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Abstract 

This paper looks at the importance of relationship lending in the credit card market. 

Credit bureaus are the major source of information for banks in their card approval and 

pricing processes.  They collect information primarily on the debt side of a consumer’s 

portfolio rather than on a consumer’s assets.  However, the latter private information is 

available to a “home bank” with which the consumer has other financial dealings.  We 

test whether home banks are using this private information to make lower interest offers 

to their own customers who are good credit risks.  An endogenous switching regression 

model incorporating the self-selection of consumers to use a home bank card versus an 

external bank card is used.  The results show that home banks are able to make lower 

interest offers to their internal customers whose default risks are lower, and this has 

contributed to interest rate heterogeneity in the credit card market.  In addition, we test 

whether home banks are able to extract information monopoly rents from the low credit 

risks, but find no evidence of rents in this market. 
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1. Introduction 

The rapid growth of the credit card industry in the last decade has attracted considerable 

attention among researchers and policy-makers.  An especially notable phenomenon in this 

market is the fact that interest rates have become much more dispersed in recent years and since 

the late 1990s have ranged from 9 to 24 percent.  This dispersion of rates is largely due to banks’ 

greater use of risk-based pricing which reflects the creditworthiness of different consumers.  One 

critical type of information used in this process comes from credit bureaus and is available to all 

banks.  However, much valuable information about creditworthiness is not available in credit 

bureaus.  The current paper examines the issue of whether banks’ private information arising 

from relationship lending with their own customers is also used in addition to the publicly 

available credit bureau information to assess default heterogeneity of borrowers.  We find that 

relationship lending does play an important role in assessing default heterogeneity and leads to 

heterogeneous pricing in the credit card market beyond what could be expected to arise from the 

use of credit bureau information. 

We refer to the bank with which a consumer has other financial dealings as the home 

bank (HB), while the bank with only credit bureau information for that consumer is referred to as 

the external bank (EB).  We model interest rate competition among banks by incorporating this 

information asymmetry between sellers.  The predictions of our model are tested with a 

structural econometric model that takes account of the endogenous decision of the consumer to 

choose between credit cards.  We find that HBs are able to select a pool of the more creditworthy 

by offering lower interest rates.  We also find evidence of a winner’s curse for banks that do not 

have this private information advantage. 
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2. Background 

Much of the previous research on the credit card market focused on the phenomena of 

high and sticky rates prevalent in the 1980s.  One line of literature attributes these phenomena to 

the failure of interest rate competition due to consumer insensitivity to interest rates (Ausubel, 

1991) and lack of search (Calem and Mester, 1995).  Brito and Hartley (1995), while retaining 

the assumptions of consumer rationality and competition among banks, introduced transaction 

costs on alternative forms of borrowing as an explanation for the high average interest rates on 

credit cards.  Beginning in the mid-1990s, interest rates in this market started to decline and have 

shown much variability as price competition has increased.  Reasons for this increased 

competition include greater consumer sensitivity to credit card interest rates (Gross and Souleles, 

2001) and more interest-rate search by debt-carrying credit card users (Kerr and Dunn, 2002; 

Kim, Dunn, and Mumy, 2004).  Gross and Souleles find that credit card debt has become 

increasingly interest elastic, with approximately half of the effect resulting from balance 

switching. 

Another notable feature of the late 1990s credit card market was a wide dispersion of 

interest rates, ranging from low introductory offers of zero percent up to rates well over 20 

percent.  Information from credit bureaus1 has been one of the major factors for this dispersion 

since it allows banks to distinguish default heterogeneity among consumers and leads to 

separating equilibria in interest rates.  In this context, the current paper differentiates between 

“public information” (i.e., credit bureau information on consumers’ credit histories) available to 

all credit card issuers and “private information” (i.e., consumers’ income and expenditure cycles, 

checking or savings account balances, net worth, etc.) available only to banks involved in 

                                                           
1 In conducting pre-approved solicitations, credit card issuers have broad access to detailed credit bureau 
information about the entire pool of individuals being solicited, non-respondents as well as respondents. 
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additional relationships with their credit card holders.  Specifically, we test whether banks use 

private information to assess default heterogeneity of borrowers and select a more credit-worthy 

client pool by offering them lower rates in equilibrium.  

The benefit of private information in lending has been an active area of research in 

corporate finance.  However, this literature has, to our knowledge, focused only on commercial 

lending and has not been explored for consumer banking.  Theoretical aspects of relationship 

lending were developed by Sharpe (1990), Peterson and Rajan (1995), and Boot and Thakor 

(1994).  The first strand of empirical literature in the area sought to address the question of 

whether bank-borrower relationships over time are value-enhancing for the borrowing firm 

(Lummer and McConell, 1989, and Wansley, DeGannaro, Elayan and Collins, 1992).  These 

authors find evidence that the renewal of existing “bank lines of credit” induces positive returns 

on the borrowing firm’s stock.  According to these papers, credit renewal by a bank, which is a 

repository of private information on the firm, is regarded as a positive signal by the market. 

A second line of this literature has looked directly at the duration of the bank-borrower 

relationship (Peterson and Rajan, 1994, and Berger and Udell, 1995).  These studies are 

unanimous in their findings that longer relationships result in greater availability of credit and 

lower required collateral for firms.  Berger and Udell also show that borrowers with longer 

relationships pay lower interest rates.  Recently, using data from an anonymous Canadian bank, 

Mester, Nakamura, and Renault (2002) have documented the propagation of private information 

within a bank, focusing on commercial lines of credit. 

The earlier work on relationship banking was not only confined to commercial banking, 

but was also based on reduced form model estimation.  Hence it was not able to capture the 

endogenous selection of agents, i.e., the borrowers.  This is a significant point because the choice 
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made by the borrower between an insider bank and an external de novo lender depends crucially 

on the terms of the offers.  The terms of the contracts, in turn, are based on the information sets 

available to the two types of lenders.  The structural form estimation used in the current paper, 

incorporating the endogenous selection of the consumer based on relative offers, allows us to 

identify the specific channels through which private information is generated, and how banks use 

this information to determine contract terms in consumer lending.  None of the earlier work has 

empirically modeled these aspects of relationship lending. 

For our purposes, HBs are those credit card banks that have multiple relationships with 

consumers through additional checking, savings, or money-market accounts, etc.  The provision 

of such financial services by HBs expands their information set with data from the assets side of 

the consumers’ portfolio such as liquid assets, net worth, and the volatility of the income cycle 

(regularity in checking cycles, direct deposit accounts, etc.).  This information helps them to 

assess a consumer’s repayment probability and should then be reflected in the interest rates 

offered by HBs to their customers.  On the other hand, EBs, where the consumer merely holds 

credit card accounts, will not be privy to this information, leading to an information asymmetry 

between sellers.  The crux of these ideas dates back to Stiglitz and Weiss (1981), where adverse 

selection results in the external banks ending up with a client pool at the far right of the risk 

distribution—a problem prevented in the current case precisely because of the existence of some 

public information (credit bureaus). 

Incorporating the information asymmetry arising from relationship lending into a 

framework of interest rate competition, our model shows that within each risk class based on 

public information, banks having additional private information are able to select the “good” 

credit risks by offering them lower rates in equilibrium.  The model used in this paper is similar 
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to the model of commercial lending used by Sharpe (1990) and von Thadden (2004).  In 

Sharpe’s model, low-risk firms are informationally captured and charged a rate that is above the 

“fair” rate because of a single insider and high costs of information revelation to a potential new 

lender.  Von Thadden shows that the Nash equilibrium for Sharpe’s model is a mixed-strategy 

equilibrium in which both inside and outside banks randomize their interest-rate offers.  This 

results in only a partial informational capture by the inside bank and so allows for additional 

dispersion in rates.2 

The assumption of a single insider is more likely to hold for commercial loan markets 

with collateralized debt and its associated transaction costs of borrowing.3  In consumer lending, 

unlike commercial lending, there are few, if any, transaction costs that might prevent a consumer 

from holding multiple non-credit card financial accounts in more than one bank.  This allows for 

more than one seller with private information on a customer, thus preventing an information 

monopoly.  This, along with the assumption of Bertrand competition, results in HBs offering 

lower rates to the good credit risks.  The assumption of multiple insiders is not essential, 

however, because the same outcome would occur if banks can acquire a reputation for offering 

lower rates to their good customers (or alternatively, make an actual commitment to do so), 

which would affect the consumer’s initial choice of home bank.4 

To test the predictions of the theoretical model, we use data from the 1998 Survey of 

Consumer Finances.  We employ an endogenous switching regression model similar to the 

“union membership model” of Lee (1978) to capture the aspect of self-selection by consumers 

into two categories—those who have their primary credit card with their HB and those who have 

                                                           
2 The solution given by Sharpe (1990) also predicts limited informational capture and dispersion of rates but is not a 
Nash equilibrium (von Thadden, 2004). 
3 In commercial lending, because of multiple claims in the event of firm bankruptcy, ex-ante contracts need to be 
written, which increases the associated transaction costs of borrowing. 
4 Sharpe’s model, on the other hand, explicitly rules out any kind of multi-period commitment by the bank. 
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their primary card with an EB.  In our econometric model, we assume that both banks make 

interest-rate offers to consumers based on signals received about individuals’ creditworthiness.  

Individuals then select their primary card based on the interest rate, as well as on consumer-

specific characteristics.  Thus the complete model contains two interest rate offer equations, one 

by each type of bank, and a selection equation for the consumer.  Both two-stage and maximum 

likelihood methods are used to estimate the empirical model.  Our results provide strong 

evidence in favor of the information asymmetry hypothesis: private information enables HBs to 

select consumers with lower risks of default by offering them lower interest rates compared to 

the EBs, which have access only to public information. 

The testable implications for the empirical study are derived in the next section from a 

theoretical model which incorporates the information asymmetry between banks.  The data are 

described in Section 4.  Section 5 discusses the econometric methodology used to test the 

propositions of our theoretical model.  The results of the empirical tests are discussed in Section 

6, and our conclusions are presented in Section 7. 

 

3. Models of Interest Rate Competition 

In this section, we model the nature of interest-rate competition among credit card issuers 

faced with different types of consumers.  We assume there are numerous profit-maximizing 

banks in this market, competing on prices, i.e., interest rates, and no significant barriers to entry.  

The cost of funds to banks is fixed at r , and interest is the only source of revenue.  The line of 

credit extended is determined exogenously and is normalized to be $1.5  A continuum of 

consumers is characterized by public information EX  that is available to all banks (e.g., from 

                                                           
5 We exclude endogeneity in loan amounts and resulting credit rationing issues. 
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credit bureaus) and by private information HX  that is available only to the one or more HBs 

with whom the consumer has other financial dealings.  The consumer’s repayment probability is 

then ),( HE XXθθ = . 

Banks make credit-card offers to the consumer, with interest rates based on their 

available information.  Although the consumer can hold multiple cards from more than one bank, 

the primary card that we focus on here is the one on which he/she keeps the largest outstanding 

balance.  From a rational consumer’s point of view, this card should have the lowest interest rate 

and can be held either with an EB or a HB.  If the consumer receives equal offers (which can 

happen with positive probability if HX  is discrete), and one offer is from a HB, then the 

consumer selects the HB card with probability ρ ; if there are equal offers from different EBs, 

then each has an equal probability of selection. 

(a) First, suppose that all banks have only publicly available credit bureau information (or 

equivalently, that HX  is not informative about the repayment probability).  Then competitive 

equilibrium leads to the zero-profit interest rate 

 1
)(

1)(
0

0 −
θ

+=
E

E X
rXr , (1) 

for consumers of type EX , where 0θ  is the average repayment probability, 

 ]|[)(0 EE XEX θθ = . 

In this case, all banks make zero profit, and the distribution of interest rates does not depend on 

the type of bank. 

(b) Next, suppose that the private information HX  takes on two discrete values, h and l, 

corresponding to high and low repayment probabilities, as in Sharpe (1990).  The derivation of 

the equilibrium is the same for all EX , so without loss we can condition on a specific value of 
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the public information and suppress the argument EX  in the following discussion.  Let 

)( EXλλ =  be the fraction of consumers of type h, with repayment probability ),( hX Eh θθ = , 

while the remaining fraction λ−1  are of type l with repayment probability ),( lX El θθ = , where 

lh θθ > .  Then 

 lh θλθλθ )1(0 −+= . 

The benchmark interest rates hr  and lr  are defined as the respective zero profit interest rates for 

types h and l: 

 11 −
θ
+=

h
h

rr , 11 −
θ
+=

l
l

rr . (2) 

As lh θθθ >> 0 , this implies lh rrr << 0 . 

(b.1) First, suppose that each consumer has more than one HB, leading to the creation of 

multiple insiders and so eliminating any information monopoly.6  The Nash equilibrium is the 

competitive outcome: HBs offer the interest rate hr  to their type h customers and lr  to their type 

l customers, while EBs offer the interest rate lr  indiscriminately and so attract only type l 

customers.  All banks make zero profits.  The fraction of consumers holding HB cards is 

)1( λρλ −+ , while the fraction holding EB cards is )1()1( λρ −− .  The corresponding average 

interest rates of the HBs, Hr , and the EBs, Er , are 

 
)1(
)1(

λρλ
λρλ

−+
−+

= lh
H

rr
r , lE rr = , 

while the average repayment probabilities for HB and EB customers are 

 
)1(
)1(

λρλ
θλρθλθ

−+
−+= lh

H , lE θθ = . 

                                                           
6 In the Survey of Consumer Finances sample, 31.6% of those using their HB cards have more than one financial 
account at commercial banks, savings and loans, or savings banks. 
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(b.2) An alternative situation is that of a single insider, again with two discrete values for 

the private information.  This is essentially the same as Sharpe’s model of information 

asymmetry in commercial lending (Sharpe, 1990).  In the absence of reputational effects or 

multi-period commitments by banks, HBs can now extract some rent from their information 

monopoly.  As shown by von Thadden (2004), the Nash equilibrium is a mixed-strategy 

equilibrium in which both HBs and EBs randomize offers and lend to a mix of types h and l.  

While the HBs still have a higher proportion of type-h borrowers than the EBs, the average 

interest rate of EB customers may or may not be higher that that of HB customers, depending on 

the parameter values of lθ , hθ , λ and ρ.  The expected EB profit is zero, as before, while the 

expected profit of the HBs is positive.  There is limited information capture in that the average 

expected HB profit per individual is )( 0 hh rr −θλ  rather than the full monopoly rent of 

)( hlh rr −θλ . 

(c) Instead of taking two discrete values, we can consider the case where )( HXθ  is 

uniformly distributed on the interval ],[ hl θθ .  Comparing these two models may give some 

insight into the robustness of conclusions drawn from the mixed-strategy equilibrium outcome. 

(c.1) The case of multiple insiders, HBs, with a continuous distribution for θ leads to the 

unrealistic conclusion that all EBs would, in effect, be forced out of the market in equilibrium, 

and so this case will not be considered here. 

(c.2) In the information monopoly case, the HBs now pursue a pure strategy, offering 

each customer an interest rate determined by θ, while the EBs make randomized offers as in von 

Thadden (2004).  As before, the expected profit is positive for HBs and zero for EBs.  Details 

and further discussion of the mixed-strategy equilibrium outcomes in the information-monopoly 

cases (b.2) and (c.2) are given in Section A.1 in the appendix. 
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We can therefore draw the following conclusions and their testable implications.  If HBs 

have private information about θ, then, conditional on EX (public information): 

(I)  The HB offered interest rate should be decreasing with θ. 

(II)  The EB offered interest rate should not depend on θ. 

These two conclusions yield the testable implication that the private information variables that 

predict repayment probabilities should affect the HB interest rates and not the EB interest rates. 

(III)  On average, the repayment probability θ will be higher for HB customers than for 

EB customers. 

According to this prediction, the repayment probability of HB consumers will be higher (lower 

risks) compared to the EB consumers.  Together with predictions (I) and (II), this implies that the 

average interest rate for HB consumers will be lower than the average rate for consumers using 

an EB card. 

If, in addition, the private information gives HBs an information monopoly, allowing 

them to appropriate an information rent, then 

(IV)  HBs should make positive profits relative to EBs. 

This implies that the actual interest rate charged by the HBs will be higher than the zero-profit 

rate (which can be estimated from the average default probability of HB customers and the cost 

of funds). 

The randomization of offers will result in a winner’s curse effect on the EBs where some 

type l individuals will select the EB card precisely because they receive lower rates from EBs 

than their own HBs.  The magnitude of rent appropriated by the HBs from their type h customers 

and the winner’s curse of the EBs are empirical questions that would depend on the extent of 
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competition prevailing in this market.  We test for both these effects and find (1) evidence of a 

winner’s curse effect for the external banks but (2) no evidence of information rent. 

 

4. Data and Descriptive Statistics 

We use the 1998 Survey of Consumer Finances (SCF), which contains: (i) public 

information carried by credit bureaus (mortgages, home equity lines, credit card balances, 

delinquency, bankruptcy history, etc.); and (ii) private information on consumer income, liquid 

assets, and net worth—data which would be available only to a HB through other accounts and 

services provided to their customers.7  These variables serve as proxies for the income and 

expenditure streams of each consumer, which in turn serve as proxies for default risk. 

The SCF also maps the network of relationships that consumers have with financial 

institutions, allowing us to determine whether the primary credit card used belongs to a bank 

with which they have other financial dealings (HB).  Following the SCF convention, the primary 

card is taken to be the one on which the consumer has the largest balance, while for zero-balance 

consumers it is the card applied for and received most recently.  We use the interest rate on this 

primary card in all tests since, from a rational consumer’s perspective, the card with the largest 

outstanding balance should be the one which offers the lowest interest rate among all cards held.8 

Our study is confined to those individuals who have some form of bank credit card.9  

Among these we consider only those cases with interest rates above 6.5%.  Any lower rate in the 

1997-98 period was an introductory rate since the federal funds rate during this time was around 
                                                           
7 While the private information variables in the SCF may not correspond exactly to the HBs’ information set, we 
expect there to be a high degree of correlation.  Furthermore, measurement error, if any, in the banks’ private 
information will lead to an underestimation of its significance. 
8 For our consumer, the primary card is always the lowest interest card even when other benefits are associated with 
a card — for example, frequent flier miles.  This is because those benefits are tied to usage of the card and not 
interest-paying debt on the card.  Hence a rational card user should always shift outstanding balances to the lowest-
interest card, regardless of other benefits that come with card use. 
9 Visa, MasterCard, Discover or American Express cards. 
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5.5%.10  Our final sample contains 2,265 cases — 861 cases with HB primary cards and 1,401 

with EB primary cards.  Variable definitions and descriptive statistics are given in Table 1.  We 

see there that consumers whose primary card is with an EB have lower net worth, less liquid 

assets, and are more prone to miss payments or declare bankruptcy than those whose primary 

card is with a HB.  Thus a casual look at the data suggests that the average consumer who uses 

an EB card is on a weaker financial footing then the average consumer who uses a HB card.  

More importantly, the average interest rate of consumers with HB cards is one percentage point 

lower than the average rate of consumers with accounts held at EBs.11 

To see how the interest rates offered vary across the home and external bank sample, we 

estimate the probability density function of the rates across these two bank types using a 

Gaussian kernel with a data-based bandwidth suggested by Silverman (1986).  Figure 1 shows 

the distribution of rates across the two samples.  The rates offered to consumers having a HB 

card are lower and have a bimodal density function with a roughly 5-point spread between 

modes.  The distribution of rates clearly shows that the interest rates on the primary debt-

carrying card of consumers are notably lower if the account is held with a HB than if it is held 

with an EB.  This validates one of the testable implications that arise from our theoretical model. 

 

5. Econometric Analysis 

The econometric model is a three-equation system representing the HB interest rate offer, 

the EB interest rate offer, and the consumer’s choice of the HB card or the EB card as the 

primary card.  Since the focus here is on a comparison of HB and EB interest rates rather than on 

credit-card holding, we estimate the model for the population of individuals holding at least one 
                                                           
10 It has been documented that credit card-backed securities offered yields in the vicinity of 1% above those of 
Treasury securities in this period.  Hence the cost of funds for credit card issuers was at least 6.5%. 
11 This result also holds in an OLS regression after we control for all the consumer characteristics in Table 1. 
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bank credit card.  As in the theoretical model of Section 3, we assume that both types of banks 

make interest rate offers to consumers based on signals they receive about individuals’ 

creditworthiness.  Individuals then select which card to use as their primary card based on which 

interest rate is lower, as well as other consumer-specific characteristics and non-price dimensions 

of the offers.12  Because the SCF data contain interest-rate information only for the consumer’s 

primary card, we therefore estimate the equation system as a partial-observability switching 

regression model.13 

The structural equations for the interest rates offers are 

 iiiiH uXXr ,112,211,1, ++= ββ  (3a) 

 iiiiE uXXr ,222,221,1, ++= ββ  (3b) 

where iHr ,  and iEr ,  are the lowest rates received by individual i from his/her HBs and EBs, and 

iX ,1  and iX ,2  are the vectors of consumer characteristics which signal creditworthiness based on 

public and private information respectively.  The consumer selects the HB card if iiHiE rr η>− ,,  

where iη  summarizes the preference for a card based on non-interest terms. It can be represented 

as 

iiii vCW +++= 210 ααδη . 

iW  is a vector of individual-specific characteristics (whether the cardholder is a convenience 

user, the cardholder’s propensity to search for better credit terms, and ratio of average monthly 

payments on rents, mortgages, autos and leases to monthly income) that determine preference for 

a card, and iC  is a non-price dimension of the offer (credit line).  In other words, if the consumer 

                                                           
12 It is, of course, possible that some credit-card holders may not have received competing offers.  We will treat this 
as equivalent to a competing offer with an interest-rate differential sufficiently high that the probability of choosing 
the competing card is negligibly small. 
13 This is similar to the union membership model of Lee (1978). 
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selects the HB card, it is because the HB interest rate is sufficiently lower than the EB rate to 

compensate for all other characteristics that determine the preference for a card.  Substituting iη  

into the above inequality allows us to represent consumer selection by the latent-variable 

equation 

 iiiiHiEi vCWrrI +++−+= 21,,10
* )( ααδδ  (4) 

where the HB card is chosen if 0* >iI .14  The error terms iu ,1 , iu ,2  and iv  are assumed to be 

jointly normally distributed with zero means and variances 2
1σ , 2

2σ , and 2
vσ . 

Endogeneity arises from the fact that the interest rates, which are the dependent variables 

in the interest rate equations (3a) and (3b), also determine the choice by the individual in the 

selection equation (4).  To deal with this endogeneity, we follow the procedure proposed by Lee 

(1978) where (3a) and (3b) are used to substitute for the interest differential in (4).  This gives 

the reduced-form probit equation 

 iii ZI εγ +=*  (5) 

where iZ  includes iX ,1 , iX ,2 , iW  and iC , while iε  is the composite error term 

iii vuu +−δ )( ,1,21  rescaled so as to give the conventional normalization 12 =εσ .  Thus the model 

to be estimated consists of the three equations (3a), (3b) and (5), with the observed dependent 

variables 
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14 The coefficient 1δ  was introduced to allow for the conventional rescaling of the latent variable, *

iI , in the probit 
model. 
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We estimate the model both by the two-stage method and by maximum likelihood.  

Details are given in Section A.2 in the appendix, and the results are reported below in Section 5.  

The magnitude of the self-selection effect is represented in the two-stage estimates by the 

covariance parameters ),cov( ,1,1 iiu εσ ε =  and ),cov( ,2,2 iiu εσ ε = , while the ML results give the 

corresponding correlation coefficients 1ρ  and 2ρ . 

According to prediction (I) in Section 3, 12β  should be significant, with negative 

coefficients for those variables known to the HB that signal lower risk, i.e., liquid assets, net 

worth, and the proxies corresponding to lower income volatility.  On the other hand, according to 

prediction (II), 22β  should not be significantly different from zero, since EBs do not possess the 

information represented by 2X . 

Self-selection corresponds to a negative sign for εσ1  and a positive sign for εσ 2 , i.e., the 

expected interest rate for a particular card conditioned on selection is predicted to be lower than 

the average unconditional rate.15  However, the present data do not allow us to determine the 

extent to which the stochastic terms iu ,1  and iu ,2  are due to (i) unobserved information available 

to the bank, leading to selection of more creditworthy customers, (ii) strategic randomization of 

offers, and (iii) random errors.  Both (ii) and (iii) lead to a winner’s curse effect.  Under the 

assumption that no private unobserved information is available to the EBs, a positive sign for 

εσ 2  implies a winner’s curse effect for the EBs. 

                                                           
15 Note that this prediction would not hold if unobserved non-price features of the offer are sufficiently attractive 
that they more than offset a lower interest rate. 
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Delinquency model.  The next step is to investigate default probabilities.  This will allow 

us to determine whether the private information variables 2X  do in fact correspond to lower 

default probabilities, as was assumed above in testing prediction (I).  Modeling the default 

probabilities will also allow us to test the remaining predictions from Section 3, i.e., (III) lower 

average default probabilities for HB customers and (IV) positive HB profits. 

Assuming that delinquency is an indicator for future default, we estimate an ordered 

probit model where the delinquency variable has three categories: 1=iD  if respondent i had 

missed a monthly payment but not fallen behind by two months, 2=iD  if they were behind in 

their payments by two months or more, and 0=iD  otherwise.  These are treated as an ordered 

categorization of the latent variable 

 iii XD ηβ +=∗  

where the explanatory variables X are the same public and private information variables as in the 

interest rate equations, other than the delinquency variable.16 

Besides determining whether these variables have a significant effect on delinquency, this 

model also allows us to estimate the probabilities )1Pr( =iD  and )2Pr( =iD , which serve as 

proxies for the actual default probabilities in testing prediction (III).  Finally, to estimate the 

profit differential between HBs and EBs, we make the further assumption that the expected rate 

of losses (charge-offs) for banks is approximately equal to the “60 days delinquency rate” given 

by )2Pr( =iD . 

 

                                                           
16 The inclusion of bankruptcy as an independent variable in this equation might create endogeneity issues since 
delinquencies are often a precursor to bankruptcy.  However, this problem does not occur here as all bankruptcies in 
these data were filed more than one year prior to the survey, and as such precede the delinquency variable which 
reflects late payments over the past one year only. 
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6. Empirical Results 

The two-stage estimates are presented in Table 2.  The first two columns of this table 

represent the interest rate equations on public (i.e., credit bureau) and private information 

variables for the HB and the EB.  The selection probit in column 3 includes four additional 

identification variables: a dummy variable for convenience users, a dummy for the propensity to 

search for credit cards, the ratio of monthly payments to income, and the log of the credit line.  

The “convenience user” variable is important because consumers who do not borrow on their 

cards might put more emphasis on other features, such as frequent flier miles, rather than interest 

rates when selecting among cards.  The propensity to search for credit cards is included as a 

proxy for both the pecuniary and nonpecuniary search costs of consumers.  Average monthly 

payments on mortgages, rent, auto loans and other leases relative to monthly income are included 

because high-payment consumers are likely to be more sensitive to interest rates rather than other 

features of the card.  Finally, the total credit line offered captures another non-price dimension of 

bank offers and hence also influences the liquidity-constrained consumer’s choice of cards. 

The estimates in Table 2 support predictions (I) and (II).  We find: (i) all variables 

reflecting private information—liquid assets, net worth, and employment proxies for income 

volatility—are significant in determining interest rates for HBs but not for EBs; and (ii) only the 

credit bureau variables—utilization rates on credit cards, home equity lines of credit, as well as 

past delinquency and the bankruptcy history of the consumer—are significant in determining 

interest rate offers for EBs.  Surprisingly, none of the public information variables are significant 

in determining rate offers for the HBs, indicating a smaller role for credit bureau information for 

HBs when determining offers for their own customers.  Also, three of the four consumer-

preference variables are significant in the selection equation.  The signs on all financial variables 
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are as expected for both HBs and EBs.  For instance, those with delinquent accounts or 

bankruptcy filings are charged a higher interest rate by EBs, while those with higher liquid assets 

and lower income volatility are charged a lower interest rate by their HBs.17 

The estimates also provide evidence of selection, since εσ ,1  (which appears as the 

coefficient of the inverse Mills ratio in the second-stage equation (A5) for the HB interest rate) is 

negative and significant, thereby indicating that the expected interest rate of the home bank card 

holders conditioned on selection is lower than the unconditional expectation.  On the other hand, 

there is no evidence of selection for the EB cardholders. 

The maximum likelihood estimates of the selection model (Table 3) are qualitatively 

similar to the two-stage estimates.  The only differences are that (i) the ratio of average monthly 

payments to income is not significant in the selection equation, and (ii) both of the correlation 

coefficients 1ρ  and 2ρ  are now significant, with signs corresponding to a selection effect (i.e., 

interest rates are lower when conditioning on selection). 

According to the interest-rate equation coefficients, HBs are able to attract the good 

credit risks among their deposit customers by making lower interest-rate offers on the basis of 

favorable private information.  However, as none of the private information variables are 

significant in the EB interest-rate equation, the EB offer is attractive only to customers who are 

offered higher rates by the HBs on the basis of adverse private information.  If we now also 

consider the unexplained heterogeneity of interest rate offers, the selectivity effect shows that the 

average HB card holder received a below-average HB interest-rate offer, and according to the 

maximum likelihood results, the average EB card holder likewise had a below-average EB 

                                                           
17 The sign on the home equity utilization rate might at first glance appear unintuitive.  However, home equity lines 
are a substitute for credit cards, especially for consumers wishing to consolidate their debts, and banks must compete 
for these customers by offering lower rates. 
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offer.18  For HBs, we can reasonably ascribe part of this unexplained heterogeneity to 

unobserved private information, thus further enhancing the HBs ability to attract good credit 

risks through lower offers.  For EBs, on the other hand, the absence of observed private 

information strongly suggests that there is no unobserved private information either.  Instead, the 

unexplained heterogeneity of EB offers may be attributed to the strategic randomization of offers 

by EBs, and acceptance of below-average offers then leads to a winner’s curse effect for the EBs.  

These arguments hold provided that HBs actually succeed in attracting cardholders with lower 

average default risk than EB cardholders, and later in this section we show that this is in fact the 

case. 

Next we focus on a critical underlying assumption: private information predicts interest 

rates because it actually predicts repayment probabilities (implicit in the test of predictions I and 

II), and so allows HBs to select a lower-risk pool (prediction III).  As discussed in the previous 

section, we assume that delinquency is an indicator for future default, and estimate an ordered 

probit model for the delinquency variable.  The results, presented in Table 4, show that liquid 

assets, net worth, and the employment dummies serving as proxies for income volatility are 

highly significant and are thus key predictors of future delinquencies.  For example, a thousand-

dollar increase in liquid assets reduces the probability of going “sixty days past delinquent” by 

approximately 2.4 percentage points. 

The above analysis is carried out for the entire sample as well as for the EB sample 

separately.  We find that the results are qualitatively similar for the EB consumers—liquid assets 

and net worth do predict future delinquencies even in this sample.  The fact that these variables 

                                                           
18 “Below average” here means below the average of offers made by that type of bank to all consumers with the 
same observable characteristics. 
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are not significant in the EBs’ interest rate equations is due to the EBs not having access to this 

information. 

The ordered probit model is also used to estimate )1Pr( =iD  (probability of missing a 

payment in the last year) and )2Pr( =iD  (probability of falling behind on payments by two 

months or more) for the HB and EB samples separately.  These estimates, presented in Table 5, 

show that HB customers have lower probabilities for both default states.  Again assuming that 

delinquency can be used as a proxy for future default, this validates prediction (III), i.e., HBs 

succeed in attracting a client pool from their own customers who are more creditworthy than the 

average EB customer. 

Finally, to test prediction (IV), we assume that the expected rate of losses for banks is 

approximately equal to )2Pr( =iD .  Then Table 5 implies that the loss rate of the HBs credit 

card portfolio is one point lower than that of the EBs.  This difference in expected losses is also 

reflected in the difference in the average interest rates between the HBs and EBs (approximately 

1 percentage point).  If we further assume that the EBs are making zero profits then the cost of 

funds (i.e. prime rate) for the EBs, with an average interest rate of %72.15=Er  and a repayment 

probability of %04.95=Eθ , is %98.91)1( =−+= EE rr θ .  Given the cost of funds, we calculate 

the zero-profit interest rate of the HBs, with repayment probability 96.0=Hθ , as 

%56.141/)1( =−+= HH rr θ .  The small difference between the actual interest rate charged by 

the HBs (14.75%) and the zero-profit rate suggests that even though some HBs have an 

information monopoly arising from relationship lending, it does not result in expropriation of 

rent from the low credit risks.  This, along with the evidence of winner’s curse for EBs, suggest 

that randomization of offers in this competitive market environment have reduced the 

information capture of the low credit risks and led to more heterogeneous pricing. 
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7. Summary and Conclusions 

This paper has examined the issue of heterogeneity in credit card interest rates.  It 

introduces the notion of relationship lending (previously considered only in the context of 

commercial lending) in the consumer credit market and distinguishes between private 

information held by a card holder’s “home banks” (HBs) as opposed to publicly-available credit 

bureau information held by “external banks” (EBs).  It shows that private information arising 

from other banking services (checking accounts, savings, etc.) is used by HBs to assess the 

default potential of their own customers and to select a lower-risk pool by offering them lower 

interest rates.  On the other hand, EBs must depend primarily on information that is available 

through credit bureaus, and this information asymmetry among card-issuers ultimately has 

contributed to further rate heterogeneity beyond what arises from the use of bureau information. 

The Survey of Consumer Finances (1998) data are used to test the implications of the 

theoretical model.  We assume that both HBs and EBs make interest rate offers to consumers 

based on the information set available to them.  Consumers then select their primary card based 

on the interest rate, some non-price dimensions of the offer, and other consumer-specific 

characteristics which govern the consumers’ choice of card.  An endogenous switching 

regression model that captures the aspect of self-selection by consumers into two categories is 

used and estimated using maximum likelihood methods.  

The empirical results provide strong evidence of the impact of relationship lending in this 

market.  Our results include the following.  (1) The average rate on EB credit cards is one 

percentage point (i.e., 6 percent) higher than home bank cards, and this holds even after 

controlling for other observables.  (2) Variables representing information from the private 

financial accounts of the consumer (and known only by the HBs) are significant in the HB 
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interest offers but are not significant in the EBs’ offer equation.  On the other hand, most of the 

public information variables (available from credit bureau reports) are significant in the interest 

rate offer equations of EBs but not in the HBs’ offers.  This clearly suggests that HBs, having 

access to private information, put less weight on public information.  (3) There is evidence of a 

winner’s curse for EBs.  (4) The default risk of the HB sample is also one percentage point lower 

than that of the EB sample. 

These results point to a Pareto-improving exchange of information arising out of 

relationship lending.  Consumers having low risks of default are better off holding credit cards 

with banks where they have other financial accounts.  The private information gleaned from 

other financial accounts held by the consumer at their HBs, enables these banks to make the low-

risk consumers interest offers that cannot be matched by an EB for fear of adverse selection.  

Despite result (4) above, however, there is no conclusive evidence that HBs succeed in using 

their information monopoly to extract a rent from low-risk consumers. 

 

Appendix 

A.1. Mixed-Strategy Equilibrium with a Single Home Bank 

As discussed in Section 3, a single HB can extract rent from its information monopoly, in 

the absence of any kind of multi-period commitments by banks.  When HX  takes on two 

discrete values (i.e., case (b) in Section 3), the structure of the game is equivalent to the second 

stage of Sharpe’s model (Sharpe, 1990), if we condition on a particular risk class EX  and 

identify the types h and l with Sharpe’s first-stage outcomes S and F. 

The two-period structure of Sharpe’s model leads to the parameter restriction (in our 

notation) λθ =0 , i.e., the proportion of borrowers who are observed by the HB to be good risks is 
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equal to the average repayment probability.  Because the present model does not have this 

restriction, we restate the results of von Thadden (2004) in a form that applies here.  Let )(rFH  

be the distribution function of interest rates offered by the HB to consumers of type h, and let 

)(rFE  be the distribution function of interest rates offered by an EB to consumers of type l.  As 

before, the HB offers only lr  to consumers of type l.  If M competing EBs make independent 

offers, then the distribution of the best offer by an EB is given by 

 M
EM rFrF )](1[1)( −−= . 

Then, following von Thadden (2004), Nash equilibrium implies the offer distributions 
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which are expressed in terms of the benchmark interest rates 0r , hr , and lr  defined in equations 

(1) and (2). 

In the alternative model where )( HXθ  is uniformly distributed on ],[ hl θθ  (i.e., case (c) 

in Section 3), the following strategies constitute a Nash equilibrium.19  As before, we condition 

on EX .  The HBs now adopt a pure strategy, offering an interest rate 

 112)( −
+
+=

l
H

rr
θθ

θ  (A3) 

to their customers, where )( HXθθ = .  Note that 0)( rr hH =θ , where 0r  is defined as before 

except that the average repayment probability is now 2/)(0 hl θθθ += .  The EBs randomize 

their offers, as in von Thadden (2004), but with a modified distribution corresponding to 
                                                           
19 This follows by a suitable modification of the argument in von Thadden (2004).  However, we do not attempt here 
to show the uniqueness or stability of this equilibrium. 
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Comparing these results with the case of no private information, we see that the 

information monopoly leads to higher interest rates for all borrowers.  On the other hand, in 

comparison with the case of multiple HBs, the information monopoly raises interest rates for 

good credit risks while lowering interest rates for bad credit risks.  The expected EB profit is 

zero, as before, while the expected profit of the HBs relative to the population size is 

)( 0 hh rr −θλ  in model (b) or )( 03
1

hh rr −θ  in model (c).20 

The offer distributions can be used to calculate average interest rate offers, acceptance 

rates, and average accepted interest rates for both types of bank (although the actual expressions 

are highly model-specific.)  For the present, we note the following results: 

(1) The expected HB-offered interest rate decreases as θ increases, conditional on public 

information.21  In model (b.2) this follows immediately from the fact that type l customers are 

offered lr , while type h customers receive an offer distributed between 0r  and lr .  In model (c.2) 

it is clear that )(θHr  in equation (A.3) is a decreasing function of θ. 

(2) HB card holders have a higher average θ than EB card holders.  To verify this in 

model (b.2), let ha  and la  be the proportions of type h and type l customers who accept the HB 

offer.  In this model, )/()( 02
1

2
1

hlhh rrrra −−+=  and )/()( 0 hlhl rrrra −−ρ= .  Thus lh aa > , 

which implies ]|[]|[ EBEHBE θθ > .  In model (c.2) direct calculation of the expected values 

gives the ratio 1)2/()2(]|[/]|[ >++= lhlhEBEHBE θθθθθθ . 

 
                                                           
20 These expected profits in model (b) are, in fact, the same as in the outcome proposed by Sharpe (1990). 
21 On the other hand, the relationship between the average interest rates paid by those accepting HB cards and those 
accepting EB cards is ambiguous, depending on the model and the parameter values. 
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A.2. Estimation of the Switching Regression Model 

In the two-stage estimation method, the regression equations in (3a) and (3b) conditioned 

on selection (5) become 

 i
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where the coefficients of the Heckman correction terms are ),cov( 11 iiu εσ ε =  and 

),cov( 22 iiu εσ ε = , while γ̂  is estimated from the probit selection equation.  As usual, φ and Φ 

represent the standard normal density and distribution functions. 

The likelihood function for maximum likelihood estimation can be expressed in the 

form22 
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where )(⋅Hf  and )(⋅Ef  are the marginal densities of the offered interest rates (3a) and (3b), i.e., 
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The terms )( ,1 iAΦ  and )( ,2 iA−Φ  are the selection probabilities conditional on the observed 

interest rates iHr ,  and iEr ,  respectively, with 
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where jρ  is the correlation between iju ,  and iε  ( 2,1=j ). 

                                                           
22 See for example Amemiya (1985). 
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Figure 1:  Kernel Estimates of Probability Density Functions of Interest Rates of Home and 
External Banks 
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Table 1:  Variable Descriptions and Means by Bank Type 
 

Variable Information Type Home 
Bank 

External 
Bank 

Credit card interest rate (APR) Private 0.147* 0.157* 

Ratio of credit card balance to credit line Credit bureau 0.319* 0.454* 

Ratio of credit card balance to income** Credit bureau 
 

0.058* 0.077* 

Ratio of amount owed on mortgages and other residential debt 
to initial amount borrowed 

Credit bureau 0.421* 0.520* 

Ratio of outstanding balances on home equity lines of credit 
to credit lines 

Credit bureau 0.037* 0.044* 

Total credit line on all types of cards Credit bureau 0.124 0.151 

Delinquency 0 : Never missed monthly payments 
 1 : Late/missed monthly payments but less than 
  2 months 
 2 : Behind monthly payments by more than 2 months 

Credit bureau 0.133* 0.162* 

Bankruptcy 1 : Declared bankruptcy in the past 
 0 : Never declared bankruptcy 

Credit bureau 0.063 0.087 

Homeowner  (dummy variable) Credit bureau 0.747 0.730 

Household income Private 0.612 0.655 

Liquid assets held (checking, savings, money-markets, CDs) Private 0.575* 0.453* 

Net worth  (total assets including property – total liabilities) Private 3.793* 3.611* 

Not working  (dummy variable) Private 0.056* 0.085* 

Retired  (dummy variable) Private 0.252* 0.156* 

Working but not self-employed  (dummy variable) Private 0.590 0.638 

Working and self employed  (dummy variable) Private 0.103 0.121 

Age of respondent Credit bureau 51.5* 46.8* 

Years of schooling completed Private  13.6* 13.9* 

Ratio of average monthly payments (mortgage, rent, auto, lease) to 
monthly Income 

Consumer 
Characteristic 

0.296 0.228 

Convenience user 1 : Usually no balance on credit cards 
 0 : Otherwise 

Consumer 
Characteristic 

0.583 0.505 

Shopping propensity 1 : Shops around before making credit decisions 
 0 : Otherwise 

Consumer 
Characteristic 

0.811* 0.873* 

 
Dollar amounts are in $100,000’s.  “Private” information is available to home banks but not external banks; “consumer 
characteristics” are assumed not to be available to lenders. 
 
* Difference in means statistically significant at the 10% level. 
** Income is not available in the credit bureaus but is self reported during application.  It is classified as public or 
bureau information as EBs can use the self reported estimate. 
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Table 2:  Two-Stage Estimates of Selection Model 
 

 Home 
Bank Offer 
(S.E.) 

External Bank 
Offer 
(S.E.) 

Selection 
 
(S.E.) 

    (I)    (II)    (III) 
Constant 20.8412 *** 19.1332 *** 0.3145 
 (2.0192) (1.7932) (0.4991) 
Credit card balance to credit line 0.1113 0.1842 *** -0.0329 
 (0.0763) (0.0669) (0.0180) 
Credit card balance to income -0.1461 1.4859 *** -0.0068 
 (0.5612) (0.5674) (0.2105) 
Mortgage owed to initial amount borrowed -0.0025 0.1968 -0.0568 
 (0.1925) (0.1284) (0.0410) 
Home equity balance to credit line 0.3958 -1.3693 ** 0.0381 
 (0.8144) (0.5920) (0.1713) 
Delinquency 0.1616 0.4536 ** -0.0112 
 (0.2685) (0.2068) (0.0588) 
Bankruptcy 0.1528 1.3664 *** -0.2843 *** 
 (0.5545) (0.3735) (0.1083) 
Homeowner -0.2059 0.1423 -0.0400 
 (0.3736) (0.2866) (0.0801) 
Log of income -0.0469 -0.2441 0.0184 
 (0.2020) (0.1676) (0.0480) 
Log of liquid assets -0.1163 * -0.0831 0.0229 
 (0.0696) (0.0581) (0.0155) 
Log of net worth -0.1835 *** -0.0248 0.0368 *** 
 (0.0648) (0.0407) (0.0121) 
Not working -0.7562 -0.2644 -0.1753 
 (0.6916) (0.5003) (0.1426) 
Retired -2.6657 *** 0.0952 0.0641 
 (0.5707) (0.4730) (0.1264) 
Working but not self employed -1.7421 *** 0.3400 0.1554 * 
 (0.4388) (0.3301) (0.0924) 
Age 0.0332 *** 0.0011 0.0101 *** 
 (0.0128) (0.0109) (0.0027) 
Years of schooling -0.0759 -0.0835 * -0.0223 * 
 (0.0529) (0.0484) (0.0122) 
Convenience user   0.0759 
   (0.0647) 
Shopping propensity   -0.1952 ** 
   (0.0773) 
Average monthly payments to income   0.2893 ** 
   (0.1163) 
Log of credit line   -0.1781 *** 
   (0.0278) 

εσ j  
-1.4309 * 
(0.8123) 

0.8915 
(0.9264)  

    
Sample size 861 1404 2265 
Log likelihood   -1418.47 
Adusted R-square 0.060 0.061  

 
Columns (I) and (II) contain least-squares estimates after adjusting for selection bias; column (III) 
contains the probit estimates of the selection equation. 

 
*** Significant at 1% level        ** Significant at 5% level        * Significant at 10% level 
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Table 3: Maximum Likelihood Estimates of Selection Model 
 

 

Home 
Bank Offer 
(S.E.) 

External Bank 
Offer 
(S.E.) 

Selection 
 
(S.E.) 

    (I)    (II)    (III) 
Constant 21.0358 *** 18.8073 *** 0.5591 
 (2.2467) (1.7866) (0.5014) 
Credit card balance to credit line 0.1164 0.1841 *** -0.0381 * 
 (0.1506) (0.0674) (0.0232) 
Credit card balance to income -0.1148 1.5171 ** 0.1007 
 (0.7498) (0.6121) (0.2381) 
Mortgage owed to initial amount borrowed 0.0017 0.2076 -0.0509 
 (0.3830) (0.1957) (0.0403) 
Home equity balance to credit line 0.4118 -1.3599 ** 0.0328 
 (0.8402) (0.6106) (0.1768) 
Delinquency 0.1617 0.4466 ** -0.0172 
 (0.2877) (0.2088) (0.0590) 
Bankruptcy 0.1959 1.3946 *** -0.2776 *** 
 (0.5335) (0.4116) (0.1080) 
Homeowner -0.1839 0.1587 -0.0490 
 (0.4001) (0.2989) (0.0850) 
Log of income -0.0329 -0.2251 0.0045 
 (0.2256) (0.1712) (0.0480) 
Log of liquid assets -0.1176 * -0.0880 0.0239 
 (0.0696) (0.0587) (0.0156) 
Log of net worth -0.1896 *** -0.0301 0.0366 *** 
 (0.0609) (0.0422) (0.0129) 
Not working -0.7362 -0.2300 -0.1874 
 (0.7358) (0.5040) (0.1429) 
Retired -2.6673 *** 0.0814 0.0554 
 (0.5689) (0.4754) (0.1276) 
Working but not self employed -1.7617 *** 0.3183 0.1437 
 (0.4387) (0.3183) (0.0935) 
Age 0.0316 ** -0.0005 0.0098 *** 
 (0.0144) (0.0105) (0.0027) 
Years of schooling -0.0730 -0.0774 -0.0190 
 (0.0562) (0.0514) (0.0124) 
Convenience user   0.0674 
   (0.0644) 
Shopping propensity   -0.2076 *** 
   (0.0732) 
Average monthly payments to income   0.1779 
   (0.1144) 
Log of credit line   -0.18751 *** 
   (0.0277) 

jσ  3.8240 *** 
(0.2706) 

3.8250 *** 
(0.1027)  

jρ  -0.4368 ** 
(0.1919) 

0.3260 * 
(0.1737)  

    
Sample size 2265   
Log likelihood -7571.3   

 
*** Significant at 1% level        ** Significant at 5% level        * Significant at 10% level 
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Table 4:  Ordered Probit Estimates of Delinquencies on Information Variables 
 

 Full Sample External Bank Sample 

 

Delinquency 
 

(S.E.) 

Marginal 
Effects 
(S.E.) 

Delinquency 
 

(S.E.) 

Marginal 
Effects 
(S.E.) 

Constant 0.1231 0.006 0.2318 0.010 
 (0.4565)  (0.5769)  
Credit card balance to credit line 0.0171 ** 0.001 0.0572 *** 0.003 
 (0.0087)  (0.0195)  
Credit card balance to income 0.4270 *** 0.020 0.6197 ** 0.028 
 (0.1397)  (0.2568)  
Mortgage owed to initial amount borrowed -0.0085 0.000 0.0133 0.001 
 (0.0554)  (0.0613)  
Home equity balance to credit line 0.1948 0.009 0.1412 0.006 
 (0.2116)  (0.2609)  
Homeownership -0.2871 *** -0.013 -0.3186 ** -0.014 
 (0.1065)  (0.1318)  
Log of income 0.0682 0.003 0.0906 0.004 
 (0.0466)  (0.0602)  
Log of liquid assets -0.0909 *** -0.004 -0.1026 *** -0.005 
 (0.0200)  (0.0252)  
Log of net worth -0.0294 ** -0.001 -0.0284 * -0.001 
 (0.0125)  (0.0147)  
Not working 0.0221 0.001 -0.0158 -0.001 
 (0.1533)  (0.1812)  
Retired -0.4446 ** -0.020 -0.6910 *** -0.031 
 (0.1796)  (0.2512)  
Working but not self employed -0.0301 -0.001 -0.0886 -0.004 
 (0.0958)  (0.1205)  
Age -0.0051 0.000 -0.0035 0.000 
 (0.0036)  (0.0045)  
Years of schooling -0.0341 ** -0.002 -0.0551 * -0.002 
 (0.0166)  (0.0224)  
Bankruptcy 0.6337 *** 0.029 0.5761 *** 0.026 
 (0.1212)  (0.1534)  
Threshold parameter     

1µ  0.7355 ***  0.7614 ***  

     
Sample Size 2265  1404  
Chi-Square 268.06  207.42  

 
      *** Significant at 1% level        ** Significant at 5% level        * Significant at 10% level 
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Table 5:  Comparison of Interest Rates and Default Probabilities 

 
 Home Bank External Bank 
   
Interest rate 14.75% 15.72% 
   
Estimated probability of missing 
payment in last year 13.07% 15.59% 

   
Estimated probability of non-
payment by more than 2 months 4.00% 4.96% 
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