CoNLL scorer) are on automatically predicted mentions,
using the CoNLL automatic annotations. Stars indicate a significant difference (Wilcoxon
signed-rank test, p < 0.05).

but not significantly for each category. However, the cumulative gains do result in a significant
improvement in overall precision. Globally, the lifespan model fixes more errors than it brings in.
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Missing mention

Missing entity

Divided entities

Extra mention

Extra entity

Conflated entities

with lifespan

with lifespan

with lifespan

with lifespan

with lifespan

with lifespan

Berkeley alone

Berkeley alone

Berkeley alone

Berkeley alone

Berkeley alone

Berkeley alone

941

820

1572

508

533

1412

829

818

1669

594

579

1448

Figure 3: Number of errors for the Berkeley coreference system (with and without the lifespan
model) on the CoNLL 2012 development set.

9. Conclusion

What factors determine the fate of a given discourse referent? Is it nature (its internal morphosyn-
tax) or nurture (the broader syntactic and semantic environments of its mentions)? Our lifespan
model (Section 5) suggests that nature, nurture, and their interactions are all important. The model
validates existing linguistic generalizations about discourse anaphora (Section 2), and provides new
insights into previous engineering efforts in a similar direction (Section 3). We also show that
linguistically-motivated features bring improvement on top of surface features (Section 7), demon-
strating that automatic language processing should not rely only on machine learning and big data.

The lifespan model performs well in its own right, achieving 79% accuracy in predicting whether
a given mention is singleton or coreferent. This alone could have ramifications for tracking topics,
identifying protagonists, and discourse coherence. In this paper, we demonstrated the benefits of
the lifespan model for coreference resolution. We incorporated the lifespan model into two very
different coreference resolution systems and showed that it yields improvements of practical and
statistical significance in both cases (Section 8).

Stepping back, we hope to have provided a compelling illustration of how efforts in theoretical
linguistics and NLP can complement each other, both for developing models and for assessing them
in scientific and engineering contexts.
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