# Epistemics in the Lab: Two Papers

P.J. Healy

July 2015

## **Epistemics**

- **1** επιστημη (episteme). Knowledge.
- Epistemic Game Theory: Game theory that takes beliefs very seriously.
- Epistemic Experiments: Experiments that take beliefs very seriously.
  - ► Measure 1st & 2nd order beliefs about strategies & utilities

#### My work so far:

- $\bullet$  5 different 2  $\times$  2 normal-form games
  - Why does Nash equilibrium/rationalizability fail?
- Extensive-form games: The Centipede
  - ► How do beliefs evolve through the game?

# 1.) Normal Form Games

#### Question:

Do people play equilibrium/rationalizability/etc? If not, why not?

- Non-Selfish Utilities? → Nash with Fehr-Schmidt
- Wrong Beliefs?  $\rightarrow$  Level-k
- Not best responding ('irrational')?  $\rightarrow$  QRE

How do people play games??

- Traditional Approach: Measure strategies and fit models
- Epistemic Approach: Try to measure beliefs and preferences

PJ Healy (OSU) Epistemics 2015 3 / 55

# One Little Change

In the EGT framework,  $s_i$  depends on  $\theta_i$ .

- $\bullet$   $s_i$  part of your type, not necessarily consistent with Nash, etc.
- Pure strategies only
  - Mixing is in our beliefs, not our actions
- Players have beliefs ('conjectures') over  $S_{-i}$ 
  - $Pr(s_j) = Pr(\{\theta_j \text{ that would play } s_j\})$
- Conjectures may or may not be 'correct'
- Players may or may not be rational
  - ▶ **Rational:**  $s_i(\theta_i)$  is best response, given  $\theta_i$ 's conjectures

#### The EGT agenda:

 $[Assumptions \ about \ rationality \ etc] \iff [Solution \ concept]$ 

PJ Healy (OSU) Epistemics 2015 4 / 55

# Aumann & Brandenburger (1995)

Aumann & Brandenburger (1995) Theorem A

#### **Theorem**

Fix n=2. Suppose the realized type profile is  $\theta$  with conjectures  $\phi(\theta)$ . If utilities, conjectures, and rationality are all mutual knowledge at  $\theta$ , then  $(\phi_2(\theta_2), \phi_1(\theta_1))$  is a (mixed-strategy) Nash equilibrium of the game with utilities  $U_1(\cdot|\theta_1)$  and  $U_2(\cdot|\theta_2)$ .

Contrapositive: If conjectures aren't in Nash equilibrium, then at least one of the following is not mutual knowledge:

- utilities
- 2 rationality
- conjectures

#### Lesson

To ask if people are in equilibrium, we **must** look at these objects!

This paper: elicit all the stuff needed to see if people are in equilibrium.

If not, what are they doing? What's failing?

## The Experiment

- 150 subjects were paired anonymously with 1 opponent.
- ullet Play five 2 imes 2 one-shot games with no feedback.
- Last 74 subjects: risk & ambiguity questions at end
- For each game, I elicit (on paper, in this order):
  - Chosen action  $(s_i(\theta_i))$
  - ② Preferences over outcomes  $(u_i(\cdot|\theta_i))$  (cardinal & ordinal)
  - $\circ$  i's beliefs about  $u_j$  (cardinal & ordinal)
  - **4** Conjecture about  $s_j$  ( $\phi_i(\cdot|\theta_i)$ )
  - $\bullet$  i's beliefs about  $\phi_i$ .
  - $\bullet$  *i*'s beliefs about *j*'s rationality
- RPS Payment: For each pair, pick one decision for payment.

PJ Healy (OSU) Epistemics 2015 7 / 55

## **Example Observation**

|   | L                  | R                  |
|---|--------------------|--------------------|
| U | \$10,10            | <sup>\$</sup> 1,15 |
| D | <sup>\$</sup> 15,1 | <sup>\$</sup> 5,5  |

#### Game Form (PD)

|      | 35%   | 65%    |
|------|-------|--------|
| >35% | 80,80 | 5,95   |
| 65%  | 95,5  | 80,80* |
|      |       |        |

Row's Game

|      | 0%     | V100%  |
|------|--------|--------|
| 0%   | 55*,70 | 0*,100 |
| 100% | 100,0  | 15*,30 |

Column's Game

Row's Ordinal Game

$$\begin{array}{c|cccc}
0\% & \sqrt{100\%} \\
0\% & 3,3 & 1,4 \\
100\% & 4,1 & 2,2
\end{array}$$

Column's Ordinal Game

## **Eliciting Preferences**

100 questions, 1 randomly chosen for payment:

- 1. **Cheeseburger** vs. 0% chance at \$20
- 2. Cheeseburger vs. 1% chance at \$20:
- 36. **Cheeseburger** vs. 36% chance at \$20
- 37. **Cheeseburger** vs. 37% chance at \$20
- 38. Cheeseburger vs. **38% chance at \$20** :
- 99. Cheeseburger vs. 99% chance at \$20
- 100. Cheeseburger vs. 100% chance at \$20

Easier question: What's your *probability value* for a cheeseburger?  $\underline{\mathbf{37\%}}$   $u(\operatorname{Chsbgr}) = p \cdot \underline{u(\$20)} + (1-p) \cdot \underline{u(\$0)} = p.$ 

# Eliciting Beliefs in a Game

What's your *probability* that COL plays LEFT? <u>52%</u>

- 1. **\$20** if COL plays L vs. 0% chance at \$20
- 2. **\$20 if COL plays L** vs. 1% chance at \$20 :
- 51. **\$20** if COL plays L vs. 51% chance at \$20
- 52. **\$20** if COL plays L vs. 52% chance at \$20
- 53. \$20 if COL plays L vs. **53% chance at \$20** :
- 99. \$20 if COL plays L vs. **99% chance at \$20**
- 100. \$20 if COL plays L vs. **100% chance at \$20**

PJ Healy (OSU) Epistemics 2015 10 / 55

# Eliciting $u(\cdot)$ in a Game

What's your probability value for (YOU:\$15 THEY:\$1)? 63%

- 1. **YOU:\$15 THEY:\$1** vs. 0% chance at YOU:\$20 THEY:\$20
- 2. **YOU:\$15 THEY:\$1** vs. 1% chance at YOU:\$20 THEY:\$20 :
- 62. YOU:\$15 THEY:\$1 vs. 62% chance at YOU:\$20 THEY:\$20
- 63. **YOU:\$15 THEY:\$1** vs. 63% chance at YOU:\$20 THEY:\$20
- 64. YOU:\$15 THEY:\$1 vs. **64% chance at YOU:\$20 THEY:\$20** :
- 99. YOU:\$15 THEY:\$1 vs. **99% chance at YOU:\$20 THEY:\$20**
- 100. YOU:\$15 THEY:\$1 vs. **100% chance at YOU:\$20 THEY:\$20**

Thus, u(\$15,\$1) = 63

## Game 2: Symmetric Coordination

First, a game theory success story.

|     | 97%                 | 3%                |
|-----|---------------------|-------------------|
| 97% | <sup>\$</sup> 15,15 | <sup>\$</sup> 1,1 |
| 3%  | \$2,2               | <sup>\$</sup> 5,5 |

(Percentages are action-choice frequencies.)

## Game 2: Symmetric Coordination - Cardinal Utilities

|     | 97%                 | 3%                |
|-----|---------------------|-------------------|
| 97% | <sup>\$</sup> 15,15 | <sup>\$</sup> 1,1 |
| 3%  | \$2,2               | \$5,5             |

• Strategies: 97% *U/L* 

• Belief of Strategies:  $\geq 90\%$  sure L/U

• Utilities: Almost all say  $(\$15,\$15) \succ (\$5,\$5) \succ (\$2,\$2) \succeq (\$1,\$1)$ 

Belief of Utilities: very accurate

Rationality: 96%

Belief of Rationality: 65-95% sure opponent is rational

PJ Healy (OSU) Epistemics 2015 13 / 55

#### Game 1: Dominance Solvable

Now let's look at iterated dominance...

|      | 25%                | 75%                 |
|------|--------------------|---------------------|
| 100% | <sup>\$</sup> 10,5 | <sup>\$</sup> 15,15 |
| 0%   | \$5,10             | <sup>\$</sup> 1,1   |

ROW follows its dominant strategy...

...so why are 25% of COL playing L??

## Game 1: Dominance Solvable - Conjectures

|      | 25%                | 75%               |
|------|--------------------|-------------------|
| 100% | <sup>\$</sup> 10,5 | \$15,15           |
| 0%   | \$5,10             | <sup>\$</sup> 1,1 |

Belief of Strategies:

▶ Play R: p(U) = 94%. Play L: p(U) = 85%.

Utilities: 93% 'selfish'

Belief of Utilities: 93% quite sure opponent is 'selfish'

Rationality:

▶ Play R: 98%. Play L: 21% (all non-selfish).

Conclusion: 20% of players are non-EU. Loss aversion?

## Game 5: Asymmetric Coordination

|     | 49%                | 51%    |
|-----|--------------------|--------|
| 93% | <sup>\$</sup> 15,5 | \$2,1  |
| 7%  | \$1,2              | \$5,10 |

Why are 51% of COL playing Right?

- Preferences?
  - ▶ Only for 1.3% of subjects.
- EU with wrong beliefs or risk aversion?
  - ▶ No. Beliefs are accurate. Most are not rational.

Conclusion: Non-EU regret aversion?

# Game 4: Asymmetric Matching Pennies - The Story

|                 | 44% (38% Rat'l)    | 56% (90% Rat'l)    |
|-----------------|--------------------|--------------------|
| (81% Rat'l) 88% | <sup>\$</sup> 15,5 | <sup>\$</sup> 5,10 |
| (63% Rat'l) 12% | \$5 <b>,</b> 10    | <sup>\$</sup> 10,5 |

Why are 44% of COL playing Left?

1. Preferences: All non-selfish are rational.

|             | Rational | Irrational |
|-------------|----------|------------|
| Selfish     | 5        | 20         |
| Non-Selfish | 7        | 0          |

#### 2. Beliefs:

▶ Mean p(Up) is 78%

Conclusion: Altruism in strategies  $\neq$  altruism in outcomes? (Or altruism changed between strategy choice & elicitation.)

#### Game 3: Prisoners Dilemma

Finally, the prisoners' dilemma.

| Туре       | Ex: ROW                                                 | Actual | Believed |
|------------|---------------------------------------------------------|--------|----------|
| Selfish    | L R U \$10,10 \$1,15 D \$15, 1 \$5, 5                   | 103    | 115      |
| CondCoop   | U <b>*10, 10 *1,</b> 15<br>D <b>*15,</b> 1 <b>*5, 5</b> | 29     | 24       |
| UncondCoop | U <b>*10, 10 *1, 15</b><br>D <b>*15,</b> 1 <b>*5,</b> 5 | 14     | 4        |
| Crazy      | U \$10,10 \$1,15<br>D \$15,1 \$5,5                      | 4      | 2        |

This is a Bayesian Game

#### Self-similarity result:

Selfish thinks others are more likely to be Selfish CondCoop thinks others are more likely to be CondCoop

$$(\chi^2 \ p$$
-value: < 0.0001)

This is a Bayesian Game with Correlated Types

#### Action Choices & Rationality:

| Type                       | C  | D  | % Rational |
|----------------------------|----|----|------------|
| Selfish                    | 18 | 83 | 82%        |
| CondCoop                   | 18 | 11 | 72%        |
| UncnCoop                   | 8  | 6  | 57%        |
| Crazy                      | 1  | 3  | 50%        |
| $\chi^2 p$ -value: < 0.001 |    |    | 0.090      |

This is a Bayesian Game with Correlated Types and Some Non-EU Players

PJ Healy (OSU) Epistemics 2015 21 / 55

Action Choices & Rationality:

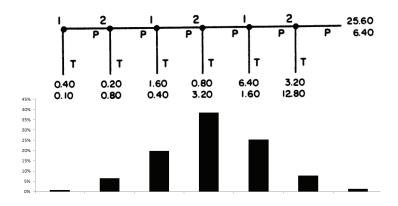
| Type                       | C  | D  | % Rational |
|----------------------------|----|----|------------|
| Selfish                    | 18 | 83 | 82%        |
| CondCoop                   | 18 | 11 | 72%        |
| UncnCoop                   | 8  | 6  | 57%        |
| Crazy                      | 1  | 3  | 50%        |
| $\chi^2 p$ -value: < 0.001 |    |    | 0.090      |

**78%** of players have a dominant strategy... but **21%** of them don't follow it!

Inconsistency between elicited preferences and strategy choice.

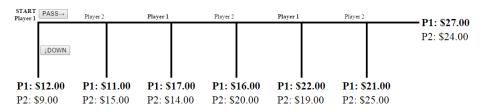
- 1. Uncertainty about preferences?
- 2. Non-consequentialism?
- 3. Bad elicitation procedures?

How much rational cooperation is there in the one-shot prisoner's dilemma?


30% cooperate. 53% of those do so rationally.

# Summary of Normal-Form Games

- Nash equilibrium can work, but only in 'easy' games.
- Respect for Bayesian games (P.D.)
- 'Irrational' behavior seems to vary by game
- Beliefs clearly inconsistent with Level-k
- WARNING: Confound with reliability of elicitation procedure.


PJ Healy (OSU) Epistemics 2015 24 / 58

# 2.) Extensive-Form Games: The Centipede



McKelvey & Palfrey (1992): Reputation w/ noisy actions & heterog. blfs Fey, McKelvey & Palfrey (1996), Kawagoe & Takizawa (2012): AQRE

## **Epistemic Theory**



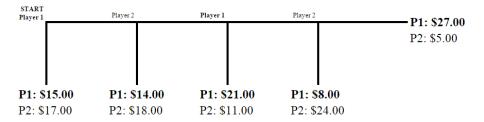
**Claim:** Common knowledge of rationality ⇒ backwards induction

Reny (1992): Wrong. If Pass  $\Rightarrow$  irrational, Pass can be a best response!

EGT question: How do players <u>update</u> beliefs about rationality? Expmntl question: Are beliefs consistent with proposed models (QRE, eg)?

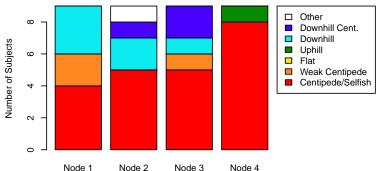
# The Experimental Design

#### Have subjects play 4 centipede game forms. Elicit:


- 1. Before each game:
  - 1.1 Own utilities for each outcome
  - 1.2 Guess of others' utilities
- 2. At each node:
  - 2.1 Action choice (for node owner)
  - 2.2 Future action plan  $(s_i)$
  - 2.3 1st order belief of  $s_{-i}$
  - 2.4 2nd order belief of  $s_i$  (best guess)
  - 2.5 Belief of rationality

#### The Research Plan

- Phase 1 Search for the right game form, satisfying:
  - 1. elicited utilities are actually centipede game utilities
  - 2. players don't play Down immediately
- Phase 2 Collect data on chosen game form
  - 1. not done yet

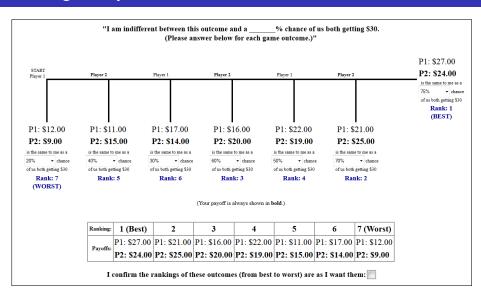

## The First Attempt: Treatment 1

Constant-sum 4-node centipede game form:

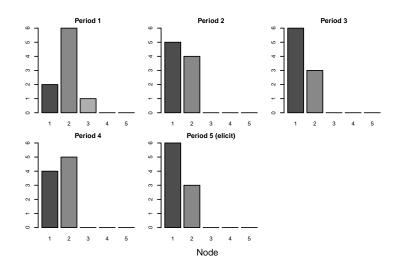


## Utility Types: Treatment 1

# Preference Types by Node



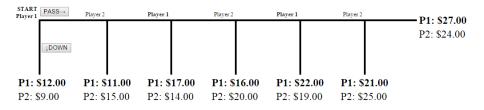

Type 'at node 1' (e.g.) is based on utility at nodes 1, 2, and 3.


8 of 18 have centipede prefs at all nodes (3 plr1, 5 plr2)

PJ Healy (OSU) Epistemics 2015 30 / 55

## **Eliciting Utility**

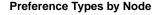


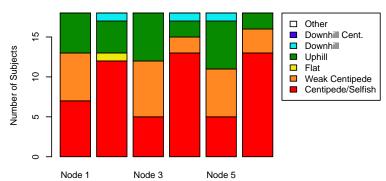

### Outcomes: Treatment 1



A victory for backwards induction! (Similar to past findings)

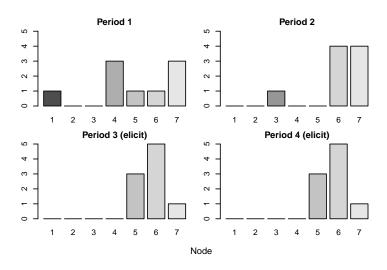
# The Second Attempt: Treatment 2


Increasing-sum 6-node centipede game form:




Pass: risks \$1 to gain \$5.

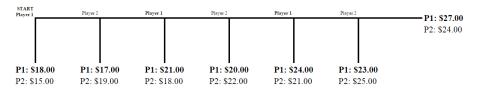
PJ Healy (OSU) Epistemics 2015 33 / 55


# Utility Types: Treatment 2



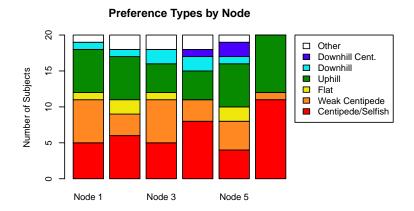


13 of 36 have centipede prefs at all nodes (2 plr1, 11 plr2)


#### Outcomes: Treatment 2

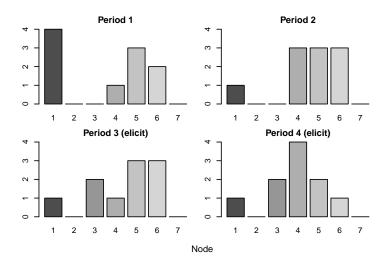


Is this really a centipede game?


# The Third Attempt: Treatment 3

Increasing-sum 6-node centipede game form:

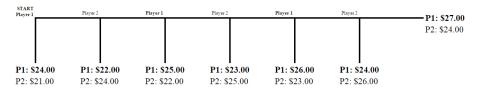



Pass: risks \$1 to gain \$3.

### **Utilities: Treatment 3**

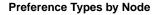


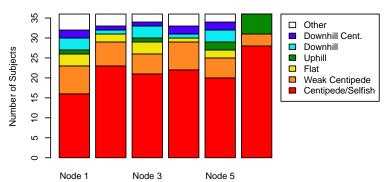
8 of 40 have centipede prefs at all nodes (2 plr1, 6 plr2) Not a centipede game.


### Outcomes: Treatment 3



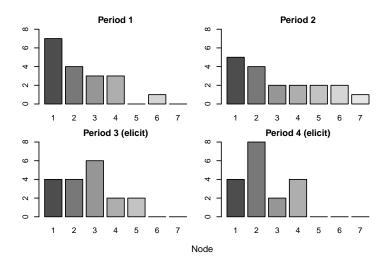
Looks like McKelvey-Palfrey data...


## The Fourth Attempt: Treatment 4


Increasing-sum 6-node centipede game form:



Pass: risks \$2 to gain \$1.

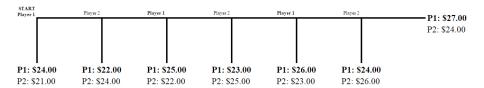

### Utilities: Treatment 4





29 of 72 have centipede prefs at all nodes (11 plr1, 18 plr2)

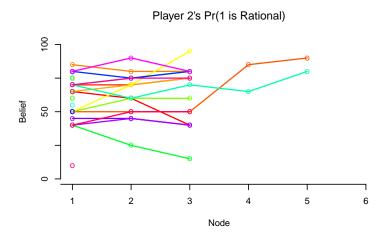
### Outcomes: Treatment 4




### Conclusion of Phase 1

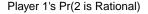
Conclusion 1: I will proceed with Treatment 4 (Haven't collected Phase 2 data yet... so no statistical tests)

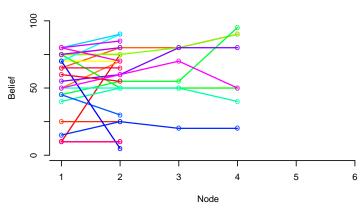
Conclusion 2: It's hard to find a centipede game!


## Beliefs About Rationality



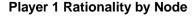
Do beliefs about rationality shift dramatically at node 2??

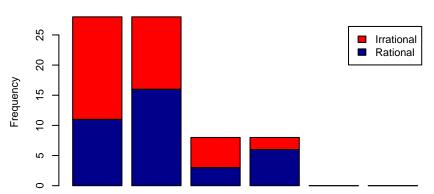

PJ Healy (OSU) Epistemics 2015 43 / 55


## Beliefs About Rationality: Player 2



(1) Node 1 vs 2. (2) Upward trend. (3) Initial beliefs.

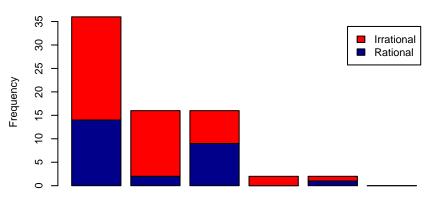

# Beliefs About Rationality: Player 1





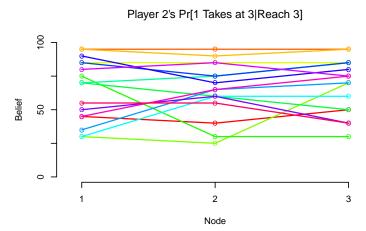

Compare nodes 2 vs. 3

# Actual Rationality: Player 1





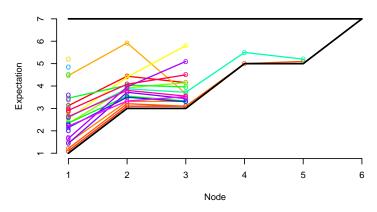

Node


# Actual Rationality: Player 2





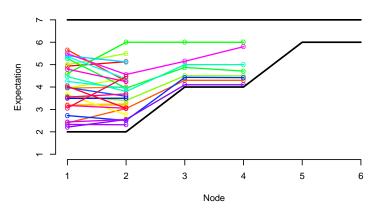
Node


## Beliefs about Others' Actions: Player 2



Beliefs about node 3, from nodes 1, 2 & 3 (of matches that reached 3)

## Beliefs about Others' Actions: Player 2


Player 2's E[Take Node of 1]



Expected take node, assuming 2 always passes

## Beliefs about Others' Actions: Player 1

Player 1's E[Take Node of 2]



Expected take node, assuming 1 always passes

## Contingent Plan Transitions: Player 2

Tot.

|                |            | Pla | an at           | : No          | de 2           | 2   |                  |
|----------------|------------|-----|-----------------|---------------|----------------|-----|------------------|
| 1              |            | T@1 | 2               | 4             | 6              | 7   | Tot.             |
| ode            | 2          | 2   | 8               | 2             | 0              | 0   | 12               |
| Plan at Node   | 4          | 5   | 3               | 6             | 0              | 0   | 14               |
|                | 6          | 1   | 0               | 2             | 5              | 1   | 9                |
|                | 7          | 0   | 1               | 0             | 0              | 0   | 1                |
| 酉              | Tot.       | 8   | 12              | 10            | 5              | 1   | 36               |
|                |            |     |                 | -0            | _              | -   |                  |
|                |            | l   | an at           |               |                |     | 00               |
| e<br>3         |            | l   |                 |               |                |     | Tot.             |
| ode 3          | T@1        | Pla | an at           | No            | de 2           |     |                  |
| Node 3         |            | PI: | an at           | No            | de 2           |     | Tot.             |
| at Node 3      | T@1        | PI: | an at<br>2<br>- | No            | de 2           |     | <b>Tot</b> . 8   |
| Plan at Node 3 | T@1<br>T@2 | PI: | an at<br>2<br>- | No:<br>4<br>- | de 2<br>6<br>- | 7 - | <b>Tot.</b> 8 12 |

36

10 | 5

# Contingent Plan Transitions: Player 1

|                | Plan at Node 2 |             |                  |                  |                |               |  |  |  |  |
|----------------|----------------|-------------|------------------|------------------|----------------|---------------|--|--|--|--|
| 9              |                | T@1         | 3                | 5                | 7              | Tot.          |  |  |  |  |
| po             | 1              | 8           | -                | _                | -              | 8             |  |  |  |  |
| Ž              | 3              | _           | 8                | 3                | 0              | 11            |  |  |  |  |
| at             | 5              | -           | 2                | 10               | 2              | 14            |  |  |  |  |
| Plan at Node   | 7              | _           | 0                | 1                | 2              | 3             |  |  |  |  |
| ᇫ              | Tot.           | 8           | 10               | 14               | 4              | 36            |  |  |  |  |
|                | Plan at Node 2 |             |                  |                  |                |               |  |  |  |  |
|                |                | Pian        | atı              | noae             | 2              |               |  |  |  |  |
| 33             |                | Pian<br>T@1 | 3                | vode<br>  5      | 7              | Tot.          |  |  |  |  |
| ode 3          | T@1            |             |                  |                  |                | <b>Tot.</b> 8 |  |  |  |  |
| Node 3         | T@1<br>T@2     | T@1         |                  |                  |                |               |  |  |  |  |
| at Node 3      |                | T@1         | 3                | 5<br>-           | 7              | 8             |  |  |  |  |
| an at Node 3   | T@2            | T@1         | 3<br>-<br>2      | <b>5</b> - 7     | <b>7</b> - 3   | 8<br>12       |  |  |  |  |
| Plan at Node 3 | T@2            | T@1         | 3<br>-<br>2<br>7 | 5<br>-<br>7<br>1 | <b>7</b> - 3 0 | 8<br>12<br>8  |  |  |  |  |

### Conclusions

- 1. Centipedes are elusive
- 2. Rationality hovers around 50%
- 3. Beliefs about rationality heterogeneous, but stable
- 4. Beliefs about actions are stable
- 5. Strategies (plans) don't change often

#### The FRPD Story:

- Kagel & McGee (2015)
- Cox, Jones, Pflum & Healy (2015)

#### Selected Literature Review

- McKelvey & Palfrey (1992)
- Fey, McKelvey & Palfrey (1996)
- Palacios-Huerta & Voliz (2009) and Levitt, List & Sadoff (2011)
- Mezhvinsky (2015WP)
- Wang (2015WP)

 Fin