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1 Introduction

Information on expected in�ation at short and long horizons is key to assessing the

credibility of monetary policy, to examining how borrowing decisions of households

and �rms respond to shifts in real costs of debt, and to evaluating the expected

in�ation response to monetary policy actions. Interestingly, as important as

expectations are in economic models, few studies explicitly model the behavior

of expectations using data on expectations.1 Most likely this is because direct

observations on market expectations of in�ation are limited. In particular, as a

consequence of the incomplete sampling design of available surveys, only short time

series are available for surveys that sample at quarterly frequencies or higher, and

lengthy time series are available only for surveys of short-horizon forecasts, generally

two- or four-quarter outlooks, and are often collected only at semiannual intervals.

Survey limitations have generally led researchers to search for proxies of expected

in�ation. One approach to construct expected in�ation proxies follows Breedon and

Chadha (1997) and Söderlind and Svensson (1997) and extracts estimates of average

expected in�ation from data for nominal and indexed bond yields under restrictive

assumptions on term premiums and relative liquidity of the assets. However such

measures may be distorted, as discussed by Shen and Corning (2001) and Shen

(2006) with reference to U.S. data, and Côté, Jacob, Nelmes, andWhittingham (1996)

with reference to Canadian data. In particular, using Canadian data, Christensen,

Dion, and Reid (2004) �nd that the break-even in�ation rate (BEIR), de�ned as the

di¤erence between nominal and real return bond yields, is on average higher and

more variable than survey measures of expected in�ation due to movements of risk

1A few studies have used survey data directly. Examples include Roberts (1995 and 1997) and
Kozicki and Tinsley (2003).
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premiums and other factors not directly linked to in�ation expectations.

Another approach to proxy for expected in�ation is to use forecasts from

reduced-form time-series models. Reduced-form time series models are popular

speci�cations that are easy to use in multi-period forecasting exercises owing to

their linearity. They don�t require practitioners to take a stand on the underlying

structural model, yet forecast relatively well over short horizons.2 For example,

Harvey (1988) forecasts in�ation using an IMA(1,1) model to construct an expected

in�ation series, and Laubach and Williams (2003) proxy in�ation expectations with

the forecast of the four-quarter-ahead percentage change in the price index for

personal consumption expenditures excluding food and energy generated from an

AR(3) of in�ation estimated over the prior 40 quarters. However, the ability of such

econometric speci�cations to e¤ectively accommodate structural change is limited.3

By contrast, perceived structural change can immediately be incorporated into

judgement and will tend to immediately in�uence expectations captured in survey

measures. Each survey participant is implicitly providing information on his/her

beliefs about how the economy operates. While some participants may be reporting

forecasts generated by unadjusted econometric models of the U.S. economy, most will

incorporate judgement into their views about what they expect the future to bring.4

2McNees (1986) provides evidence that forecasts from Bayesian VARs are among the most
accurate for forecasting several key US macroeconomic variables. That said, Wallis et al (1986,
1987) �nds that for UK data, VAR forecasts do not dominate model-based forecasts.

3For instance, one approach to introducing the prospect for structural change is to allow all
model coe¢ cients to change. A simple approach taken by some researchers is to estimate VARs over
moving windows of data. As time progresses, earlier observations are discarded in favor of more
recent data, and model coe¢ cients are reestimated. However, allowing all coe¢ cients in VARs to be
time-varying and use of rolling windows tend to lead to in-sample over�tting problems and result in
poor out-of-sample forecasting performance.

4Wallis (1989) reviews developments in macroeconomic forecasting, including a discussion of
judgemental forecasts as well as structural and time-series models. Sims (2002) discusses forecasting
exercises at several central banks, and o¤ers commentary on the role of � �subjective� forecasting
based on data analysis by sectoral �experts�.� See also Reifschneider, Stockton, and Wilcox (1997)
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Such forecasts tend to re�ect information that is not well summarized by historical

data or econometric equations. Examples include structural changes, such as changes

in tax laws, perceived shifts in the long-run in�ation goals of policy, or changes in

perceptions of policy credibility.5

Overall, the direct information on expectations as provided by survey data is

likely superior to the econometric and yield-based proxies. Moreover, the superior

forecasting performance of surveys documented by Ang, Bekaert, and Wei (2007)

and Chernov and Mueller (2008) lends support to the view that survey measures

are informative measures of expected in�ation.6 Given this evidence on the forecast

performance of survey measures of expectations, it is interesting to note that the

validity of proxies is generally based on theoretical arguments or on the ability of the

proxies to forecast the underlying data. Comparisons of proxies to direct measures of

expectations and empirical models of the expectations data themselves are rare.

An important contribution of this paper is that it explicitly models the evolution of

expected in�ation. This modeling exercise con�rms that subjective perceptions that

enter into surveys and in�uence bond pricing di¤er signi�cantly from forecasts implied

by standard econometric models, a result also evident in Kozicki and Tinsley (1998,

2001a,b) and Kim and Orphanides (2005). The results also support the view that

direct measures of expectations provide additional information beyond that contained

in historical data on the economic variables themselves. An additional conclusion of

for the use of judgement with econometric models in the Federal Reserve�s monetary policy process.

5The possibility that survey participants may have more information about the economy than
econometricians is also discussed by Kim (2008) and Ang, Bekaert, and Wei (2007). As noted in Kim
(2008), the value-added of expected in�ation surveys appears to be, in the context of forecasting
in�ation and bond yields, that surveys capture variations in perceived trend in�ation that is not
revealed by simple time series models that reference the recent history of in�ation.

6Superior forecast performance of surveys of expected in�ation provides strong evidence against
the view expressed by some analysts that surveys may not be good measures because participants
have no incentives to provide their true expectations.
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the current paper is that it is not enough to just use survey data, they need to

be used in a model that is adaptive to their subjective information on long-horizon

expectations.

The empirical speci�cation in this paper jointly models the evolution of in�ation

and expected in�ation under an assumption that expectations are model-consistent.

This model is then used to construct a 50-year history of monthly measures of

expected in�ation and a term structure of expected CPI in�ation for the United

States to be consistent with the Livingston Survey data on expected in�ation.7 The

constructed measures of expected in�ation (time t forecasts of in�ation in t + h)

provide more frequent observations and a longer history of expected in�ation by

providing consistent proxies for missing monthly observations (t) as well as over all

horizons (h). In addition, they provide good �ts of survey observations when they

are available. The constructed measures can be used directly in empirical exercises

without the impediments, such as infrequent observations or short histories, that have

limited the use of direct measures of expectations.8

One use of the constructions of long-horizon expected in�ation is to examine

the historical credibility of monetary policy. In�ation expectations are generally

anchored by private sector perceptions of the central bank�s in�ation target. By

comparing private sector long-horizon expectations of in�ation to estimates of the

�e¤ective� in�ation target of U.S. monetary policy, the article provides information

on the historical credibility of monetary policy.

7The objective of the current study is clari�ed by use of a single survey: a term structure of
expected CPI in�ation consistent with economist expectations of in�ation is produced.

8A simple approach to expand histories of expected in�ation might splice measures from di¤erent
sources. Unfortunately, as noted by Chernov and Mueller (2008), there are systematic di¤erences
across surveys� in concepts of in�ation and agents being surveyed� implying that splicing measures
from various sources could lead to an inconsistent history of expected in�ation with possible
subsample biases. However, even in the absence of such possibilities, spliced series provide only
small improvements in the availability of expected in�ation observations.
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The next section describes the Livingston Survey data on expected CPI in�ation

and the empirical model of the evolution of expected CPI in�ation. The estimation

uses a time-varying forecast methodology that assumes the unobserved cross-section

of expectations formulated in a given period is consistent with recent in�ation and

available survey observations of expected in�ation.9 The third section presents the

empirical results. A state-space model is estimated and used to construct the monthly

term structure of expected in�ation, and robustness checks are provided. In the

fourth section, the perceived in�ation target implicit in the term structure of expected

in�ation is compared with estimates of the central bank�s e¤ective in�ation target and

provides strong evidence of asymmetry in expectations. While large di¤erences in the

1980s suggest less than full credibility of low-in�ation policy objectives at the time,

more recent convergence signals an improvement in credibility. The article concludes

with �nal comments in section �ve.

2 A model of expected in�ation

Livingston Survey data on expected CPI in�ation was chosen as the measure of

expected in�ation. One advantage of the Livingston Survey is that it has good forecast

properties compared with other survey measures of expected in�ation (Chernov and

Mueller 2008). In addition, the Livingston Survey has been in existence for a much

longer period of time, with surveys conducted in June and December starting in

9The analysis in this paper is related to Chernov and Mueller (2008), which was developed
independently. The data and methodology of the current paper di¤er from that in Chernov and
Mueller, but most importantly, the two studies take di¤erent approaches to resolving systematic
di¤erences and biases across survey measures. In addition, the constructions in this paper start 15
years earlier than those in Chernov and Mueller and are monthly rather than quarterly.
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1946.10 While the original survey provided information on short-horizon expected

in�ation, the survey was expanded to also include 10-year in�ation expectations in

1990.

The choice of modeling techniques was in�uenced by data constraints and the

desire that expectations be model consistent� i.e., that the same data generating

mechanism be able to explain the dynamics of in�ation and in�ation expectations.

A shifting-endpoint AR model (cast in the format of an unobserved components

model) is used as the underlying data generating process (DGP) for monthly in�ation.

Under the assumption that expected in�ation is consistent with this DGP, the

multi-month (and year) horizon of the survey expectations implies that they are

nonlinear functions of the AR parameters of the shifting-endpoint model. Expressions

for in�ation and expectations are set in a state space framework so that the

unobserved perceived in�ation target that anchors long-horizon expectations can be

estimated. The state-space framework is well-suited to accommodate data limitations,

including di¤erent observation frequencies of in�ation (monthly) and survey data

(semi-annually) as well as missing observations of long-horizon expectations for most

of the survey sample.

2.1 A shifting-endpoint AR model for in�ation

The remainder of this section discusses the empirical model used to jointly model

in�ation and expected in�ation. For the application in this paper, the main di¢ culty

encountered with most univariate and multivariate time series speci�cations for

in�ation is that they tend to generate multiperiod forecasts that do not resemble

10Documentation describing the Livingston Survey data is available on the Federal Reserve Bank
of Philadelphia website at www.phil.frb.org. Croushore (1997) provides a description of the survey
and its history. Additional details on the Livingston Survey that are relevant for the current analysis
are reviewed in section 3.
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available survey expectations (Kozicki and Tinsley 1998, 2001a, 2001b). In particular,

long-horizon forecasts of in�ation from mean-reverting AR speci�cations are too

insensitive to recent in�ation, while those from models that impose unit root

restrictions on in�ation tend to be excessively sensitive to recent in�ation. The

latter suggests, for instance, that the Atkeson and Ohanian (2001) model, which

incorporates a unit root assumption and forecasts quite well at short horizons, would

not be as e¤ective at matching long-horizon in�ation expectations. Consequently,

this paper follows Kozicki and Tinsley (2001a, 2001b) by using a shifting-endpoint

variant to approximate the implicit forecasting model for in�ation that underlies

survey expectations. As will be shown, the shifting endpoint speci�cation can be cast

in the format of the unobserved components model of Watson (1986).

An advantage of the shifting-endpoint AR speci�cation is that it can capture

the implications of structural change that lead to shifting long-horizon expectations.

In addition, the AR structure is better suited to capturing the seasonality in the

Livingston Survey data than IMA structures recommended by Stock and Watson

(2007). Furthermore, as the model has relatively few parameters, it is less likely to

over�t the data than more complicated time series speci�cations.

The general in�ation forecasting model with shifting in�ation endpoints can be

represented as

�t+1 = �
0
1zt+1 = �

0
1Czt + �

0
1(I � C)��(t)1 + �01�1�t+1; (1)

where �t is in�ation, zt � [�t : : : �t�p+1]
0, �t is an innovation assumed to be

independent Normal with mean zero, I is a p� p identity matrix, � is a p� 1 vector

of ones, �1 is a p � 1 vector with a one in the �rst element and remaining elements
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zero, and

C �

266666666664

�1 �2 : : : �p�1 �p

1 0 : : : 0 0

0 1 : : : 0 0

. . .
...

0 0 : : : 1 0

377777777775
:

De�ne �(L) � �1 + �2L + � � � + �pLp�1, a polynomial in the lag operator L, where

L�t � �t�1. If all roots of (1� �(L)) lie outside the unit circle, then the conditional

expectation of �t+k will revert to the endpoint in the long run, i.e., limk!1Etyt+k =

�
(t)
1 .11

The endpoint is the level to which in�ation expectations eventually converge as

the forecast horizon is increased, conditional on a given information set. Intuitively,

because the in�ation endpoint is the conditional long-horizon forecast of in�ation

generated by the model, in a model of private sector expectations it can be thought of

as the private sector perception of the in�ation target. Endpoints may shift according

to information and beliefs at the time the forecast is made.12 The potential for

endpoint shifts is an essential feature of the model of expectations as endpoint shifts

can accommodate the possibility of rapid reaction to structural change in survey

expectations independent of recent movements in actual in�ation.

11Cases where roots of (1��(L)) lie inside the unit circle, or where there are more than one unit
root are not considered in the current analysis. Note that if (1 � �(L)) contains a unit root, then
the endpoint is not independently identi�ed. However, the limiting forecast continues to exist and
the endpoint can be calculated as �(t)1 = limk!1 �

0
1C

kzt, which is a moving average of order p of
in�ation since in this case �(1) = 1 and �01(I � C) = 0.
12Evidence of shifts in the mean of in�ation are provided by Garcia and Perron (1996). They

model in�ation using a Markov switching speci�cation with three states. As in their speci�cation,
parameters governing the speed of adjustment to long-run equilibrium (C) are assumed to be
constant in the current implementation, even with shifts in the description of long-run equilibrium.
The implications and relevance of other generalizations to the forecasting system are left for future
research.
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In thinking about the dynamics of such long-horizon perceptions, note that if

survey participants could forecast future changes to their perceptions of the level at

which in�ation would stabilize, then such changes would be immediately incorporated

in their long-run perceptions. Consequently, changes in the endpoint should not

be forecastable. This property is captured by assuming that the endpoint evolves

according to a random walk:13

�(t+1)1 = �(t)1 + vt+1: (2)

More details on the properties of �t and vt will be provided with the state-space

description of the model in section 2.3.

As described above, the shifting endpoint speci�cation is a generalization of the

local level model of Harvey (1989) and a version of the unobserved components model

discussed by Watson (1986).14 In particular, for �c(L) � (1 � �(L)L)�1 and � t+1 �

13A potential shortcoming with this approach is that expected in�ation data is only available
semi-annually. Since this data is expected to be the most informative about the unobserved
shifting endpoint, it is possible that the interpolation algorithm may overly smooth higher frequency
�uctuations in the endpoint. However, lack of variation in more frequent (quarterly) 10-year
expected in�ation data as reported by the Survey of Professional Forecasters (SPF), suggests that
over-smoothing of endpoint variation is unlikely to be a major problem. The best anecdote relates
to the May 6, 2003 FOMC statement that referred to the �probability of an unwelcome substantial
fall in in�ation.� This statement may have led to an instantaneous upward adjustment in the
perceived in�ation target of monetary policy. However, quarterly-sampled median 10-year in�ation
expectations as reported by the SPF did not vary from 2.5 percent throughout 2003 and mean
expectations only dropped by 0.5 basis points from the Q2 survey to the Q3 survey (and by 1 basis
point from the Q1 survey to the Q2 survey). While it is still possible that the endpoint exhibited
more �uctuations at a frequency higher than a quarter, the available evidence suggests that such
�uctuations may be reversed within one quarter. But within-quarter reversals are inconsistent
with the random-walk structure of long-run expectations and are less likely to be relevant for
macroeconomic analysis.

14Unobserved components models are frequently used to model trend-cycle decompositions of real
GDP (or GNP), as in Harvey (1985), Watson (1986), and Stock and Watson (1988).

9



�
(t)
1 , the shifting endpoint speci�cation can be rewritten as:

�t+1 = � t+1 + ct+1 (3)

� t+1 = � t + vt+1 (4)

ct+1 = �c(L)�t+1: (5)

In a recent study comparing several simple models, Stock and Watson (2007) found

that a version of this speci�cation with �c(L) = 1 and time-varying estimates of the

variances of �t and vt performed remarkably well at forecasting quarterly GDP price

in�ation. However, in their experience the IMA(1,1) speci�cation was not e¤ective

with quarterly CPI in�ation and they did not evaluate the ability of their model to �t

expectations data. Moreover, the IMA(1,1) speci�cation is too restrictive here owing

to seasonality in the data, which a more general AR lag structure is able to e¤ectively

capture.15

The shifting endpoint speci�cation shares features with other speci�cations

proposed in the literature. For instance, the speci�cation resembles the regressive

expectations model of Figlewski and Wachtel (1981). They expressed expected

in�ation as a weighted average of lagged in�ation and long-run �normal� in�ation,

where the latter is de�ned as the rate toward which in�ation is expected to regress.

However, whereas Figlewski and Wachtel assumed that the normal in�ation rate

15A more general speci�cation of in�ation might admit time-varying slopes in addition to a
time-varying mean. While such a speci�cation is relatively straightforward to introduce for in�ation,
the same is not true for multi-period survey expectations restricted to be consistent with the
in�ation DGP. In particular, time-varying slopes introduce several complications into the current
set-up. First, time-variation in the seasonal components may di¤er from time-variation that captures
non-seasonal persistence, and distinguishing these two aspects may be important. Second, as will be
shown in the next section, multi-period model-consistent expectations will be non-linear functions
of the time-varying slopes. Thus, the model of the multivariate system including expressions for
in�ation and multi-period expectations would be nonlinear in unobserved state variables (the slopes).
While an interesting extension, such a generalization is beyond the scope of the state-space modeling
environment of the current paper.
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was equal to a �ve-year moving average of in�ation, here the shifting endpoint is

treated as an unobserved component to be estimated. Caskey (1985) estimated

a time-varying constant in a more general learning model of Livingston 8-month

in�ation expectations. Caskey�s learning model was a time-varying parameter model

that included a constant and several macroeconomic variables. He interpreted a

loose prior on the variance of the constant as evidence that the Livingston panel

were willing to quickly revise their beliefs about the constant, and concluded that

Livingston in�ation forecasts could be explained as the product of a learning process.

In other related work, Ang, Bekaert, and Wei (2007) found that a non-linear

regime switching model with 2 regimes (allowing both the mean and lag coe¢ cients

to switch) was a good forecasting speci�cation for CPI in�ation in the post-1995

period. They attribute this advantage to a reduction in the persistence of in�ation at

the end of the sample that can be captured through a regime switch. By allowing the

endpoint to follow a random walk, the shifting-endpoint model can implicitly capture

more than two regimes. Shifts of the endpoint capture structural change and absorb

some of the persistence of in�ation. Although AR parameters in C are constant,

lower persistence is captured with a decrease in the relative importance of endpoint

movements relative to in�ation deviations for explaining in�ation dynamics at the

end of the sample.

2.2 Approximating Survey Expectations with AR

Expectations

As outlined earlier, survey data provides timely information on perceived economic

structural change. Because survey data on expectations includes judgemental views

as well as the output of econometric forecasting models, such data is likely to
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immediately re�ect perceptions that there have been structural shifts in the economy.

The consequences for in�ation expectations of these perceptions of structural shifts

can be extracted by linking the AR-based forecasting model to survey data on multiple

horizon expectations.

Survey data report average in�ation expectations over multiple periods. Let st+k;t

denote the survey data for average expected in�ation over the k periods ending in

t+ k, conditional on information available at t:

st+k;t =
1

k

kX
j=1

ESt �t+j; (6)

where ESt signi�es that expectations are made by survey participants and conditional

on information available at t.

Multi-step forecasts of in�ation based on the shifting-endpoint AR model are:

Et�t+j = �01Etzt+j

= �01C
jzt + �

0
1(I � Cj)��(t)1 : (7)

and conditional forecasts of average in�ation over the next k periods are:

(1=k)

kX
j=1

Et�t+j = �
0
1((1=k)

kX
j=1

Cj)zt + �
0
1(I � ((1=k)

kX
j=1

Cj))��(t)1 : (8)

Assuming the average in�ation forecasts from the shifting-endpoint AR model of
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in�ation provides an approximation of the survey expectation,

st+k;t = (1=k)

kX
j=1

Et�t+j + �k;t

= �01((1=k)
kX
j=1

Cj)zt + �
0
1(I � ((1=k)

kX
j=1

Cj))��(t)1 + �k;t (9)

where �k;t = (1=k)
Pk

j=1(E
S
t �t+k�Et�t+k) is approximation error. The approximation

error re�ects di¤erences between the implicit forecasting model of the survey

participants and the shifting-endpoint AR model, and measurement error in survey

data, among other contributors. However, as both the survey data and the AR-based

average-in�ation forecast are conditioned on information in t, the approximation error

does not re�ect di¤erences between actual in�ation and predictions. Similarly, there

is no reason to expect that approximation errors will be serially correlated. The latter

is in contrast to the di¤erence between actual average in�ation over k periods and

k-period predictions, which will in general follow an MA(k-1).16

2.3 A state-space model of the in�ation endpoint

Estimates of parameters of the model and a time-series for the unobserved endpoint

can be obtained by representing the model in state space format and using the Kalman

�lter to provide linear least squares predictions of the unobserved endpoint.17 In state

space format, the endpoint is the unobserved state variable. As noted earlier, it is

assumed to evolve according to a random walk:

�(t+1)1 = �(t)1 + vt+1: (10)

16Hansen and Hodrick (1980) propose a methodology for examining restrictions on a k-step ahead
forecasting equation.

17State space representations, the Kalman �lter, and approaches to estimating unobserved
parameters are described in Harvey (1989) and Hamilton (1994).
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Innovations, vt, are distributed Normal(0; Q) with mean square error matrix

V art(�
(t+1)
1 ) = Pt+1jt.

Expressions for in�ation and survey data constitute the measurement equations.

Letting k1; k2; : : : kn denote the various horizons for which the survey data are

available, and de�ning yt+1 = [�t+1 st+k1;t st+k2;t : : : st+kn;t]
0, the measurement

equations are:

yt = A
0zt�1 +H

0�(t)1 + wt; (11)

where

A0 =

266666666664

�01C

�01((1=k1)
Pk1

j=1C
j)

�01((1=k2)
Pk2

j=1C
j)

...

�01((1=kn)
Pkn

j=1C
j)

377777777775

H 0 =

266666666664

�01(I � C)�

�01(I � (1=k1)
Pk1

j=1C
j)�

�01(I � (1=k2)
Pk2

j=1C
j)�

...

�01(I � (1=kn)
Pkn

j=1C
j)�

377777777775
(12)

and wt = [�t+1 �k1;t �k2;t : : : �kn;t]
0 is distributed as Normal(0; R), and vt and wt

are independent of each other. The system described in (11) and (12) imposes the

cross equations restrictions necessary to ensure that the survey forecasts incorporate

model-consistent expectations.

The structure of the covariance matrix, R, depends on the assumed relationships

between in�ation equation residuals (�t+1) and survey measurement errors (�k;t), the
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assumed relationships between measurement errors of surveys of di¤erent horizons,

and variances. Results are presented for the case of R diagonal with the variances of

the measurement errors assumed to be the same for any choice of ki, but with the

variance of �t+1 allowed to be di¤erent from the variance of measurement errors.

Maximum likelihood estimation is described in Harvey (1989) and Hamilton

(1994). Under normality of vt and wt, the log-likelihood function can be constructed

using the Kalman �lter. With starting values for the unobserved state and it�s mean

square error, maximum likelihood techniques can be used to estimate parameters in

A, H, Q, and R.

To develop basic intuition for the model, it is useful to consider a simple shifting

endpoint AR(1) model of in�ation, for 0 < � < 1, and a single k-period survey

expectation. The measurement equations are:

264 �t

st+k;t

375 =
264 �

�k

375�t�1 +
264 (1� �)

(1� �k)

375�(t)1 +

264 �t

�k;t

375 ; (13)

where �k = �(1��k)=(k(1��)). Notice that in�ation and expectations are weighted

averages of lagged in�ation and the endpoint and that the weight on the endpoint

is smallest for in�ation and increasing monotonically with forecast horizon k. This

suggests an ordering to the data for each t with expectations bounded by in�ation

on one side and the unobserved endpoint on the other, with shorter-horizon (i.e.,

smaller k) expectations closer to in�ation and longer-horizon expectations closer to

the endpoint. Figure 1 shows that, in fact, the data is generally ordered with in�ation

closest to the 8-month expectations, followed by the 14-month expectations, and then

the 10-year expectations.18

18Since annualized monthly in�ation is very volatile, in the �gure monthly observations are shown
for in�ation over the prior twelve months and survey expectations are annualized and shown as
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This simple example also helps illustrate why survey expectations provide an

important empirical advantage when trying to estimate the endpoint. The model

structure is designed to be responsive to information in survey expectations such that

survey expectations with large k will generally receive more weight when updating

estimates of �(t)1 than survey expectations with small k, or than in�ation. This is

evident from the expression describing Kalman updates of predictions of the state

variable:

Et�
(t+1)
1 = Et�1�

(t)
1 +Kt(yt � A0zt�1 �H 0Et�1�

(t)
1 ) (14)

where Kt is the Kalman gain and is de�ned according to:

Kt = Ptjt�1H(H
0Ptjt�1H +R)

�1: (15)

For the simpli�ed AR(1) speci�cation, with only one survey expectation, (14) can be

rewritten as:

Et�
(t+1)
1 = Et�1�

(t)
1 +D�1

t

�
(1� �)R�k (1� �k)R�

�264 �t � ��t�1 � (1� �)Et�1�(t)1

st+k;t � �k�t�1 � (1� �k)Et�1�(t)1

375
Dt = Ptjt�1

h
((1� �)2 + P�1tjt�1R�)((1� �k)

2 + Ptjt�1R�k) + (1� �)
2(1� �k)2

i
; (16)

where R� and R�k are the variances of � and �k, respectively. As the forecast horizon

(k) increases, �k decreases towards zero and (1 � �k) approaches unity. From the

expression above, this implies that updates to estimates of the endpoint will put

a relatively large weight on information in long-horizon expectations (st+k;t) and a

relatively small weight on in�ation (�t), all else equal. The relative sizes of R� and

R�k are also important� the larger the variance of noise in the in�ation equation and

available� twice per year.
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the smaller the variance of the expectations measurement error, the more weight will

be put on survey expectations and the less weight will be put on in�ation. Since

the model is expressed in a format where expectations converge to �1 with horizon,

this is exactly what one would want. Long-horizon expectations should provide more

information about the limit of expectations (the endpoint) and, consequently, should

receive more weight in estimating the endpoint, unless they are measured with sizable

errors.

2.4 Dealing with missing observations

One drawback of the Livingston survey data is that it is available less frequently

and for a shorter horizon than in�ation data.19 One option would be to only use

observations for t when data is available for every component of yt. However, this

would result in an extremely limited dataset as long-horizon expectations of in�ation

are only available since 1990. An alternative would be to drop observations for the

long-horizon expectation, and include observations with shorter-horizon expectations

and in�ation. While this would expand the set of available observations considerably,

analysis would still be limited to only two observations per year.

The approach taken in the next section was to use all available data starting in

1955. Using this approach, monthly observations are available for every year for the

in�ation measurement equation, two observations are available every year for the

measurement equations of two relatively short-horizon expectation series, and for the

10-year expected in�ation series, two observations are available each year starting in

1991, with one observation for 1990.20

19The Livingston survey data is described in more detail in the next section.

20Results from estimations that exclude long-horizon expectations entirely, or that only use
semi-annual observations of in�ation and shorter-horizon expectations were used to check the
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The methodology outlined in Harvey (1989, p144) was used to deal with missing

observations. In particular, the model just described is transformed into a system

with measurement equations for y�t = Wtyt, where Wt is a matrix that selects

those elements of yt for which observations are available. In the description of the

measurement equations, A�0t = WtA
0, H�0

t = WtH
0, and R�t = WtRW

0
t , respectively,

replace A0, H 0, and R.

Once the model is estimated, the estimated speci�cations can be used to construct

term structures of expected in�ation� i.e., pro�les of expected in�ation over di¤erent

forecast horizons. Model estimation provides monthly observations of the shifting

endpoint. This series, combined with the estimated model parameters and monthly

in�ation data, can be used to construct monthly forecasts of in�ation at any horizon

using expression (7) and predictions of average in�ation over any horizon using

expression (8). Thus, although available survey data is limited to semiannual

observations on only three horizons, the model can be used to construct monthly

predictions at any horizon.

3 Empirical Results

The model was estimated using monthly observations, with the techniques described

in section 2.4 used to deal with missing observations of in�ation expectations.

As discussed earlier, Livingston Survey measures of expected in�ation were used.

Expected in�ation was expressed at an annual rate. To be consistent with the survey

data, monthly in�ation was measured using non-seasonally adjusted CPI in�ation,

also expressed at an annual rate. The next subsection discusses some additional

details related to the data. The subsequent subsection discusses empirical results.

robustness of the results.
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3.1 Data

Twice a year, participants in the Livingston Survey are asked to give 6-month and

12-month forecasts of the CPI level. However, because CPI data is released with a

lag, the recommendation of Carlson (1977) is followed and it is assumed that when

making their forecasts economists had access to CPI data through April and October

respectively. Thus, the survey data is treated as 8-month and 14-month forecasts of

the CPI level. While informational assumptions may di¤er across survey participants,

Carlson (1977) reports that this assumption is likely consistent with the practice of

the majority of those surveyed.

While use of the longest possible sample (1946 is the �rst year for which 8- and

14-month surveys are available) was desired, three factors motivated consideration of

a somewhat shorter sample. First, as noted by Carlson (1977), Livingston tended

to adjust survey data with the release of in�ation data for months prior to the

survey date. Such adjustments in the �rst part of the survey history may distort

the data relative to more recent observations. Second, distortions owing to rounding

and rebasing of CPI data are larger for earlier observations. Finally, in�ation itself

appeared to be generated by a di¤erent process in the years immediately following

WWII� in�ation was more variable and the duration of lower frequency �uctuations

was shorter. Choice of 1955 as a starting observation re�ected a compromise, and a

robustness check suggested that similar results were obtained for shorter samples.

A complication that arises when when trying to use the survey data is that in a few

instances since the start of the Survey, the CPI has been rebased to 100 and rounded,

but the Survey levels have not been rebased. To minimize distortions that rounding

and rebasing introduce, the alternative base year CPI published by the Bureau of

Labor Statistics (rebased with 1967=100) was chosen for the empirical analysis and
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both survey data and price level data were converted to in�ation rates. As reported

by Kozicki and Ho¤man (2004), distortions associated with rounding are considerably

smaller in the alternative base year CPI, and in�ation rates will be comparable even

if the index levels of the actual and survey series are not scaled to the same base

year.21

Another feature of the Livingston survey data is that the CPI index being forecast

is not a seasonally adjusted series. For this reason, an AR(13) speci�cation was

chosen. Speci�cations with fewer lags were also considered, but tended to generate

excessively volatile near-term forecasts.22

3.2 Results

Results for two alternative speci�cations are included for comparison. The

alternatives include a constant endpoint and unit root model of in�ation. As noted

earlier, the choice of the shifting endpoint speci�cation was partially motivated by

the failure of constant endpoint and unit root models of in�ation to match survey

data in a di¤erent setup (Kozicki and Tinsley 1998, 2001a, 2001b). However, since

those studies did not use survey data during estimation and conclusions were based

on a di¤erent survey, the performance of these alternatives might be better in the

current application.

The constant endpoint AR speci�cation for in�ation is (1) with �(t)1 � �, a

constant. The unit root speci�cation is a restricted version of (1) where �(1) = 1

21CPI data is generally not revised, so the only di¤erences between in�ation calculated using the
alternative base-year CPI and real-time data are due to rounding that may occur during rebasing.
In preliminary work on semi-annual data, real-time CPI data was used and similar results to those
reported in the paper were obtained.

22In preliminary work, autoregressive speci�cations with seasonal dummies were less successful at
capturing the seasonality. Moreover, coe¢ cients on seasonal dummies tended to be insigni�cantly
di¤erent from zero.
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has been imposed. A transition equation describing the evolution of the endpoint is

not required for either of these variants. Thus, parameters in A, H, and R (and �

in the constant endpoint case) are estimated by applying maximum likelihood to the

measurement equations summarized in (11).

To proceed with maximum likelihood estimation of the shifting endpoint

speci�cation, starting values for the endpoint and its mean square error are required.

Given the random walk transition equation for the shifting endpoint, a di¤use prior

was assumed. In particular, the mean square error was set to 1000 and the mean was

set to 2.5 percent (the value of � estimated in the constant endpoint variant).

Results using data from 1955 through April 2005 are summarized in Table 1. In

many respects, the models are similar. Point estimates of individual autoregressive

parameters (�i) are similar: estimated coe¢ cients on the �rst lag are all slightly larger

than 0.3; and, all models capture seasonality in the data with statistically signi�cant

estimates of the coe¢ cient on the twelfth lag close to 0.2. In addition, standard errors

of the measurement equation for in�ation di¤er by less than .01 percentage point,

suggesting that the three speci�cations explain the behavior of in�ation equally well

at one-month horizons.

The major di¤erence between the three speci�cations is that persistence

as measured by the sum of autoregressive coe¢ cients (
P

i �i) is lower in the

shifting endpoint speci�cation than in the constant- or moving-average-endpoint

speci�cations. This result is consistent with Kozicki and Tinsley (2003), who reported

a notable decline in the sum of AR coe¢ cients after allowing for a shifting endpoint,

and with Kozicki and Tinsley (2001b), who found that unit root tests on the deviation

of in�ation from an estimated in�ation endpoint were rejected whereas those on

in�ation were not. In an extension to multiple countries, Levin and Piger (2004)

con�rmed that in�ation persistence decreases after accounting for mean shifts. Benati
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(2009) also argues that in�ation persistence may result from shifts in trend in�ation.

The intuition behind these results comes from recognizing that in�ation can be

rewritten as �t = �
(t)
1 + (�t � �(t)1 ) and that some of the persistence in in�ation

(�t) is absorbed into low frequency movements of the shifting endpoint that anchor

long-horizon in�ation expectations (�(t)1 ), leaving less persistence in the deviations

(�t � �(t)1 ).

The shifting endpoint speci�cation combines relatively fast reversion of in�ation

expectations to the endpoint as the forecast horizon increases with moderate

time-variation in the endpoint. This moderate time-variation is re�ected in the

speci�cation�s predictions of long-horizon in�ation expectations. The constant

endpoint speci�cation has higher estimated persistence implying more gradual mean

reversion and sluggish adjustments of near-term in�ation expectations, but forecasts

revert to a constant and long-horizon in�ation expectations exhibit relatively little

variation. Finally, the unit root restriction in the third speci�cation implies that

forecasts at all horizons remain close to recent in�ation.

A second important di¤erence between the speci�cations is in their ability to

capture the dynamic behavior of survey expectations. The standard error of the

measurement equations for the survey data is considerably smaller for the shifting

endpoint speci�cation than for the other two speci�cations. This result provides an

early indication that it is not su¢ cient to use survey expectations during estimation.

Such information should be used in a model that is adaptive to the subjective

information embedded in long-horizon expectations.

The importance of explicitly allowing the long-horizon anchor to adapt is revealed

in Figures 2 and 3, as well as in Table 2. Survey expectations and predictions based

on the three speci�cations are shown in Figure 2 for the 8-month forecast horizon
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and in Figure 3 for the 10-year horizon.23 In both cases, the shifting endpoint model

e¤ectively captures the evolution of expected in�ation. By contrast, in Figure 2, both

the constant-endpoint and unit root speci�cations generate predictions of 8-month

in�ation expectations that are more volatile than survey expectations.

In Figure 3, the shifting-endpoint speci�cation generates 10-year expected in�ation

predictions that appear to provide a compromise between predictions based on the

other two speci�cations. In particular, the prediction from the constant endpoint

speci�cation exhibits relatively little variation and appears strongly anchored to 2.5

percent over most of the sample. At the other extreme, the unit root speci�cation

predicts considerable volatility and, owing to the unit root restriction, follows actual

in�ation closely.

Table 2 provides formal evidence on the shifting behavior of long-horizon

expectations. The model that incorporates shifts explicitly through a shifting

endpoint is clearly superior in its ability to capture the evolution of long-horizon

expected in�ation. Entries are root mean squared deviations (RMSD) between survey

expectations and model-based predictions of multi-period in�ation forecasts. What

is interesting about this comparison is that the shifting-endpoint speci�cation clearly

dominates the other speci�cations even though all three speci�cations were �t to

survey data and in�ation and the ability of each to �t in�ation was similar. These

results illustrate that using survey data during estimation and having a good model

of in�ation are not necessarily su¢ cient to empirically explain movements of long-run

expectations of in�ation.

Evidence on the ability of the models to capture the dynamics of long-horizon

expectations is con�rmed by comparison of 10-year constructions to a spliced survey

23A �gure showing results for the 14-month horizon has been excluded because they were visually
similar to those for the 8-month horizon.
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measure of long-horizon expectations from other survey sources. The spliced measure

uses survey data on long-horizon in�ation expectations taken from the Blue Chip

Economic Indicators (available twice per year) through March 1991 and from

the Survey of Professional Forecasters from November 1991 through the end of

the sample (available quarterly). The spliced survey data was not used during

estimation out of concern for biases originating from di¤erences across surveys in

underlying concepts of in�ation or agents being surveyed. Nevertheless, the spliced

survey data provides an external check on the validity of the predictions from

the shifting endpoint speci�cation.24 Overall, 10-year in�ation predictions of the

shifting-endpoint speci�cation clearly dominate the predictions of the constant and

unit root speci�cations in their ability to capture the historical evolution of expected

in�ation (Table 2). RMSDs between available spliced survey expectations and the

predictions are 75 percent larger for the constant endpoint speci�cation and over twice

as large for the unit root speci�cation. Thus, this comparison provides additional

evidence in favor of the shifting endpoint model, including in the period prior to

1990.

While the analysis discussed so far was conditioned on choices regarding sample

24A visual comparison con�rms that the shifting-endpoint predictions track the path of the spliced
survey observations quite closely and �uctuations in the two are synchronized. That said, there is
weak evidence that long-horizon predictions are a little too sensitive to recent movements in in�ation.
Relative to the spliced survey data, predictions are somewhat high prior to the Volcker disin�ation
and somewhat low afterwards.This might be due to distortions in the 8-month and 14-month survey
data that resulted from adjustments made to the raw survey data made by Livingston. As noted by
Carlson (1977), when new data was released between when the survey was conducted and when the
survey results were published, Livingston sometimes adjusted raw survey data in the direction of
surprises in the data. Alternatively, the assumption made in the model that the AR parameters were
constant over the entire sample may be overly restrictive. Cogley and Sargent (2005) �nd evidence
of time-variation in the persistence of in�ation even when allowing for a shifting mean. Finally, in
contrast to Stock and Watson (2007), the analysis in this paper assumes homoskedasticity of shocks
to the endpoint, vt, and in�ation innovations, �t. However, the excessive movement of the endpoint
in the 1980s compared to the survey data suggests that stochastic volatility would not resolve these
deviations as higher volatility of vt in this period would increase the size of endpoint shifts rather
than suppress them.
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period, autoregressive lag length, and inclusion of very limited 10-year survey data,

further investigation provides evidence that the results are remarkably robust. Table

3 compares estimation results for three di¤erent sample periods. Overall, results

appear to be robust to the sample period chosen. Estimates of persistence (i.e., the

sum of AR coe¢ cients,
P

i �i) are in the range of 0.45, with the largest AR coe¢ cient

applying to the �rst lag on in�ation, and standard errors on the innovation to the

state variable are close to 0.23. Although the estimated �rst autoregressive coe¢ cient

is somewhat larger for the shortest sample than for the other two, the implications

are largely unwound by more negative second and third autoregressive coe¢ cients.

Table 4 compares results from the baseline shifting endpoint speci�cation already

discussed to a variant that excludes the survey data on 10-year in�ation expectations.

Parameter estimates, including the sum of AR coe¢ cients, are very close, providing

evidence of robustness and model-consistency of expectations at multiple horizons.

One interpretation of the results is that even short-horizon expectations may provide

considerable information on the endpoint. Indeed, point estimates in Table 4 suggest

that estimates of the endpoint are much more responsive to the information in the

8-month and 14-month survey expectations than to in�ation. Appealing to equation

(16) to provide intuition, if � = 0:45, R� = 2:72, and R�k = 0:25
2, then in updating

the endpoint, the weight on survey expectations would be larger than the weight on

in�ation by a factor of (1 � �k)R�=((1 � �)R�k), or 190 and 200, respectively, for

8-month and 14-month expectations. This factor can be separated into a component

related to the forward-looking nature of expectations ((1 � �k)=((1 � �))), and a

component related to the relative volatilities of the measurement equation errors

(R�=R�k). In the current example, the forward-looking factors are 1.6 (8-month) and

1.7 (14-month), while the volatility factor is 116, re�ecting the high volatility of the

in�ation data relative to the survey expectations.

25



4 Asymmetric Perceptions of In�ation Targets

Although monetary policy in the United States was conducted without announced

numerical targets for in�ation, policy decisions were designed with in�ation objectives

in mind. Likewise, nominal debt contracts, wage and price setting behavior and other

economic decisions by households and �rms are in�uenced by in�ation expectations,

which are anchored by private perceptions of the central bank�s in�ation target. In

the absence of an announced numerical in�ation goal and full information, private

and central bank perceptions of the e¤ective in�ation target may diverge.

The shifting endpoint estimated in the previous section provides a measure of

private sector perceptions of the implicit in�ation goal of monetary policy. In Figure

4, these private sector perceptions (labeled shifting endpoint) can be compared to

estimates of central bank perceptions to assess policy credibility. Two views of central

bank perceptions are represented in the �gure by estimates of the e¤ective in�ation

target of monetary policy. The E¤ective Greenbook in�ation target is the e¤ective

target of monetary policy estimated by Kozicki and Tinsley (2009) using real-time

Federal Reserve Board sta¤ forecast data. The E¤ective in�ation target (VAR) is an

alternative construction of the e¤ective in�ation target obtained from an unobserved

components VAR estimated using retrospective data (Kozicki and Tinsley 2005). By

both measures of the e¤ective target, policy actions through the 1970s were as if the

central bank was willing to accept in�ation of roughly 6 to 7 percent. By contrast,

the private sector was slow to adjust their views, and their perceptions of the in�ation

goal only gradually increased from about 3 percent in 1970 to about 7 percent by the

end of the decade.

The opposite outcome was observed in the 1980s. Both measures of the e¤ective

target exhibited a rapid decline near the end of 1979. However private sector

26



perceptions adjusted much more slowly. Gaps between private sector perceptions and

the central bank e¤ective target provide evidence that the Volcker disin�ation was not

initially viewed as fully credible, o¤ering further support to discussions of Goodfriend

and King (2005) and Kozicki and Tinsley (2005), among others, on imperfect policy

credibility during that period. Indeed, private sector perceptions of long-run in�ation

began consistently tracking the e¤ective in�ation target only in the early 1990s, well

into the Greenspan tenure as Chairman of the FOMC, indicating a lengthy lag before

private sector perceptions aligned with the e¤ective in�ation goal of monetary policy.25

An important feature evident in Figure 4 is the lag in low frequency movements of

private sector perceptions compared to the e¤ective in�ation target series. A similar

lag is evident between actual in�ation and private sector perceptions. This phase shift

is essential for explaining the behavior of expected in�ation and also the behavior of

long-term bond rates.26 Time-variation of coe¢ cients, by itself, is not enough to

capture the lags involved in real-time learning. For instance, Cogley and Sargent

(2005) estimated a VAR with random walks in intercepts and slopes (although the

latter were constrained to yield a stable VAR), yet their core in�ation measure (labeled

Cogley and Sargent (2005) in Figure 4) did not capture the phase shift in endpoints

displayed in expected in�ation and �nancial forecasts. Use of survey expectations (or

�nancial forecasts implicit in bond yields) to inform estimates of the shifting endpoint

e¤ectively captures the phase shift.

25While the perceived and e¤ective goals were similar by the 1990s, FOMC documents indicate
that in�ation continued to be higher than would be consistent with the price stability portion of the
Federal Reserve�s mandate for some time. For instance, minutes for the FOMC meeting on January
30-31, 1996 noted: �The members anticipated that in�ation would remain contained in 1996, but
they did not expect signi�cant progress toward more stable prices.

26See the discussion in Kozicki and Tinsley (1998, 2001a, and 2001b).
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5 Concluding Comments

The paper estimated a joint model of in�ation and survey expectations and used

the empirical model to construct a 50-year monthly term structure of expected

in�ation that is consistent with infrequent observations of expected in�ation from

the Livingston Survey. A shifting-endpoint AR model of in�ation �ts in�ation

comparably to more commonly implemented AR models with constant endpoints

or unit root constraints imposed. However, even when expected in�ation data is used

during estimation, the latter two models are incapable of matching the pro�les of

expected in�ation. Forecasts from constant endpoint models are too volatile at short

forecast horizons and too �at at long horizons. By contrast, forecasts from unit root

speci�cations are excessively volatile at all horizons.

An important lesson from this analysis is that survey expectations include

independent information on expected in�ation relative to that summarized in recent

in�ation. In order to describe the evolution of expected in�ation, it is important to

use a model structure that can adapt in response to this information. Otherwise, it

is quite possible that models may �t in�ation well and yet not be able to explain the

behavior of expected in�ation, even if survey expectations are used during estimation.

A monthly term structure of expected in�ation is easily constructed using

the estimated model. Estimates of long-horizon expectations are consistent with

constructions based on other datasets and di¤erent methodologies, as well as with

available survey data (including both survey data used during estimation and survey

data from other sources not used during estimation). In one robustness check on

the validity of the model speci�cation for in�ation expectations at di¤erent horizons,

it was found that term structures constructed only on the basis of in�ation and

short-horizon survey expectations are close to those that also use longer-horizon
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survey expectations. The observation that long-horizon constructions are close to

long-horizon survey data, even when the latter are not used during estimation,

provides evidence on the consistency of in�ation expectations across horizons and,

importantly, with the chosen model speci�cation. In addition, it suggests that

movements in relatively short-horizon expectations may indicate that there have also

been shifts in long-horizon views.

The model provides an estimate of the private sector perceptions of the e¤ective

in�ation goal of monetary policy. Divergences between private sector perceptions

and estimates of the e¤ective in�ation target from other studies provides evidence

on historical levels of monetary policy credibility. Indeed, the paper �nds strong

historical evidence of asymmetric perceptions of in�ation targets for US monetary

policy, particularly from the mid-1960s through the 1980s. Private sector in�ation

expectations in line with estimates of the e¤ective central bank in�ation objective

were not obtained until the early 1990s.
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Table 1: Estimation Results
Shifting endpoint Constant endpoint MA endpoint

Parameter Estimate SE Estimate SE Estimate SE
�1 .325 .036 .344 .038 .351 .039
�2 .020 .040 .040 .042 .078 .042
�3 -.073 .039 -.025 .040 -.026 .041
�4 .001 .037 .050 .040 .082 .040
�5 .049 .041 .046 .042 .052 .042
�6 .012 .041 .003 .041 .012 .041
�7 .056 .038 .078 .041 .087 .041
�8 -.041 .041 -.003 .042 .026 .042
�9 .013 .038 .029 .040 .012 .040
�10 -.055 .038 .019 .041 .047 .040
�11 .049 .039 .067 .042 .080 .042
�12 .172 .038 .198 .041 .204 .041
�13 -.085 .031 -.025 .035 -.008 .000P

i �i .445 .819 1.000
� 2.575 .153 -2.615 .736
R
1=2
� 2.732 .112 2.726 .079 2.716 .079
R
1=2
� .243 .016 .909 .044 1.047 .051
Q1=2 .232 .021

All models were estimated using maxiumum likelihood with data starting in 1955. The

shifting endpoint speci�cation employed Kalman �ltering techniques to estimate the

unobserved state variables (the perceived in�ation target). The variance covariance

matrix of the measurement equation shocks was restricted to be diagonal during

estimation and variances of measurement equations for survey data were assumed to

be the same. R� denotes the variance of the shocks to the in�ation equation and R�

denotes the variance of the measurement errors on survey data. Results are presented

for three AR (13) model speci�cations. The shifting endpoint model has a shifting

mean, estimated using a Kalman �lter procedure, the constant endpoint model is a

standard unrestricted AR(13) process with a constant mean, and the MA endpoint

model is an AR(13) with a unit root restriction imposed. In the latter speci�cation,

to ensure the sum of AR coe¢ cients equals one, �13 is set to be equal to 1�
P12

i=1 �i

and consequently �13 has a standard error of zero; also, the entry for � is the estimate

of a constant included in the regression, not an estimate of the endpoint.
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Table 2: Comparison of Fits to Survey Data
Forecast Horizon Shifting Constant MA
(Survey) endpoint endpoint endpoint
8 month (Livingston) 0.22 0.94 1.35
14 month (Livingston) 0.14 0.93 1.39
10 year (Livingston) 0.25 0.65 0.68
10 year (Blue Chip) 0.40 1.29 1.39

This table contains root mean squared errors (RMSEs) constructed as the square root

of the average squared deviation of in�ation predictions from survey data over those

observations for which survey data are available. The row labeled 10 year (Livingston)

uses 10-year in�ation expectations data from the Livingston survey. This is the data

that was used during estimation. The row labeled 10 year (Blue Chip) uses 10-year

in�ation expectations data from the Blue Chip Economic Indicators through March

1991 and from the Survey of Professional Forecasters from November 1991 through

the end of the sample (available quarterly). This data was not used during estimation.

In�ation predictions are constructed over the reported horizon for three di¤erent times

series models of in�ation. All three models are AR(13) speci�cations. The shifting

endpoint model has a shifting mean, estimated using a Kalman �lter procedure, the

constant endpoint model is a standard unrestricted AR(13) process with a constant

mean, and the MA endpoint model is an AR(13) with a unit root restriction imposed

(i.e., the sum of AR coe¢ cients is constrained to equal one). Estimates of model

parameters are provided in Table 1.
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Table 3: Robustness of results to sample
1955:1 - 2005:4 1965:1 - 2005:4 1975:1 - 2005:4

Parameter Estimate SE Estimate SE Estimate SE
�1 .325 .036 .367 .040 .461 .046
�2 .020 .040 -.029 .047 -.160 .057
�3 -.073 .039 -.043 .042 -.011 .057
�4 .001 .037 -.026 .042 -.047 .053
�5 .049 .041 .087 .047 .127 .056
�6 .012 .041 -.011 .047 -.118 .055
�7 .056 .038 .101 .044 .184 .053
�8 -.041 .041 -.068 .046 -.075 .054
�9 .013 .038 .003 .042 .001 .051
�10 -.055 .038 -.063 .043 -.075 .051
�11 .049 .039 .080 .045 .117 .053
�12 .172 .038 .156 .044 .123 .052
�13 -.085 .031 -.071 .035 -.073 .038P

i �i .445 .482 .455
R
1=2
� 2.732 .112 2.767 .090 2.587 .098
R
1=2
� .243 .016 .237 .017 .239 .019
Q1=2 .233 .021 .257 .021 .235 .026

Results are for maximum likelihood estimation of the shifting endpoint model

speci�cation over the sample periods indicated. Kalman �ltering techniques were

used to estimate the unobserved state variables (the perceived in�ation target). The

variance covariance matrix of the measurement equation shocks was restricted to be

diagonal during estimation and variances of measurement equations for survey data

were assumed to be the same. R� denotes the variance of the shocks to the in�ation

equation and R� denotes the variance of the measurement errors on survey data.
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Table 4: Robustness of results to use of 10-year survey data
10-year survey used 10-year survey not used

Parameter Estimate Standard Error Estimate Standard Error
�1 .325 .036 .320 .037
�2 .020 .040 .043 .040
�3 -.073 .039 -.053 .039
�4 .001 .037 .024 .038
�5 .049 .041 .032 .041
�6 .012 .041 -.017 .041
�7 .056 .038 .027 .039
�8 -.041 .041 -.028 .041
�9 .013 .038 .038 .037
�10 -.055 .038 -.022 .038
�11 .049 .039 .037 .039
�12 .172 .038 .139 .038
�13 -.085 .031 -.088 .031P

i �i .445 .452
R
1=2
� 2.732 .112 2.727 .079
R
1=2
� .243 .016 .203 .015
Q1=2 .232 .021 .240 .021

Results are for maximum likelihood estimation of the shifting endpoint model

speci�cation with data starting in 1955. Results in the columns labeled 10-year

survey used included measurement equations for 8-month, 14-month, and 10-year

survey data on in�ation expectations. Results in the columns labeled 10-year survey

not used only included measurement equations for 8-month and 14-month survey

data on in�ation expectations. Kalman �ltering techniques were used to estimate the

unobserved state variables (the perceived in�ation target). The variance covariance

matrix of the measurement equation shocks was restricted to be diagonal during

estimation and variances of measurement equations for survey data were assumed to

be the same. R� denotes the variance of the shocks to the in�ation equation and R�

denotes the variance of the measurement errors on survey data.
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