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Abstract

This paper studies U.S. in�ation adjustment speed to aggregate technology

shocks and to monetary policy shocks in a medium size Bayesian VAR model.

According to the model estimated on the 1959-2007 sample, in�ation adjusts

much faster to aggregate technology shocks than to monetary policy shocks.

These results are robust to di¤erent identi�cation assumptions and measures

of aggregate prices. However, by separately estimating the model over the pre-

and post-1980 periods, this paper further shows that in�ation adjusts much

faster to technology shocks than to monetary policy shocks in the post-1980

period, but not in the pre-1980 period.
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1 Introduction

This paper investigates whether U.S. in�ation adjusts faster to aggregate technology

shocks than to monetary policy shocks. Technology and monetary policy shocks

are particularly important as these shocks account together for a large fraction of

business cycle �uctuations.1 Assessing the speed of in�ation adjustment to di¤erent

types of shocks is an important task in macroeconomics, not only to establish the

main sources of business cycle �uctuations, but also to understand the way di¤erent

shocks transmit through the economy and to distinguish among available models.

For instance, Altig, Christiano, Eichenbaum and Linde (2011) and Dupor, Han and

Tsai (2009) have recently shown that DSGE models of sticky prices have a hard time

jointly explaining in�ation responses to technology and monetary policy shocks.

In this paper I document in�ation adjustment to technology and monetary policy

shocks using a medium size Bayesian VAR (BVAR) model, estimated on the U.S.

economy from 1959 to 2007. This is not the �rst paper studying in�ation responses

to technology and monetary policy shocks in the context of VARs. Altig et al. (2011),

Edge, Laubach and Williams (2003) and Dupor, et al. (2009) have recently estimated

structural VARs of the U.S. economy in the post second World War period, and found

that in�ation responds much faster to aggregate technology shocks than to monetary

policy shocks. This paper contributes to this literature on three dimensions.

First, after measuring in�ation adjustment speed in response to technology and

monetary policy shocks, this paper derives the posterior probability associated to

the hypothesis that in�ation adjusts faster to aggregate technology shocks than to

monetary policy shocks. For instance, when estimating the BVAR in the whole

sample, I �nd that this posterior probability is high, ranging from 84 to 92 percent

1See, for intance, Smets and Wouters (2007).
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depending on the measure of price level and on the horizon of evaluation of adjustment

speed.

Second, I show that the di¤erence in in�ation adjustment speed is not stable across

di¤erent subsamples. In particular, I �nd that in�ation adjusts faster to aggregate

technology shocks than to monetary policy shocks in the post-1980 period, i.e. the

period associated to Volcker and Greenspan at the helm of the Federal Reserve, but

not in the pre-1980 period. In�ation adjustment speed has substantially increased

to technology shocks in the Volcker-Greenspan period relatively to the pre-Volcker

period, while it has changed less over time after a monetary policy shock. These

results are consistent, for instance, with predictions of models of price setting under

imperfect information as in Mackowiak and Wiederholt (2010) and Paciello (2010).

According to these models, a policy that stabilizes more the price level induces �rms

to pay more attention to productivity shocks relatively to nominal shocks, inducing

a faster response of in�ation to the former than to the latter.2 More generally, these

results might pose a new challenge to DSGE models of sticky prices beyond the facts

addressed by Altig et al. (2011) and Dupor et al. (2009).

Third, on the methodological side, this paper applies the methodology proposed by

Banbura, Giannone and Reichlin (2010) for the estimation of potentially large BVAR

models, and combines it with recent results by Ramirez, Waggoner and Zha (2007,

2010), to obtain identi�cation of impulse responses to both aggregate technology and

monetary policy shocks. This is important as recent studies (e.g. Bernanke et al.

(2005), and Banbura et al. (2010)) have shown that larger information set improve

the identi�cation of monetary policy shocks and reduce the risk of omitted variables

miss-speci�cations. In fact, I show that the benchmark speci�cation of the BVAR

predicts a higher posterior probability of in�ation adjusting faster to technology than

2See Clarida et al. (1999) for evidence about the evolution of monetary policy over time.
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to monetary policy shocks relatively to a model of smaller size. Moreover, the paper

shows that results about in�ation adjustment speed are robust to several identi�cation

assumptions of the structural shocks. This is important as identi�cation of monetary

policy and technology shocks through short- and long-run restrictions as in Altig, et

al. (2011) have recently been questioned by part of the macroeconomic literature.3 I

also show that whether in�ation adjusts faster to technology than to monetary policy

shocks is independent of the measure of price level, such as the GDP de�ator, the

consumer price index, the producer price index and the consumption de�ator. This

evidence supports the view that the di¤erence in price adjustment speed to the two

shocks is common to di¤erent sectors of the economy.

In a related literature, Galì, Lopez-Salido and Valles (2003) have shown that in�a-

tion adjustment speed has increased to technology shocks in the Volcker-Greenspan

era. Boivin and Giannoni (2006) and Boivin, Kiley and Mishkin (2010) have shown

that in�ation responsiveness to monetary policy shocks has decreased in the Volcker-

Greenspan period. Findings of this paper are consistent with results by those au-

thors. Di¤erently from those papers, I estimate in�ation response to the two struc-

tural shocks within the same model, including a larger number of macroeconomic

indicators. This approach allows a direct comparison of the evolution of in�ation

adjustment speed to technology and monetary policy shocks over time and reduces

uncertainty in the posterior estimates.

The paper is organized as follows. Section 2 describes the BVAR model, the data,

the prior and the identi�cation assumptions. Section 3 derives impulse responses to

aggregate technology and monetary policy shocks in the whole sample, and assesses

subsample stability of results. Section 4 assesses robustness of �ndings against the

3See the reference list in Erceg, Guerrieri and Gust (2005) for most of the relevant references
regarding identi�cation of technology shocks. See Faust (1998) and references therein regarding
identi�cation of monetary policy shocks.
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assumptions on the identi�cation of aggregate technology and monetary policy shocks.

Section 5 concludes.

2 The benchmark BVAR model

This section describes the baseline empirical model consisting of a structural vector

autoregression (SVAR) for an n-dimensional vector of variables, Yt. The SVAR model

is given by

A0Yt = � + A1Yt�1 + :::+ ApYt�p + et; (1)

where Yt = (y1;t y2;t :::yn;t)
0 is the set of time-series at period t, � = (�1 �2 ::: �n) is

a vector of constants, A0; A1;..Ap are n� n matrices of structural parameters, p is a

non-negative integer, and et is an n-dimensional Gaussian white noise with unitary

covariance matrix, E fete0tg = I; representing structural shocks. The reduced form

VAR model associated to (1) is given by

Yt = c+B1Yt�1 +B2Yt�2 + :::+BpYt�p + ut; (2)

where c = A�10 �; Bs = A�10 As for s = 1; ::p; and ut = A�10 et: It follows that � �

E futu0tg = A�10
�
A�10

�0
:

Several authors (e.g. Bernanke et al. (2005) and Banbura et al. (2010)) have

shown that larger information set help improving the identi�cation of monetary pol-

icy shocks, as well as the model ability at forecasting in�ation, output and short-term

interest rate. The vector Yt includes the same macroeconomic indicators considered

in the VAR model of Altig et al. (2011), but augmented by some of the additional

indicators considered by Banbura et al. (2010) in their "medium" size BVAR. These

additional indicators help to reduce uncertainty in the estimate of in�ation responses
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to technology and monetary policy shocks, while the Bayesian shrinkage helps ad-

dressing the curse of dimensionality.4 The VAR is speci�ed in terms of stationary

variables. Stationarity of (2) is needed to implement the identi�cation scheme in the

next section.5 To achieve stationarity I rescale the non-stationary economic variables

similar to Altig et al. (2011).6 The time span is from January 1959 through June

2007, and the model is estimated at a quarterly frequency with the number of lags p

set equal to 4.

I assume a Normal inverted-Wishart prior for the parameters of (2) according to

results by Kadilaya and Karlsson (1997) and similarly to Banbura et al. (2010). In

particular, let B � (B1; ::::; Bp; c)0 ; the Normal inverted-Wishart prior has the form

vec(B)j	 v N (vec(B0);	
 
0) and 	 v iW (S0; �0) :

The prior parameters B0; 
0; S0 and �0 are chosen consistently with the assumption

that the prior mean can be associated to the following process

Yt = c+ diag (�1; ::::; �n)Yt�1 + ut; (3)

where the ith equation in (2) is centered around a random walk with drift if the

ith element of Yt is highly persistent, �i = 1; and around a white noise otherwise,

�i = 0. This amounts to shrinking the diagonal elements of B1 corresponding to the

ith equation for which �i = 1 toward one, and the remaining coe¢ cients in B1; ::::; Bp

toward zero. I refer to Appendix B for more details on the prior.

4The appendix provides details on the variables included in the model.
5All the roots of the VAR polynomial need to be ouside the unit circle. Draws with coe¢ cients

inside the unit circle are discarded.
6Details on the speci�cation of the vector Y are given in the appendix. The price level and labor

productivity enter the model in log-di¤erences. Standard test of cointegration cannot reject the
hypothesis of no cointegration among variables in Y.
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I assume a white noise prior, �i = 0; for all variables but the Federal funds

rate which is entered in levels and characterized by substantial persistence. In fact,

the other persistent variables are either rescaled or entered in �rst di¤erences. The

overall tightness of the prior distribution around model (3) is governed by an hyper-

parameter, formally de�ned as � in Appendix B: Banbura et al. (2010) suggest

that prior tightness should be chosen in relation to the size of the system. De Mol,

Giannone and Reichlin (2006) discuss this point in detail and show that as the number

of estimated parameters increases, the overall tightness should increase as well in order

to avoid over-�tting of the model to the data. In comparing VARs of di¤erent size,

these authors suggest �xing a VAR model as a reference, and adjusting prior tightness

associated to each model so that the di¤erent models are characterized by comparable

in-sample mean squared forecast error for a selected group of variables. I follow this

recommendation. I set prior tightness relative to a reference model that has �at

prior and the size of a standard new-Keynesian model, including �ve macroeconomic

indicators.7 See Appendix C for more details on the choice of the hyper-parameter

governing prior tightness. In section 4 I will assess robustness of results to this choice.

2.1 Identi�cation of the structural parameters

Identi�cation of model (1) amounts to putting enough restrictions on the model to

be able to recover A0; A1::; Ap and � given estimates of the reduced form parameters,

�; B1; :::; Bp and c: This is achieved, in the benchmark speci�cation of the model, by

appealing to the combination of standard identi�cation assumptions for technology

and monetary policy shocks. These identi�cation assumptions have the advantage of

making results easily comparable to the existing literature. However, in section 4, I
7The �ve variables are: labor productivity, per-capita hours worked, the Federal Funds rate, M2

and the GDP de�ator. This model is similar to models studied by Galì et al. (2003) and Boivin and
Giannoni (2006).
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will show that results about in�ation responses are robust to di¤erent identi�cation

assumptions.

First, it is assumed that only technology shocks may have a permanent e¤ect on

the level of labor productivity, as originally proposed by Galí (1999). This restriction

is satis�ed by a broad range of business cycle models under standard assumptions. In

particular, let�s de�ne the matrix C � (I �B1 � :::�Bp)�1A�10 ; and suppose that

labor-productivity growth is the ith element of vector Yt; and that the technology

shock is the jth element of vector et: It is assumed that all the elements of the ith row

of C are zero but the one associated to the jth column.

Second, similarly to Christiano et al. (2005), it is assumed that monetary policy

targets a policy instrument, St; according to

St = f (zt) + !est ; (4)

where zt is the information available to the central bank as of time t; ! is a constant

and est is the monetary policy shock. Following the Bernanke-Blinder assumption,

St is set equal to the 3-months average Federal Funds rate. Variables in Yt are

divided in four subsets, Yt = (Xt; St; Zt; Ft)
0 : Similarly to the recursive assumption of

Christiano et al. (2005), it is assumed that variables in Xt may respond to monetary

policy shocks, est ; with one period lag. It is also assumed that the FED targets the

monetary policy instrument so that St is unresponsive to contemporaneous changes

in Zt; where Zt includes money velocity. Ft is equal to the interest rate on Treasury

bonds with ten years maturity in di¤erence from the the 3-months average Federal

Funds rate, and there is no short-run restriction on the relationship between Ft and

the other variables in Yt.8

8This implies that the monetary policy instrument St is allowed to respond contemporaneously
to Ft; as well as Ft is allowed to respond contemporaneously to St: See Appendix D for details.
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Finally, the column of A�10 corresponding to the impact of monetary policy shocks

on Yt is normalized so that monetary policy shocks are associated to a contemporane-

ous increase in the federal funds rate; the column of A�10 corresponding to the impact

of technology shocks is normalized so that such shocks are associated to a permanent

increase in labor productivity.9 Under this set of assumptions the impulse responses

of Yt to monetary policy and technology shocks are exactly identi�ed.10

3 Impulse responses and in�ation adjustment speed

Impulse responses are generated according to the methodology proposed by Ramirez,

Waggoner and Zha (2007, 2010). More details are given in Appendix D. The model

reduced-form parameters B1; :::; Bp and � are drawn from the estimated Normal

inverted-Wishart posterior distribution. For each draw of B1; :::; Bp and �; the model

structural-form parameters A0; :::; Ap are computed according to the identi�cation

assumptions above. Given the structural parameters, the impulse responses of Yt to

a one standard deviation technology shock and to a one standard deviation monetary

policy shock are computed for each draw.11 I consider four di¤erent measures of

in�ation: the GDP de�ator, the CPI, the PPI and the consumption expenditure

de�ator. I separately estimate the BVAR for each of these measures.

In�ation adjustment speed is measured according to the methodology proposed

by Cogley, Primiceri and Sargent (2010). Relative to other measures of in�ation

persistence, such as half-lives, this measure has the advantage of not relying on the

monotonicity of responses. Given that in�ation response to monetary policy shocks

is characterized by a hump-shape dynamic, this property is very appealing. In par-
9Results are robust to di¤erent normalization assumptions, and in particular to the likelihood

preserving normalization proposed by Waggoner and Zha (2003).
10See Appendix D for details.
11Results are based on 5,000 draws and are robust to larger number of draws.
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ticular, in�ation persistence to shock i, j periods after the shock, is measured as

rji � 1�

jX
s=0

(�̂s;i)
2

1X
s=0

(�̂s;i)
2

; (5)

where �̂s;i is the response of the in�ation rate to shock i 2 fTECH; MPg ; evaluated

s periods after the shock. According to this measure, in�ation is weakly persistent

when the e¤ects of shocks decay quickly, and it is strongly persistent when they decay

slowly. When the e¤ects of shock i die quickly, rji is close to zero at relatively short

horizon. But when the e¤ects of shock i decay slowly, rji remains far from zero for

longer horizon. Thus, for small or medium j � 0, a small rji signi�es high adjustment

speed, and a large rji implies low adjustment speed.

3.1 Results from the whole sample

This section evaluates in�ation responses in the 1959:Q1-2007:Q2 sample, with par-

ticular emphasis on in�ation adjustment speed.12 Figure 1 displays scatter plots for

the values of rji obtained from the posterior draws of the structural parameters of the

BVAR model; rji is evaluated at one year horizon of responses, i.e. j = 4.13 Each

plot is associated to one of the four measures of prices. The vertical axis of each plot

reports values of rji associated to the monetary policy shock, and the horizontal axis

values of rji associated to the technology shock. By de�nition of r
j
i ; draws above (be-

low) the 45 degree line mean that in�ation adjustment is faster (slower) to technology

shocks than to monetary policy shocks.

12Impulse responses of in�ation, as well as other economic variables, are provided in an on-line
appendix available on the author�s website.
13Results are qualitatively similar for other horizon j. More details are in the on-line appendix.
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In Figure 1, the vast majority of draws is above the 45 degree line for all measures

of prices. The posterior probability that in�ation adjusts faster to technology shocks

than to monetary policy shocks, i.e. rj=4TECH < r
j=4
MP ; is relatively high across all four

measures of aggregate price level, ranging from about 0.87 for the GDP de�ator to

0.91 for the CPI. Figure 2 evaluates the same measure but across di¤erent horizons

j for rji ; holding �xed the measure of prices to the GDP de�ator. The shorter the

horizon of evaluation, the higher the posterior probability of in�ation adjusting faster

to technology shocks, ranging from a low of 0.85 at an evaluation horizon of 3 years

to a maximum of 0.93 for a horizon of 2 quarters.

Table 2 reports the median, 16th and 84th percentiles of the posterior distribution

of rji for the technology and the monetary policy shocks respectively, evaluated at

j = 2; 4; 8; 12; 16. From this table we can draw the following conclusions. First,

in�ation adjustment speed to technology shocks is much faster than to monetary

policy shocks, independently of the horizon of the response at which we measure rji ;

and independently of the measure of aggregate prices. For instance, two years after

the shock, GDP de�ator in�ation has accomplished at the median about 85 percent

of total adjustment to the technology shock, but only 18 percent of total adjustment

to the monetary policy shock.14 In addition, it takes 2 quarters for median in�ation

response to accomplish half of its response to the technology shock, while it takes

more than 2 years in response to the monetary policy shock.

3.2 Subsample analysis

Boivin and Giannoni (2006) and Boivin et al. (2010) have documented that the

impact of monetary policy shocks on the U.S. economy has became less e¤ective

14Notice that the fraction of in�ation adjustment accomplished j quarters after the shock is mea-
sured by 1� rj;i:
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in the Volcker-Greenspan period compared to the pre-Volcker one. Similarly, Galí

et al. (2003) have found that the e¤ects of technology shocks on in�ation di¤er

drastically between the two periods. This section answers the following questions: (i)

Does in�ation adjust faster to technology shocks than to monetary policy shocks in

all subsamples? (ii) Does the di¤erence in in�ation adjustment speed quantitatively

similar in the di¤erent subsamples?

I evaluate and compare in�ation adjustment speed to the two shocks in the periods

before and after Volcker�s tenure, i.e. 1959:Q1-1979:Q3 and 1979:Q4-2006:Q1, as well

as in the periods including Volcker�s second mandate and/or Greenspan, i.e. 1983:Q4-

2006:Q1 and 1987:Q3-2006:Q1.15 Hence, I label these subsamples as "pre-Volcker",

"Volcker I - Greenspan", "Volcker II - Greenspan" and "Greenspan" respectively.

Figure 3 displays scatter plots for the values of rji obtained from the posterior

draws of the structural parameters of the BVAR model in the di¤erent periods; rji is

evaluated at one year horizon of responses.16 These �gures show that the di¤erence

between in�ation adjustment speed to the two shocks has changed over time. In fact,

in the 1959:Q1-1979:Q3 subsample, the majority of draws is below the 45 degree line,

indicating that in�ation adjusts faster to monetary policy shocks than to technology

shocks. In contrast, in the 1979:Q4-2006:Q1 subsamples, the majority of draws is

above the 45 degree line, indicating that in�ation adjusts faster to technology shocks

than to monetary policy shocks.

To better quantify in�ation adjustment speed in the di¤erent subsamples, Ta-

ble 3 reports the median, 16th and 84th percentiles of the posterior distribution of

rji in the di¤erent subsamples. In�ation adjustment speed to technology shocks has

15The parameter � is set in each subsample according to the algorithm in Appendix C.
16There statistics refer to the CPI. Similar statistics are obtained for the GDP de�ator, but the

shape of median impulse responses of the CPI to a monetary policy shock in the post 80�s subsamples
display a less pronounced "price puzzle". See the Online Appendix for more details on the shape of
impulse responses.
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substantially increased over time. This is true across all horizons of evaluation of

in�ation adjustment speed. For instance, two years after the shock, in�ation accom-

plishes about 17 versus 85 percent of overall adjustment to technology shocks under

the "pre-Volcker" and "Volcker - Greenspan" subsamples respectively. In contrast,

in�ation adjustment speed to monetary policy shocks is lower in the last two decades

than in the pre-Volcker subsample. The latter is consistent with �ndings by Boivin

and Giannoni (2006).

4 Robustness analysis

This section investigates to what extent results from the benchmark BVAR model

are robust to several features of the identi�cation assumptions. While extensively

adopted, identi�cation of monetary policy shocks through the recursive assumption

of Christiano et al. (2005), and identi�cation of technology shocks through long-run

restrictions as in Gali (1999) have been recently criticized by part of the macro-

economic literature. In fact, zero restrictions on the contemporaneous responses of

economic variables to monetary policy shocks might be particularly restrictive when

frequency of observations is quarterly.17 Furthermore, long-run restrictions on the

response of economic variables to technology shocks might give biased results in a

VAR with a �nite number of lags.18 This section investigates to what extent results

from the benchmark BVAR model are robust to several features of the identi�ca-

tion assumptions. I identify the two structural shocks of interest through a di¤erent

method relying on sign restrictions of impulse responses, and I consider a di¤erent

identi�cation assumption of technology shocks based on a Solow-residual measure of

17See Faust (1998) and references therein regarding identi�cation of monetary policy shocks.
18See the reference list in Erceg, et al.(2005) for most of the relevant references regarding identi-

�cation of technology shocks.
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quarterly total factor productivity growth. The insights from these exercises reinforce

the results obtained in the previous sections. Below I discuss some of these results

more in detail.

In addition, Table 4 and Figure 4 also assess robustness of results to prior tightness,

and to estimating the model on monthly data. While relaxing the weight on the prior

may increase uncertainty in posterior estimates, it does not change the prediction

about in�ation adjusting faster to technology shocks. Results are robust to estimating

the model at a monthly frequency.

4.1 Identi�cation through sign restrictions

This method has been originally proposed by Faust (1998) and then applied by Uhlig

(2006) to the identi�cation of monetary policy shocks, and by Dedola and Neri (2006)

to the identi�cation of technology shocks. These sign restrictions are robust in the

sense that they are consistent with a wide range of DSGE models.19 From a Bayesian

point of view, sign restrictions amount to attributing probability zero to reduced-

form parameters giving rise to impulse responses which contravene the restrictions.

To the extent that these restrictions do not lead to over-identi�cation, they impose

no constraint on the reduced form of the VAR. Di¤erently from the benchmark iden-

ti�cation assumptions, this procedure does not require stationarity of the vector Y.

Therefore, I can leave the non-stationary variables of the model in levels.20 Given the

speci�cation in levels, I can include in the VAR di¤erent measures of price level and

money supply, as reported in the appendix. Apart from the di¤erent identi�cation

19Canova, Gambetti and Pappa (2007), Dedola and Neri (2006) provide detailed examples of
standard DSGE models where these restrictions hold. Moreover, these restrictions are consistent
with impulse responses estimated in a DSGE model by Smets and Wouters (2007). I refer to these
authors for more details.
20The speci�cation of � is changed accordingly. For instance in the benchmark speci�cation � = 0

for in�ation, in the speci�cation in levels � = 1:
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assumptions, the rest of the estimation procedure is as in the benchmark speci�ca-

tion of the model. I adopt the algorithm proposed by Ramirez et al. (2007, 2010) to

compute the posterior distribution of impulse responses.21

Sign restrictions on the impulse responses to monetary policy shocks are similar

to the ones adopted by Uhlig (2006), while sign restrictions on the impulse responses

to technology shocks are similar to the ones adopted by Dedola and Neri (2006).22

Intuitively, this method distinguishes the two types of shocks on the basis of the facts

that: i) permanent technology shocks have a more persistent impact on quantities

than monetary policy shocks; ii) quantities and prices move in opposite directions fol-

lowing a technology shock, but move in the same direction following a monetary policy

shock; iii) monetary policy shocks are associated to changes in monetary aggregates

and interest rates.23

Results in Table 4 and Figure 4 con�rm main �ndings from the benchmark model,

i.e. that in�ation adjustment speed is higher to technology shocks than to monetary

policy shocks.

4.2 A Solow-residual based identi�cation for technology

As an additional robustness check on identi�cation of technology shocks, this sub-

section adopts a di¤erent identi�cation assumption for technology shocks, relying on

21For more details see Ramirez, Waggoner and Zha (2007) pp. 38-40.
22I refer to these authors for a discussion of the ability of these restrictions to distinguish technology

from monetary policy shocks as well as from other shocks.
23More speci�cally, sign restrictions to a monetary policy shock are such that: the impulse re-

sponses of M2, investments, consumption, GDP and hours worked are non-positive for the �rst 2
periods at least; the Federal Funds rate is non-negative for the �rst 2 periods at least; the impulse
responses of CPI is negative in at least one quarter within the �rst 12 quarters from the shock.
Restrictions to a technology shock are such that: the impulse responses of GDP and investments

are non-negative in the �rst 10 quarters; the impulse responses of labor productivity non-negative;
the impulse responses of the real wage and consumption are non-negative for at least 5 quarters; the
impulse responses of CPI is negative in at least one quarter within the �rst 12 quarters from the
shock.
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a Solow-residual measure of quarterly total factor productivity (FTFP) growth esti-

mated by Fernald (2007). Fernald�s quarterly measure explicitly accounts for variable

capital utilization and labor hoarding.24 The FTFP series is added to Y and the pos-

terior distribution of (B;�) is estimated as in section 2. Di¤erently from section 2, in

this subsection the identifying assumption is that a technology shock is the only shock

a¤ecting FTFP in the long-run. Relative to the identi�cation assumptions of section

2, the advantage of this procedure is that, by explicitly assuming an aggregate pro-

duction function, it directly estimates total factor productivity growth.25 As long as

the assumption about the aggregate production function holds at low frequencies, the

model provides unbiased estimates of technology shocks. The remaining assumptions

required to jointly identify the monetary policy shock are unchanged from section 2.

According to Table 4, in�ation adjustment speed to technology shocks is higher than

to monetary policy shocks. The associated posterior probability is about 0.86.

4.3 Smaller VAR

Table 4 and Figure 4 report results from the estimation of the smaller size VAR used

as reference model. This model includes GDP, the Federal Funds rate, in�ation, per-

capita hours worked and money velocity. The model has the same size of a standard

new-Keynesian model, and a similar version has been studied in the context of VARs

by Galì et al. (2003) or Boivin and Giannoni (2006). When analyzing impulse

responses obtained from the small size model, I obtain no clear answer on whether

24The growth rate of FTFP is given by:

� ln(FTFP ) = � ln(GDP )� � (� ln(K) + � ln(Z))� (1� �) (� ln(QH) + � ln(E)) ;

where Z is capital utilization, K is capital input, E is labor e¤ort per (quality-adjusted) hour worked,
Q is labor quality (i.e., a labor composition adjustment), and H is hours worked.
25This procedure has been originally applied by Christiano, Eichenbaum and Vigfusson (2004) sug-

gesting there could be high frequency cyclical measurement error in Solow-residual based measures
of total factor productivity, that the long-run restriction might clean out.
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in�ation adjusts faster to technology shocks than to monetary policy shocks. In fact,

uncertainty in the estimates of impulse responses is higher.26 This uncertainty re�ects

in the estimate of the posterior probability of in�ation adjusting faster to technology

shocks, which drops substantially to about 0.47. In fact, the di¤erence in median

estimates of in�ation adjustment speed to the two shocks is much smaller than under

the benchmark model. Therefore, allowing for more information in the VAR helps

identifying the response of the economy to the two shocks, and reduces uncertainty

in the estimation of in�ation adjustment speed.

5 Concluding remarks

This paper answers the question of whether, by how much and how likely it is that

U.S. in�ation adjusts faster to aggregate technology shocks than to monetary pol-

icy shocks. According to a BVAR model for the 1959-2007 sample, this paper �nds

that U.S. in�ation adjusts much faster to technology shocks than to monetary pol-

icy shocks. This paper also �nds that this result is robust to di¤erent identi�cation

assumptions. However, when investigating more in detail over subsamples, this pa-

per �nds that in�ation adjusts faster to technology shocks than to monetary policy

shocks in the Volcker-Greenspan period, but the opposite is true in the pre-Volcker

subsample. This result is due to the fact that in�ation adjustment speed in the later

subsample has substantially increased to technology shocks, while it has changed

much less to monetary policy shocks. These results are interesting, for instance, from

the perspective of models of price setting under rational inattention. Paciello (2010)

and Mackowiak and Wiederholt (2010) show in fact that the allocation of attention by

�rms, and hence the speed of in�ation adjustment, crucially depend on the systematic

26Impulse responses are available in the on-line appendix.
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response of monetary policy to expected in�ation and output �uctuactions.

Increasing the number of macroeconomic indicators in the VAR helps reducing

the uncertainty in the estimation of in�ation responses to technology and monetary

policy shocks. Reducing the uncertainty might help to evaluate the ability of available

models of price setting to account for the di¤erent speed of in�ation adjustment to

the two structural shocks.
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A Data
TABLE 1
Model data
Mnemon Series Y=(X,S,Z,F) Units
GDPQ/LBMNU Labor productivity X � log
LBMNU/P16 Index total hours worked per person X log
FYFF Interest rate: Federal Funds rate S Level
(LBCPU+LBMNU)/GDP Labor share of GDP X log
FYGT10 Interest rate: 10-YR U.S. Treasury F Level
(GCN+GCS+GGE)/GDP Consumption share of GDP X log
(GCD+GPI)/GDP Investment share of GDP X log
IPS10/QGDP Industrial production relative to GDP X log
UTL11 Capacity utilization X Level
LHUR Unemployment rate X Level
HSFR Housing starts index X log
MZMSL/GDP Money velocity Z log
PGDP GDP price de�ator (PGDP) X � log
PUNEW Consumer price index (CPI)a; b X log
PCPEPI Personal cons. expend. de�ator (PCE)a; b X log
PWFSA Producer price index (PPI)a; b X log
FM1 M1 monetary stocka Z log
FMRRA Non-borrowed reservesa Z log
FMRNBA Total reservesa Z log
Notes: The source of most of the data is the DRI Basic Economics Database, available on-line at

Northwestern University. Output, GDP de�ator were obtained from the BEA website; "a" denotes
those variables that are included in the model only under sign restrictions identi�cation; "b" denotes
the price indeces that are entered in the benchmark speci�cation of Y one at the time.
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B Kadiyala and Karlson (1997) prior

Let�s rewrite model (2) as a system of multivariate regressions:

Y
T�n

= X
T�k

B
k�n

+ U
T�n
;

where Y = (y1; :::yT )
0, X = (X1; ::::; XT )

0 and with Xt =
�
Y 0t�1; :::; Y

0
t�p; 1

�
; U =

(u1; :::; uT )
0 ; B = (B1; ::::; Bp; c)

0 ; and k = np + 1: The prior beliefs are such that B

and 	 have a Normal inverted-Wishart distribution, according to which

	 v iW (S0; �0) and vec(B)j	 v N (vec(B0);	
 
0) :

The prior parameters S0; �0; B0 and 
0 are chosen so that the prior expectaxtion of

	 is equal to E (	) = diag (�21; ::::; �
2
n) ; and the prior expectactions and variances of

the elements of vec(B) coincide with

E
�
(Bs)ij

�
=

8><>: �i; if i = j; s = 1

0; otherwise
;

V
�
(Bs)ij

�
=

�2

s2
�2i
�2j
;

where (Bs)ij is the i; j element of Bs for s = 1; ::p; i = 1; 2::; n; j = 1; 2; ::n: Notice

that the unconditional distribution of B is matricvariate t. For details see Kadiyala

and Karlsson [28] and Banbura, Giannone and Reichlin (2010) at pages 74-75. The

scale parameters �2i are set equal to the variance of the residual from a univariate

autoregressive model of order p for the variable Yi:

The prior is implemented by adding T0 dummy observations, Y0 and X0; to Y and

X respectively. The vectors Y0 andX0 are de�ned as in eq. 5 of Banbura et al. (2010).
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It can be shown that this is equivalent to imposing a Normal inverted-Wishart prior

with B0 = (X 0
0X0)

�1X 0
0Y0; 
0 = (X 0

0X0)
�1 ; S0 = (Y0 �X0B0)

0 (Y0 �X0B0) and

�0 = T0 � k � n� 1: It follows that the dummy-augmented VAR model is:

Y�
T��n

= X�
T��k

B
k�n

+ U�
T��n

;

where T� = T + T0; X� = (X 0; X 0
0)
0 ; Y� = (Y 0; Y 00)

0 and U� = (U 0; U 00)
0 : To insure

the existence of the prior expectation of 	 it is necessary to add an improper prior

	~ j	j�(n+3)=2 : The posterior distribution is a Normal inverted-Wishart:

	jY v iW (S�; ��) and Bj	; Y v N (B�;	
 
�) ;

where B� = (X 0
�X�)

�1X 0
�Y�; 
� = (X 0

�X�)
�1 ; S� = (Y� �X�B�)

0 (Y� �X�B�) and

�� = T� � k + 2:

C Parameterization of �

Consider an n1� dimensional subset of Y . De�ne the in-sample mean squared forecast

error (MSFE) of the 1-step-ahead mean squared forecast as:

MSFE
(�;m)
i =

1

T � p� 1

TX
t=p+1

�
ŷ
(�;m)
i;t � yi;t

�2
;

where i = 1; ::::; n1 indices the variable the MSFE is computed for, T is the length

of the sample, ŷ(�;m)i;t is the one-step-ahead forecast computed in model m with prior

parameterization equal to �: This analysis studies two types of models, depending

on the number of variables included in the analysis and the value of �. The �rst

model, m = 1; is similar to the model by Galì et al. [26], including n1 < n variables
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and is estimated with a �at prior, � = 1: The n1 variables considered are: labor-

productivity, hours worked, GDP price de�ator, Federal Funds rate and M2 money

stock. The second model m = 2 is the benchmark model with n variables. Following

Banbura, Reichlin and Giannone (2010), I choose � in model m = 2 so to minimize

the di¤erence in �t from model m = 1 over the n1 variables:

�� = argmin
�

�����z� 1

n1

n1X
i=1

MSFE
(�;2)
i

MSFE
(0;1)
i

����� ;
where z = 1

n1

Pn1
i=1

MSFE
(1;1)
i

MSFE
(0;1)
i

= 0:17 is the measure of relative �t associated to the

reference model. From this procedure �� is equal to 0:07.

D Identi�cation

Let�s order the variables in the model as Yt = (Xt; St; Zt; Ft)
0 ; where the �rst element

of Xt and Yt is log-labor productivity: Variables are entered in the VAR according

to Appendix A. Following Ramirez et al. [31], [32] let�s express the set of linear

restrictions onto the structural parameters of A0 as

H (A0) =

264 A�10

(I �B (1))�1A�10

375 � D
where B (1) = B1 + ::: + Bp and B1; :::; Bp are the estimates of the reduced form

autoregressive matrices. D is a 2n� n matrix of restrictions imposed on the impact

and long-run responses to structural shocks. Let�s de�ne nx and nz as the number of

variables in X and Z respectively. Let�s order the technology and monetary policy

shock as the nth and (nz + 1)
th elements of the vector of structural shocks et respec-
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tively. In particular, the identifying restrictions are zero restrictions such that the

matrix D is given by

D� =

266666666666666666666666666666666664

0

(nx�nz)

0

(nx�1)

Tx

(nx�nx)

x

(nx�1)

0

(1� nz)

x

(1� 1)

x

(1� nx)

x

(1� 1)

Tz

(nz�nz)

x

(nz�1)

x

(nz�nx)

x

(nz�1)

x

(1� nz)

x

(1� 1)

x

(1� nx)

x

(1� 1)

0

(1� nz)

0

(1� 1)

0

(1� nx)

x

(1� 1)

x

(n� 1� nz)

x

(n� 1� 1)

x

(n� 1� nx)

x

(n� 1� 1)

377777777777777777777777777777777775

; (6)

where Tz and Tx are nz � nz and nx � nx matrices respectively, and have the form of

upper triangular matrices with an inverted order of columns:

Ti =

266666664

0 � � � 0 x

0 � � � x x

0 � ...
...

x � � � x x

377777775
;

where i = z; x: The zero restrictions on D� satisfy both the necessary and su¢ cient

(rank) conditions for exact identi�cation derived by Ramirez, Waggoner and Zha [31]

and [32]. In order to recover A0 from the system of linear equations, H (A0) = D�
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and A�10 A
�10
0 = �; I recur to an algorithm proposed by Ramirez, Waggoner and Zha

[31] and [32]. Let � = SD
1
2 be the n � n lower diagonal Cholesky matrix of the

covariance of the residuals of the reduced form VAR, that is SDS0 = E[utu
0
t] = �

and D = diag(�): Let�s compute H (��1) and de�ne matrices P1 and P2 as:

P1 �

266664
01�n 1 01�n�1

In�n 0n�1 0n�n�1

0n�1�n 0n�1�1 In�1�n�1

,

377775 (7)

P2 � [in; in�1; ::::; i1] ; (8)

where Is�s is the s-dimensional identity matrix and is is an n-dimensional column

vector of zeros with the sth element equal to 1. This means that the structural

shocks are ordered so that all variables in X do not respond contemporaneously to

the monetary policy shock. The Federal Funds rate, i.e. the (nx + 1)
th element of

Y; does not respond contemporaneously to variables in Z: To be more speci�c, the

structrual shocks are ordered in the following way:

e0t =

264 ez0t es0t ex0t ef 0t ea0t

(1� nz) (1� 1) (1� nx) (1� 1) (1� 1)

375 ;
where es0t and e

a0
t are the monetary policy and technology shocks respectively.

Proposition 1 For given estimates of B and �; let � be the Cholesky factor asso-

ciated to �; and let H (�) ; P1 and P2 be de�ned as in (7) � (8) : Let P3 be the Q

factor associated with the QR decomposition of the matrix (P1H (��1))0 and de�ne

P = P3P
0
2. Let also A0 satisfy the restriction H (A0) = D

� where D� is de�ned as in

(6) : It follows that A0 = ��1P .
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For a proof see Ramirez, Waggoner and Zha [31] and [32]. These restrictions satisfy

both the necessary and the rank conditions for exact identi�cation. The structural

shocks et are obtained from et = A�10 ut: Finally, notice that the order of the variables

in X and Z can be arbitrarily changed without any e¤ect on the identi�cations of the

columns for technology and monetary policy shocks.
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TABLE 2
Benchmark BVAR. Measures of in�ation adjustment speed

Horizon of impulse response, quarters
2 4 5 12 16

Type of shock
Panel A. PGDP

TECH 50 34 15 7 4
(40,74) (23,61) (6,41) (2,28) (1,15)

MP 97 92 82 47 14
(84,99) (62,98) (47,91) (24,61) (5,25)

Panel B. CPI
TECH 33 18 6 4 2

(21,65) (9,51) (1,33) (1,23) (0,13)
MP 96 90 71 31 6

(79,99) (65,97) (45,82) (16,44) (2,13)
Panel C. PPI

TECH 35 18 7 4 2
(17,68) (7,50) (1,33) (1,22) (0,12)

MP 97 79 44 16 3
(82,99) (56,89) (25,60) (6,30) (1,10)

Panel D. PPCE
TECH 37 23 11 7 4

(22,69) (11,57) (3,40) (2,29) (1,16)
MP 97 89 66 26 5

(78,99) (60,96) (37,80) (12,40) (1,12)
Notes : Median, and (16th, 84th) statistics from the posterior distribution of in�ation adjustment

speed rji for di¤erent horizons of evaluation j, and conditional on type of shock i. Values are in
% units. Each panel refers to a di¤erent price index. PGDP: GDP de�ator; PPCE: personal

consumption expenditure de�ator.
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TABLE 3
Sub-sample stability. Measures of in�ation adjustment speed

Horizon of impulse response, quarters
2 4 5 12 16

Type of shock
Panel A. Pre-Volcker, 1959:Q1 �1979: Q3

TECH 96 94 83 53 25
(90,99) (86,98) (70,90) (39,67) (16,37)

MP 89 56 37 19 3
(81,95) (44,73) (22,58) (11,34) (2,13)

Panel B. Volcker �Greenspan, 1979:Q4�2006:Q1
TECH 50 34 15 8 4

(27,82) (16,69) (4,48) (2,35) (1,22)
MP 83 63 34 18 9

(52,98) (31,88) (12,64) (5,49) (1,31)
Panel C. Volcker II �Greenspan, 1983:Q4�2006:Q1

TECH 50 42 29 22 13
(23,85) (18,76) (10,63) (5,54) (2,36)

MP 98 61 31 16 6
(89,99) (38,86) (10,63) (5,35) (1,21)

Panel D. Greenspan, 1987:Q3�2006:Q1
TECH 28 19 13 10 7

(12,67) (7,52) (4,38) (2,30) (1,21)
MP 95 69 27 14 6

(83,99) (47,86) (9,52) (3,33) (1,18)
Notes : Median, and (16th, 84th) statistics from the posterior distribution of in�ation adjustment

speed rji for di¤erent horizons of evaluation j, and conditional on type of shock i. Values are in %
units. Each panel refer to a di¤erent subsample.
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TABLE 4
Robustness analysis. Measures of in�ation adjustment speed

Horizon of impulse response, quarters
2 4 5 12 16

Type of shock
Panel A. Sign-restrictions identi�cation

TECH 49 32 14 8 3
(22,79) (12,62) (4,42) (1,26) (0,14)

MP 61 49 32 14 5
(24,89) (18,81) (8,64) (3,38) (1,19)

Panel B. Solow-residual identi�cation
TECH 52 36 13 5 2

(41,74) (25,62) (6,39) (1,25) (0,14)
MP 93 83 76 47 15

(82,99) (59,95) (43,89) (23,60) (5,25)
Panel C. Smaller size VAR

TECH 72 64 40 23 11
(67,83) (58,76) (33,57) (17,37) (7,19)

MP 88 64 53 42 26
(70,98) (32,90) (16,80) (8,65) (5,42)
Panel D. � = 0.03

TECH 55 40 18 8 3
(43,78) (27,66) (9,47) (2,30) (0,16)

MP 95 90 79 41 10
(85,99) (71,97) (59,87) (26,54) (4,19)
Panel E. � = 0.15

TECH 54 39 20 11 5
(41,73) (27,60) (11,40) (5,25) (2,12)

MP 85 63 31 19 10
(61,98) (30,89) (8,66) (3,49) (1,30)

Notes : Median, and (16th, 84th) statistics from the posterior distribution of in�ation adjustment

speed rji for di¤erent horizons of evaluation j, and conditional on type of shock i. Values are in %
units. Each panel refers to a di¤erent speci�cation of the model.
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Figure 1: Draws of in�ation adjustment speed, rji ; to TECH (horizontal axis) and MP
(vertical axis) shocks, for di¤erent measures of prices, evaluated at 1 year horizon; p is
the posterior probability that in�ation adjusts faster to technology than to monetary
policy shocks.

32



Figure 2: Draws of in�ation adjustment speed, rji ; to TECH (horizontal axis) and MP
(vertical axis) shocks, for di¤erent horizons of evaluation, under the GDP de�ator; p is
the posterior probability that in�ation adjusts faster to technology than to monetary
policy shocks.
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Figure 3: Subsample stability. Draws of in�ation adjustment speed, rji ; to TECH
(horizontal axis) and MP (vertical axis) shocks, at 1 year horizon of evaluation; p is
the posterior probability that in�ation adjusts faster to technology than to monetary
policy shocks.
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Figure 4: Robustness analysis. Draws of in�ation adjustment speed, rji ; to TECH
(horizontal axis) and MP (vertical axis) shocks, at 1 year horizon of evaluation; p is
the posterior probability that in�ation adjusts faster to technology than to monetary
policy shocks.
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