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1. Introduction

Spatial autoregressive (SAR) processes were introduced with the pioneer works of Whittle (1954) and

Cliff and Ord (1973). There are various estimation problems of interest. In this paper, we develop compu-

tationally simpler methods than the conventional maximum likelihood (ML) method for the estimation of

SAR processes. We propose a generalized method of moments (GMM) for the estimation of such processes.

In the existing econometrics literature, Kelejian and Prucha (1999a) have proposed a method of moments

(MOM) for the estimation of the SAR process Yn = ρWn,nYn + ²n by exploring several moments of Yn and

Wn,nYn. Kelejian and Prucha (1999a) show that their parameter estimators of the model is consistent under

some general regularity conditions. The asymptotic distribution of their estimator, however, has not been

derived. Even though there are Monte Carlo evidences on possible efficiency of their estimators relative to the

ML or the quasi-maximum likelihood (QML) estimator (under normal distribution speciÞcation), asymptotic

relative efficiency properties are not available. The advantage of the MOM is the simpler computation with

the MOM estimator than the ML or the QML estimator.

In this paper, we suggest a general GMM estimation framework, which is relatively computationally

simpler than the QML and may have certain asymptotic relative efficiency or robust properties. The GMM

estimation method introduced by Hansen (1982) has broad applications in macroeconometrics, Þnancial

econometrics and various economic Þelds. Hansen�s GMM method goes beyond the nonlinear two-stage least

squares (2SLS) method of Amemiya (1974) as it incorporates nonlinear moment conditions beyond moment

conditions generated by orthogonality of instrumental variables (IV) and disturbances in a model. The

GMM method has been noted for its possible use with the estimation of spatial models in the presence of

exogenous variables, see, e.g., Anselin (1988, 1990), Land and Deane (1992), Kelejian and Robinson (1993),

Kelejian and Prucha (1997, 1998), Lee (1999), among others. Those GMM methods are 2SLS methods

as their moment conditions are based on exogenous variables in the model. For SAR processes, there are

no relevant exogenous variables in the process and the 2SLS method is not applicable. However, in this

paper, we notice that nonlinear moment conditions are available and they can be used for estimation in the

GMM framework. The MOM in Kelejian and Prucha (1999a) is relevant but their moment equations (after

modiÞcation) are only some related components in our estimation framework. Our GMM estimators can

be shown to be consistent and asymptotically normal. Within certain classes of GMM estimators, the best

selection of moment equations can be derived and the corresponding best GMM estimators are available. The
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best GMM estimator may have the same limiting distribution of the QML estimate under any distribution

(satisfying certain general regularity conditions) for the disturbances. The GMM estimation framework can

be easily extended to the estimation of high-order SAR processes.

This paper is organized as follows. In Section 2, the Þrst-order SAR process is considered. The GMM

estimation framework is introduced. IdentiÞcation issues are discussed. Asymptotic properties of consistency,

asymptotic normality and efficiency are established. GMM estimates with optimal weighting and best

selection of moment equations are derived. In Section 3, the GMM estimation framework in Section 2

is generalized to the regression model where the disturbances form a SAR process. It is shown that the

asymptotic properties of the GMM estimators are not affected when the disturbances are estimated (with

the least squares residuals). Section 4 generalized the GMM framework to the estimation of general high-

order SAR processes. Optimal and best GMM estimators are derived. Conclusions are drawn in Section 5.

All the proofs of the propositions in the text are included in Appendix B. Appendix A collects some useful

lemmas for the proofs.

2. Moment Conditions and Estimation of SAR Processes

A (Þrst-order) SAR process is speciÞed as

Yn = λWnYn + ²n, (2.1)

where Yn is the n-dimensional vector of dependent variables, Wn is an n × n constant matrix of spatial

weights with a zero diagonal, and the disturbances ²nj of the vector ²n = (²n1, · · · , ²nn)0 are independent and

identically distributed (i.i.d.) with zero mean and variance σ2. In order to distinguish the true parameters

from other possible values of the parameters, λ0 and σ
2
0 will denote, respectively, the true parameters of λ

and σ2. For any value λ, let Sn(λ) = In − λWn. At λ0, denote Sn = Sn(λ0) for simplicity.

The SAR process is supposed to be an equilibrium model. Under the assumption that Sn is invertible,

the equilibrium solution is

Yn = S
−1
n ²n. (2.2)

Because the endogeneity of Yn and WnYn = Gn²n where Gn = WnS
−1
n from (2.1) and (2.2), WnYn is

generally correlated with ²n. For the IV estimation of the model parameters of (2.1), valid IVs need to be

constructed so that they are uncorrelated with ²n but correlated with WnYn. We suggest PnSn(λ)Yn, where

Pn is a n × n constant matrix with either a zero diagonal or, more generally, tr(Pn) = 0, as a possible IV
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function for the estimation of the model (2.1). The intuition behind this is that when Pn has a zero diagonal,

the lth component of the IV vector PnSnYn(= Pn²n) is
Pn
j=1,j 6=l pn,lj²nj , where pn,lj is the (l, j)th entry of

Pn, and ²nj is the jth component of ²n, which excludes ²nl in its linear combination. So, each component of

PnSnYn is uncorrelated with the corresponding component of ²n. The selection of Pn with only tr(Pn) = 0

is more general because a Pn with a zero diagonal is a special case. The intuition for Pn with tr(Pn) = 0

is that while each component of PnSnYn may be correlated with the corresponding component of ²n, the

correlations may cancel each other. This is shown in the following proposition.

Proposition 2.1 For any constant n× n matrix Pn with tr(Pn) = 0, PnSnYn is uncorrelated with ²n.

Proposition 2.1 provides a moment condition which can be useful for estimation. As PnSn(λ)Yn involves the

unknown parameter λ, it can not be directly used as an IV in straightforward IV or 2SLS approaches. A

possible way to use PnSn(λ)Yn for estimation is in the framework of GMM:

min
λ
g2n(λ), (2.3)

where

gn(λ) = Y
0
nS

0
n(λ)PnSn(λ)Yn. (2.4)

Alternatively, the GMM estimator �λn may be solved from the quadratic equation gn(�λn) = 0. Because of

the quadratic expression of gn(λ) in (2.4), one may replace Pn by its symmetric counterpart
1
2P

s
n or, simply

P sn, where P
s
n = Pn + P

0
n to arrive at the same moment equation and the same GMM estimate.1

Consider the identiÞcation problem of λ0 in the GMM estimation framework with the moment function

in (2.4). As the moment equation E(gn(λ)) = 0 for a given Pn is a quadratic function of λ, it may have two

distinct roots. Because Sn(λ) = Sn + (λ0 − λ)Wn and Sn(λ)S
−1
n = In + (λ0 − λ)Gn,

E(gn(λ)) = E(²
0
nS

0−1
n S0n(λ)PnSn(λ)S

−1
n ²n)

= σ20tr(S
0−1
n S0n(λ)PnSn(λ)S

−1
n )

= σ20tr[(In + (λ0 − λ)G0n)Pn(In + (λ0 − λ)Gn)]

= σ20 [(λ0 − λ)tr(P snGn) + (λ0 − λ)2tr(G0nPnGn)]

(2.5)

1 If a consistent estimate �λn of λ0 is available, one might try to use the estimated PnSn(�λn)Yn as an IV
in a straightforward IV or 2SLS estimation approach. It can be shown that the resulted IV estimator can
be consistent. However, the asymptotic distribution of such an IV estimator will depend on the asymptotic
distribution of the initial consistent estimator �λn. The resulted IV estimator may or may not have improved
efficiency over the initial consistent estimator. This is so because the derivative of PnSn(λ)Yn with respect
to λ is −PnWnYn, which is correlated with ²n. The latter does not provide an orthogonality condition which
is needed in order to eliminate the inßuence of the asymptotic distribution of an initial estimate �λn on the
resulted IV estimator.
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by using tr(Pn) = 0. The moment equation E(gn(λ)) = 0 has two roots λ1 and λ2 with λ1 = λ0 and

λ2 = λ0 +
tr(P s

nGn)
tr(G0

nPnGn)
if tr(G0nPnGn) 6= 0. Because S−1n = In + λ0Gn, the second root can be rewritten

explicitly as λ2 =
tr[(P 0

n+S
0−1
n Pn)Gn]

tr(G0
nPnGn)

. From (2.5), there will be a unique root λ0 if either tr(G
0
nPnGn) = 0

and tr(P snGn) 6= 0, or tr(G0nPnGn) 6= 0 and tr(P snGn) = 0. The condition tr(P snGn) 6= 0 is equivalent

to the nonzero correlation of the IV P snSnYn with WnYn because E[(P
s
nSnYn)

0WnYn] = E(²0nP
s
nGn²n) =

σ20tr(P
s
nGn). In general, tr(G

0
nPnGn) would not necessarily be zero and there may be two distinct roots. In

terms of the empirical moment equation gn(λ) = 0, because Y
0
nS

0
n(λ)PnSn(λ)Yn = Y

0
nPnYn−λY 0nP snWnYn+

λ2Y 0nW
0
nPnWnYn is a quadratic function of λ, the explicit solutions of the empirical moment equation are

�λn = {Y 0nP snWnYn ± [(Y 0nP snWnYn)
2 − 4(Y 0nW 0

nPnWnYn)(Y
0
nPnYn)]

1/2}/(2Y 0nW 0
nPnWnYn). (2.6)

In order to distinguish the consistent root from the inconsistent one in (2.6), extra information is necessary.

The extra information needed is the sign of tr(P snGn) as shown below in Proposition 2.2, i.e., the sign of the

correlation of the IV P snSnYn and WnYn.

In order to justify rigorously possible asymptotic properties of the estimators, some regularity conditions

in addition to the structure of the model in (2.1) will be assumed.

Assumption 1: The ²njs are i.i.d.(0,σ
2) and its moments of order higher than the fourth exist.

Assumption 2: The weights matrices {Wn} are uniformly bounded in both row and column sums. The

elements of Wn = (wn,ij) are of order O(
1
hn
) uniformly in i and j.

Assumption 3: The matrices {S−1n } are uniformly bounded in both row and column sums.

The fourth or higher moments of ²nj exist so that the variances of quadratic forms of ²n in this model

can be Þnite. The uniform boundedness assumptions on Wn and S
−1
n are originated in a series of papers

by Kelejian and Prucha, see, e.g., Kelejian and Prucha (1998), in order to limit correlation across spatial

units in a manageable degree. The uniform boundedness of matrices is equivalent to the boundedness of a

sequence of norms of matrices. The sequence of square matrices {An} is uniformly bounded in row sums

(resp. column sums) if and only if the sequence {k An k} where k · k is the row sums matrix norm (resp.

colum sums matrix norm) is bounded (Horn and Johnson 1985). Any matrix norm k · k has the property

that k AnBn k≤k An k · k Bn k. So, it holds immediately that the product of two matrices An and Bn
which are uniformly bounded in row sums (resp. column sums) will be uniformly bounded in row sums (resp.

columns sums).2 The order O( 1hn ) of elements of Wn in Assumption 1 has been considered in Lee (1999b).

2 These particular norms have some other useful properties that other matrix norms might not have. For
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It provides explicit features on how the spatial weights matrix Wn shall expand as spatial units increase.

The elements of S−1n in Assumption 3 do not have the order O( 1hn ).
3 However, Lemma A.1 implies that

elements of Gn = WnS
−1
n have the uniform order O( 1hn ) because Wn has and S

−1
n is uniformly bounded in

column sums. The constant matrices Pns will be selected to have similar properties of Wn.

Assumption 4: The constant matrices {Pn} with either a zero diagonal or tr(Pn) = 0 are uniformly

bounded in both row and column sums. The elements of Pn = (pn,ij) are of order O(
1
hn
) uniformly in i and

j.

The class consisting of matrix Pn that satisÞes Assumption 4 and has tr(Pn) = 0 will be denoted as P1n.

The class of matrix Pn that satisÞes Assumption 4 but has a zero diagonal will be denoted by P2n. Because

a matrix Pn with a zero diagonal has tr(Pn) = 0, P2n is a subclass of P1n.

Assumption 5: The {hn} can be a bounded or a divergent sequence with limn→∞ hn
n = 0.

The above assumption allows hn to diverge to inÞnity but at a rate slower than the rate n. This assumption

includes spatial models with spatial interactions for a unit with only a few of its (near) neighbors as well

as interactions with a large number of neighbors. The latter includes spatial speciÞcations in Case (1991,

1992). If hn is divergent to inÞnity at the rate n, one can give an example that the GMM estimator may be

inconsistent. The same phenomenon occurs for the ML or QMLE estimator (Lee 1999b).

Proposition 2.2 Assuming that limn→∞ hn
n tr(P

s
nGn) 6= 0, if the sign of tr(P snGn), where Pn ∈ P1n,

were positive, the consistent root would be

�λn = {Y 0nP snWnYn − [(Y 0nP snWnYn)
2 − 4(Y 0nW 0

nPnWnYn)(Y
0
nPnYn)]

1/2}/(2Y 0nW 0
nPnWnYn); (2.7)

if tr(P snGn) were negative, the consistent root would be

�λn = {Y 0nP snWnYn + [(Y
0
nP

s
nWnYn)

2 − 4(Y 0nW 0
nPnWnYn)(Y

0
nPnYn)]

1/2}/(2Y 0nW 0
nPnWnYn). (2.8)

when limn→∞ hn
n tr(G

0
nPnGn) 6= 0. In the event that limn→∞ hn

n tr(G
0
nPnGn) = 0,

�λn = Y
0
nPnYn/Y

0
nP

s
nWnYn

is the unique consistent root.

Unfortunately, because Gn involves the unknown parameter λ0, one may not, in general, be able to determine

the sign of tr(P snGn). However, if an initial consistent estimate of λ0 is available, the sign of tr(P
s
nGn) can

example, if xn is a column vector with uniformly bounded elements, then {k xn k} is bounded with the row
sum norm. This is not so with the Euclidian norm.

3 For example, at λ0 = 0, S
−1
n is the identity matrix In.
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be estimated. More on this will be discussed later. In particular, there is an interest in selecting P sn closely

related to Gn.

Instead of investigating each of the roots as in Proposition 2.2, the following proposition shows that

the GMM estimator �λn is locally consistent. In order to show that the objective function of the GMM

can uniformly converge in probability to a well deÞned limiting function, we assume as usual for nonlinear

estimation in the GMM framework that the parameter space of λ0 is a compact set.

Assumption 6: The parameter space Λ of λ is a compact set of the real line with λ0 in its interior.

In this assumption, the range of Λ does not need to be speciÞc but the true parameter λ0 has to satisfy

Assumption 3. In the literature, it is quite common to specify the range of λ to be (−1, 1) when Wn,n is

row-normalized, as it guarantees that Sn(λ)
−1 exist whenever λ ∈ (−1, 1) and S−1n (λ) can have a series

expansion in terms of the powers of Wn (see, e.g., Anselin 1988). Our GMM estimation framework imposes

less restrictive assumptions on the parameter space Λ.

Proposition 2.3 Suppose that limn→∞ hn
n tr(P

s
nGn) 6= 0, then the GMM estimator �λn derived from

minλ∈Λ0 g
2
n(λ) for some small neighborhood Λ0 of λ0, is a consistent estimator of λ0.

The asymptotic distribution of �λn can be derived from a Taylor expansion of gn(�λn) at λ0. The Þrst

and second order derivatives of gn(λ) are

dgn(λ)

dλ
= −Y 0nS0n(λ)P snWnYn,

d2gn(λ)

dλ2
= Y 0nW

0
nP

s
nWnYn. (2.9)

The asymptotic distribution of the consistent root �λn is in the following proposition. In order for the central

limit theorem of a quadratic form in the Appendix to be applicable, Assumption 5) needs to be strengthened.

Assumption 50: limn→∞ h
1+2

δ
n

n = 0 where δ > 0 such that E(|²|4+2δ) exists.

In the event that ² has moments of any Þnite order, δ can be taken to be arbitrarily large. For those cases,

Assumptions 50 is only slightly stronger than Assumption 5.

Proposition 2.4 Let Pn ∈ P1n. The consistent root �λn from minλ∈Λ g2n(λ) has the asymptotic distri-

bution that r
n

hn
(�λn − λ0) D−→ N

Ã
0, lim
n→∞

"
(κ4 − 3)

Pn
i=1 p

2
n,ii

hn
n tr

2(P snGn)
+

tr(PnP
s
n)

hn
n tr

2(P snGn)

#!
, (2.10)

where κ4 =
µ4
σ40
is the kurtosis of ²ni.

If (i) ²n ∼ N(0,σ20In) or (ii) Pn ∈ P2n or (iii) limn→∞ hn =∞, thenr
n

hn
(�λn − λ0) D−→ N

Ã
0, lim
n→∞

tr(PnP
s
n)

hn
n tr

2(P snGn)

!
. (2.11)
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The rate of convergence of the GMM estimator �λn depends on hn. If {hn} is a bounded sequence, it converges

in probability to λ0 at the usual
√
n-rate. When {hn} is a divergent sequence, its rate of convergence can

be lower than the
√
n-rate. These rates of convergence match those of the QMLE in Lee (1999b).

The literature on GMM estimation is silent on the problem of possible multiple roots of moment equa-

tions. It assumes that the moment equations have a unique root. Because of nonlinearity in the objective

function of the GMM method, it is in general difficult to analytically check whether the moment equations

have a unique root or not. For our model, because the nonlinearity is only quadratic, it is relatively easier

to reveal the multiple roots issue. To overcome this difficulty, a possible strategy is to employ a few more

functionally independent moment equations. For our problem, even though each moment equation might

have two distinct roots, the common solution set of distinct moment equations may be a singleton. Suppose

that P1n and P2n are two distinct n× n constant matrices from P1n. The two corresponding moment equa-

tions will be E(Y 0nS
0
n(λ)P1nSn(λ)Yn) = 0 and E(Y 0nS

0
n(λ)P2nSn(λ)Yn) = 0. The inconsistent root of the

Þrst moment equation has the value λ0 + tr(P
s
1nGn)/tr(G

0
nP1nGn) and the one of the second equation has

λ0 + tr(P
s
2nGn)/tr(G

0
nP2nGn). Thus, if

tr(P s
1nGn)

tr(G0
nP1nGn)

6= tr(P s
2nGn)

tr(G0
nP2nGn)

, the common root of the two moment

equations will be the unique λ0. IdentiÞcation of the SAR process in GMM estimation framework can thus be

achieved when distinctive moment conditions are employed. In practice, speciÞc IV matrices from P1n or P2n
can be constructed from the spatial weights matrix Wn, for examples, Wn itself,

³
W 0
nWn − tr(W 0

nWn)
n In

´
,

and
³
W 2
n − tr(W 2

n)
n In

´
, etc. The selection of Wn and

³
W 0
nWn − tr(W 0

nWn)
n In

´
is related to the MOM in

Kelejian and Prucha (1999a) as discussed in a subsequent paragraph.

Suppose that P1n, · · · , Pmn are m distinct constant square matrices of dimension n from P1n. The set

of IV functions can be PjnSn(λ)Yn, j = 1, · · · ,m. With these IV functions,

gn(λ) = (Y
0
nS

0
n(λ)P1nSn(λ)Yn, · · · , Y 0nS0n(λ)PmnSn(λ)Yn)0. (2.12)

As in the general GMM framework, these moment equations can be combined into a smaller set of equa-

tions by a constant matrix an and a GMM estimator can be derived from the minimization problem:

minλ g
0
n(λ)a

0
nangn(λ). The asymptotic distribution of the GMM estimator �λn can be derived from the

Taylor expansion

�λn − λ0 = −
Ã
∂g0n(�λn)
∂λ

a0nan
∂gn(λ̄n)

∂λ

!−1
∂g0n(�λn)
∂λ

a0nangn(λ0). (2.13)
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The asymptotic distribution of �λn will involve the variance of gn(λ0) = (²0nP1n²n, · · · , ²0nPmn²n)0. For

any square matrix A of dimension n, let vecD(A) = (a11, · · · , ann)0 denote the vector formed by the diagonal

elements of A. Furthermore, let Diag(A) = diag(a11, · · · , ann) be the n× n diagonal matrix associated with

the diagonal elements of A.

Lemma 2.1 For any two square matrices A and B of dimension n,

E(²0nA²n · ²0nB²n) = (µ4 − 3σ40)vec0D(A)vecD(B) + σ40 [tr(A)tr(B) + tr(ABs)],

where µ4 = E(²
4
ni) is the fourth moment of ²ni.

If (i) both A and B are matrices with zero diagonals, or (ii) tr(A) = tr(B) = 0 and ²n ∼ N(0,σ20In),

then E(²0nA²n · ²0nB²n) = σ40tr(ABs) = σ40tr(BAs).

The variance matrix of gn(λ0) can be derived with the results in Lemma 2.1. If (i) the matrices Pjn, j =

1, · · · ,m, are from P2n, or (ii) ²n ∼ N(0,σ20In) with Pjn ∈ P1n for all j = 1, · · · ,m, then var(gn(λ0)) = σ40Vn,

where

Vn =

 tr(P1nP
s
1n) · · · tr(P1nP

s
mn)

...
...

...
tr(PmnP

s
1n) · · · tr(PmnP

s
mn)

 =
1

2

 tr(P s1nP
s
1n) · · · tr(P s1nP

s
mn)

...
...

...
tr(P smnP

s
1n) · · · tr(P smnP

s
mn)

 . (2.14)

The second expression in (2.14) follows from the identity that tr(P1nP
s
2n) =

1
2 tr(P

s
1nP

s
2n). In general,

var(gn(λ0)) = σ
4
0Ωn where

Ωn = (κ4 − 3)[vecD(P1n), · · · , vecD(Pmn)]0[vecD(P1n), · · · , vecD(Pmn)] + Vn. (2.15)

For any two conformable matrices A and B, it is obvious that tr(AB) = vec0(A0)vec(B). The Vn in (2.14)

can be rewritten as Vn =
1
2 (vec(P

s
1n), · · · , vec(P smn))0(vec(P s1n), · · · , vec(P smn)). The Vn is nonsingular as long

as Pns are chosen so that vec(P
s
jn) for j = 1, · · · ,m are linearly independent. This is so also for Ωn.

4

Proposition 2.5 Suppose Pjn, j = 1, · · · ,m, are from P1n so that a0 limn→∞ hn
n E(gn(λ)) = 0 has a

unique root at λ0 in Λ, where an converges to a0. Then, the GMM estimator �λn derived from the minimization

minλ∈Λ g0n(λ)a
0
nangn(λ) is a consistent estimator of λ0, and

q
n
hn
(�λn − λ0) D−→ N(0,Σ), where

Σ = lim
n→∞[(

hn
n
dn)

0a00a0(
hn
n
dn)]

−1(
hn
n
dn)

0a00a0(
hn
n
Ωn)a

0
0a0(

hn
n
dn)[(

hn
n
dn)

0a00a0(
hn
n
dn)]

−1, (2.16)

with dn = (tr(P
s
1nGn), · · · , tr(P smnGn))0 under the assumption that a0 limn→∞ hn

n dn 6= 0.
4 If Ωn were singular, there would exist a nonzero vector of constants α = (α1, · · · ,αm)0 such that

α0gn(λ0) = 0 with probability one. That is, ²0n(
Pm

j=1 αjPjn)²n = 0 almost everywhere for ²n. This would be

possible if and only if
Pm

j=1 αjPjn = 0, i.e., vec(Pjn)s would be linearly dependent.
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From the limiting distribution of �λn in Proposition 2.5, the optimal choice of the weighting matrix a
0
nan

is, as usual, the inverse of a matrix proportional to the variance matrix of gn(λ0). In general, the optimal

weighting matrix for gn(λ0) is the inverse of Ωn. The matrix V
−1
n can be the optimal weighting matrix in

special circumstances including that ²n ∼ N(0,σ20In) or Pns are from P2n. A less apparent case is the spatial

process with limn→∞ hn =∞.

Proposition 2.6 Suppose that the limit of hnn Ωn exists and is a nonsingular matrix, and
hn
n (
�Ωn−Ωn) =

oP (1), then the optimal GMM estimator �λv,n derived from minλ∈Λ g0n(λ)�Ω−1n gn(λ) based on gn(λ) with Pns

from P1n has the asymptotic distribution:r
n

hn
(�λv,n − λ0) D−→ N(0,σ40Σv), (2.17)

where Σv = (limn→∞ hn
n Σvn)

−1 with Σvn =
¡
tr(P s1nGn), · · · , tr(P smnGn)

¢
Ω−1n

¡
tr(P s1nGn), · · · , tr(P smnGn)

¢0
,

assuming that the limit of hnn Σvn exists and is nonzero. Furthermore,

g0n(�λv,n)�Ω
−1
n gn(�λv,n)

D→ σ40χ
2(m− 1). (2.18)

For the special cases that (i) Pjn, j = 1, · · · ,m, are from P2n, or (ii) ²n ∼ N(0,σ20In), or (iii)

limn→∞ hn = ∞, then Vn can be used as the weighting matrix in place of �Ωn for the optimal GMM es-

timation.

A nice feature of Vn in (2.14) is that it does not involve any unknown parameter of the model and the

computation of the GMM with V −1n as its weighting matrix does not require a two step procedure as in

a typical optimal GMM estimation. On the other hand, in order to use the general weighting matrix Ωn,

the moment parameters µ4 and σ
2
0 need to be estimated. The λ0 can be estimated by the GMM without

weighting in an initial step. The initial GMM estimate can be used to estimate the disturbances of ²n.

The moments σ20 and µ4 can then be estimated by corresponding empirical moments using the estimated

residuals. Alternatively, one may select Pns from P2n and use the corresponding optimal GMM with V −1n

as the weighting matrix to obtain an initial estimate of λ0. The estimated �Ωn can be used as the optimal

feasible weighting matrix. The use of Vn does not require these steps. The corresponding Vn gives the

optimal weighting matrix for the moments gn(λ) when the Pjns are selected from P2n, a subclass of P1n.

If Pjns are selected from the broader class P1n, the corresponding Vn could provide the optimal weighting

matrix only when ²n has the moment restriction µ4 = 3σ40 , which includes the normal distributional case,

or when limn→∞ hn = ∞. With the optimal weighting matrix, the minimized objective function in (2.18)
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is asymptotically χ2 distributed with (m− 1) degree of freedom, which provides a goodness-of-Þt diagnostic

test for the spatial model when m > 1.

The computation of the GMM estimators in Propositions 2.5 and 2.6 is essentially that of the nonlinear

least squares (NLS). Consider the GMM estimation in Proposition 2.5. From (2.12),

angn(λ) =

mX
l=1

anlY
0
nS

0
n(λ)PlnSn(λ)Yn =

mX
l=1

anlY
0
nPlnYn−

mX
l=1

anlY
0
nW

0
nP

s
lnYn ·λ+

mX
l=1

anlY
0
nW

0
nPlnWnYn ·λ2.

The GMM estimation is equivalent to the NLS estimation of the following nonlinear-in-parameters regression

equation:
mX
l=1

anlY
0
nPlnYn =

mX
l=1

anlY
0
nW

0
nP

s
lnYn · λ−

mX
l=1

anlY
0
nW

0
nPlnWnYn · λ2 + ξk,

where ξk is the k-dimensional vector of equation residuals (disturbances). For the optimum GMM estimation

in Proposition 2.6, as

gn(λ) =

 Y 0nS
0
n(λ)P1nSn(λ)Yn

...
Y 0nS

0
n(λ)PmnSn(λ)Yn

 =

 Y 0nP1nYn
...

Y 0nPmnYn

−
 Y 0nW

0
nP

s
1nYn
...

Y 0nW
0
nP

s
mnYn

λ+
 Y 0nW

0
nP1nWnYn
...

Y 0nW
0
nPmnWnYn

λ2,
it is equivalent to the generalized nonlinear least squares (GNLS) estimation of the nonlinear-in-parameter

equation:  Y 0nP1nYn
...

Y 0nPmnYn

 =

 Y 0nW
0
nP

s
1nYn
...

Y 0nW 0
nP

s
mnYn

λ−
 Y 0nW

0
nP1nWnYn
...

Y 0nW 0
nPmnWnYn

λ2 + ξm,
where ξm is a m-dimensional vector of residual with variance matrix Ωn.

5

The selection of Pns for IV functions requires them to be matrices either from P1n or P2n, and be

correlated with Gn in that tr(P
s
nGn) 6= 0. Other than those, the selection of Pns can be arbitrary. As the

asymptotic variance of the GMM estimator �λn depends on the selected Pns. The possible best selection of

Pn is an interesting issue. Intuitively, one should choose a Pn so that its correlation with Gn be maximized.

One can not use Gn directly for Pn because Gn may neither have a zero diagonal nor a zero trace. Instead

of Gn, possible candidates may be (Gn− tr(Gn)
n In) or (Gn−Diag(Gn)), which are modiÞed from Gn so that

they are in either P1n or P2n. The following proposition shows that (Gn − tr(Gn)
n In) and (Gn −Diag(Gn))

are also relevant in the evaluation of the trace of the product of P sn and Gn.

Lemma 2.2 Suppose that A and B are two n× n matrices.
5 By casting the GMM estimation in a NLS framework, one may also address the identiÞcation of λ0 via

those nonlinear (moment) equations. The identiÞcation of parameters in the MOM in Kelejian and Prucha
(1999a) is addressed via a least square estimation.
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(i) If tr(A) = 0, then tr(AB) = tr[A(B − tr(B)
n In)].

(ii) If Diag(A) = 0, then tr(AB) = tr[A(B −Diag(B))].

This lemma states that when A is a square matrix with tr(A) = 0, a conformable matrix B in the product AB

can be replaced by (B− tr(B)
n In) without changing the value tr(AB). Similarly, if A is a square matrix with a

zero diagonal, B can be replaced by (B−Diag(B)) without changing the value tr(AB). This lemma implies

that if Pn ∈ P1n, tr(P snGn) = tr(P sn(Gn− tr(Gn)
n In)), and if Pn ∈ P2n, tr(P snGn) = tr(P sn(Gn−Diag(Gn))).

The following proposition conÞrms that (Gn − tr(Gn)
n In) is the optimal matrix within the class of matrices

P1n, and (Gn−Diag(G)) is optimal in P2n. They are optimal in the sense of maximizing the scalar correlation

coefficient of P snSnYn and WnYn within their relevant classes. As P
s
nSnYn = P

s
n²n and WnYn = Gn²n, they

have zero means and their scalar variances are, respectively, E(²0nP 2sn ²n) = σ20tr(P 2sn ) and E(²0nG0nGn²n) =

σ20tr(G
0
nGn). Hence, the squared scalar correlation coefficient of P

s
nSnYn and WnYn is r

2
n =

tr2(P s
nGn)

tr(P 2s
n )tr(G0

nGn)
.

Proposition 2.7 (i) In the class of constant matrices P1n,

max
Pn∈P1n

tr2(P snGn)

tr(P s2n )
=
1

4
max

Pn∈P1n
tr2(P snG

s
n)

tr(P s2n )
=
1

4

tr2[(Gn − tr(Gn)
n In)

sGsn]

tr[(Gn − tr(Gn)
n In)s2]

=
1

4
tr[(Gn − tr(Gn)

n
In)

s2],

and, (ii) in the class of constant matrices P2n,

max
Pn∈P2n

tr2(P snGn)

tr(P 2sn )
=
1

4
max

Pn∈P2n
tr2(P snG

s
n)

tr(P 2sn )
=
1

4

tr2[(Gn −Diag(Gn))sGsn]
tr[(Gn −Diag(Gn))s2] =

1

4
tr[(Gn −Diag(Gn))s2].

The intuition that selecting Pn to maximize the correlation of PnSnYn with WnYn within the relevant

class may provide best IV estimate is conÞrmed in the following proposition. LetM1n = {�λv,n} (resp.,M2n)

be the class of optimal GMM estimators derived from minλ∈Λ g0n(λ)Ω−1n gn(λ) (resp., minλ∈Λ g0n(λ)V −1n gn(λ)),

where gn(λ) is a vector of moments functions with Pns from P1n (resp., P2n).

Proposition 2.8Within the class of optimal GMM estimatorsM2n, the best estimator is the consistent

root �λ2b,n derived from minλ∈Λ[Y 0nS0n(λ)(Gn − Diag(Gn))Sn(λ)Yn]2 in the sense that
q

n
hn
(�λ2b,n − λ0) D→

N(0,Σ2b) with Σ2b ≤ Σv, where Σv is the limiting variance matrix of
q

n
hn
(�λv,n−λ0) in Proposition 2.6 and

Σ2b = ( lim
n→∞

hn
n
tr[(Gn −Diag(Gn))sGn])−1. (2.19)

In the event that ²n ∼ N(0,σ20In) or for the case that limn→∞ hn = ∞, within the broader class of

estimatorsM1n, the consistent root �λ1b,n derived from minλ∈Λ[Y 0nS0n(λ)(Gn− tr(Gn)
n In)Sn(λ)Yn]

2 is the best

GMM estimator with
q

n
hn
(�λ1b,n − λ0) D→ N(0,Σ1b) where

Σ1b = ( lim
n→∞

hn
n
tr[(Gn − tr(Gn)

n
In)

sGn])
−1. (2.20)
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The estimate �λ2b,n is optimal within the class P2n regardless of the distribution of ²n. For the special

cases that ²n is normally distributed or {hn} is a divergent sequence, �λ1b,n is optimal within the broader

class of P1n and may relatively be more efficient than �λ2b,n. The relative efficiency of �λ1b,n over �λ2b,n can

be quantiÞed by comparing their precision matrices:

hn
n
{tr[(Gn − tr(Gn)

n
In)

sGn]− tr[(Gn −Diag(Gn))sGn]}

= 2
hn
n
tr[(Diag(Gn)− tr(Gn)

n
In)Gn] = 2

hn
n
tr[(Diag(Gn)− tr(Gn)

n
In)Diag(Gn)]

= 2
hn
n

nX
j=1

(Gn,jj −
Pn

i=1Gn,ii
n

)2.

From this, for {hn} being a bounded sequence, �λ1b,n is more precise as it takes into account the variance of

the diagonal elements of Gn. The difference of the precision matrices is two times of the empirical variance

of the diagonal elements of Gn.
6 The empirical variance is zero only for cases where the diagonal elements

of Gn are identical. For the case that limn→∞ hn = ∞, the difference shall vanish as n goes to inÞnity

because Gn,ii = O( 1hn ) implies that
hn
n

Pn
j=1(Gn,jj −

P
n

i=1
Gn,ii

n )2 = hn
n O(

n
h2n
) = O( 1hn ) = o(1). That is,

when limn→∞ hn =∞, �β1b,n and �β2b,n have the same limiting distribution.

However, estimators with Pn from P2n, which includes �λ2n, may have some robust properties than those

from P1n. The consistency of GMM estimator with Pn from P1n or P2n is based on the fundamental moment

property that E(²0nPn²n) = 0 as in proof of Proposition 2.1. This is valid because ²ni�s are i.i.d. with zero

mean and a common variance. If ²ni�s had heteroskedastic variances, E(²n²
0
n) would be a diagonal matrix not

proportional to an identity matrix. In such a case, when Pn is from P1n, E(²0nPn²n) = tr[PnE(²n²0n)] would

not necessarily be zero. However, when Pn has a zero diagonal, tr[PnE(²n²
0
n)] = tr[Diag(Pn)E(²n²

0
n)] = 0

because E(²n²
0
n) is a diagonal matrix and Diag(Pn) = 0. So it is possible that �λ2b,n may be consistent

against unknown heteroskedastic disturbances in the model.7

When ²n is not normally distributed or {hn} is a bounded sequence, the GMM estimator �λ1b,n in the

preceding proposition may not have any optimal property. However, it is interesting to note that it has the

same limiting distribution as the QMLE for the model (2.1).

Proposition 2.9 The consistent root �λ1b,n derived from minλ∈Λ[Y 0nS
0
n(λ)(Gn− tr(Gn)

n In)Sn(λ)Yn]
2 has

6 The hn shall be normalized to one in this case.
7 A rigorous analysis of the robustness property of this estimator and its associated robust (White�s) test

statistics is beyond the scope of this paper but it shall be investigated in a separate paper.

13



the limiting distributionr
n

hn
(�λ1b,n − λ0) D→ N

Ã
0, lim
n→∞

"
(κ4 − 3)

Pn
i=1(Gn,ii − tr(Gn)

n )2

hn
n tr

2[(Gn − tr(Gn)
n In)sGn]

+
1

hn
n tr[(Gn − tr(Gn)

n In)sGn]

#!
,

(2.21)

which is the same as the QMLE �λQM,n of λ0 derived from maxθ∈Θ lnLn(θ) where θ = (λ,σ2) and

Ln(θ) =
|Sn(λ)|
(2πσ2)

n
2
exp(− 1

2σ2
Y 0nS

0
n(λ)Sn(λ)Yn)

based on the normal distributional speciÞcation of ²n in (2.1).
8

The best estimate in M1n (resp., M2n) associated with (Gn − tr(Gn)
n In) (resp., (Gn − Diag(Gn)))

involves the unknown λ0 in Gn as Gn = WnS
−1
n . The unknown λ0 can be estimated with some Pns from

P1n or P2n within the GMM framework. With an initial consistent estimate �λn, Gn can be estimated by

�Gn =WnS
−1
n (�λn). The additional computation for using this feasible best matrix is to obtain the inverse of

Sn(�λn), which, however, needs to be inverted only once.
9 The following proposition shows that the feasible

GMM estimator with Gn replaced by �Gn in the IV functions has the same limiting distribution as the

corresponding best GMM estimator in Proposition 2.8.

To simplify the following presentations, for any n× n matrix An, we shall denote the adjusted matrix

(An − tr(An)
n In) or the matrix (An −Diag(An)) by Adn.

Proposition 2.10 Suppose �λn is a
q

n
hn
-consistent estimate of λ0, and �Gn =WnS

−1
n (�λn).

Then, minλ∈Λ[Y 0nS0n(λ) �GdnSn(λ)Yn]2 has a consistent root �λb,n which has the same limiting distribution

of �λb,n derived from minλ∈Λ[Y 0nS
0
n(λ)G

d
nSn(λ)Yn]

2.

The moment equation Y 0nS
0
n(λ)

�GdnSn(λ)Yn = 0 may have two roots. However, the consistent root can

be easily identiÞed because the sign of tr((Gsn)
dGn) can be determined. This is so, because tr((G

s
n)
dGn) =

1
2 tr((G

s
n)
d(Gsn)

d) > 0 whenever (Gsn)
d 6= 0.

Proposition 2.11 Under the assumption that limn→∞ hn
n tr[(G

s
n)
d(Gsn)

d] 6= 0, the consistent root for

the moment equation Y 0nS
0
n(λ)

�GdnSn(λ)Yn = 0 is

�λn = {Y 0n( �Gsn)dWnYn −
h
(Y 0n( �G

s
n)
dWnYn)

2 − 4Y 0nW 0
n(
�Gn)

dWnYn · Y 0n( �Gn)dYn
i 1
2 }/(2Y 0nW 0

n(
�Gn)

dWnYn).

(2.22)

8 The concentrated log likelihood function of λ is lnLn(λ) = −n
2 (ln(2π) + 1) − n

2 ln �σ
2
n(λ) + ln |Sn(λ)|,

where �σ2n(λ) =
1
nY

0
nS

0
n(λ)Sn(λ)Yn. Its associated Þrst order derivative is

∂ lnLn(λ)
∂λ = 1

�σ2n(λ)
Y 0nW 0

n,nSn(λ)Yn−
tr(Wn,nS

−1
n (λ)) (see, Lee 1999b). Our moment equation in the GMM framework is not the likelihood

equation ∂ lnLn(λ)
∂λ = 0.

9 The Cholesky decomposition, for example, can be an attractive general method. If Wn is a sparse
matrix, proper sparse matrix inverse subroutines may be valuable (Page and Barry 1997).
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The best estimators in (2.22) are of interest as they have close form expressions. In a Þnite sample,

when the numerical value of (Y 0n( �G
s
n)
dWnYn)

2−4Y 0nW 0
n(
�Gn)

dWnYn ·Y 0n( �Gn)dYn is positive, the best estimates

are immediate available. In the event that the numerical value under the square root operator in (2.22) is

negative, the estimator in (2.22) would take a complex value. In that case, one shall resort to the GMM

minimization and the estimate (minimizer) shall take the value Y 0n( �G
s
n)
dWnYn/Y

0
nW

0
n(
�Gsn)

dWnYn, which is

equivalent to the root in (2.22) by setting the negative value under the square root operator to zero. In

any case, the computational burden of the best estimators will mainly be in the computation of an initial

consistent estimate by the GMM or NLS and the evaluation of �S−1n in �Gn.

Our GMM estimation has focused on the estimation of the spatial parameter λ. With a consistent

estimate �λn available, the parameter σ
2 can be estimated as �σ2n = �²0n�²n/n where �²n = Sn(�λn)Yn is the

estimated residual. By expansion,

�σ2n − σ20 = (
1

n
²0n²n − σ20)− (�λn − λ0)

²0nG
s
n²n
n

+ (�λn − λ0)2 ²
0
nG

0
nGn²n
n

. (2.23)

The terms
²0nG

s
n²n
n and

²0nG
0
nGn²n
n are of order O( 1hn ) by Lemma A.3, and (

1
n²
0
n²n−σ20) = oP (1) by the law of

large numbers. Hence, �σ2n is a consistent estimator of σ
2
0 . The asymptotic distribution of �σ

2
n may depend on

the asymptotic distribution of �λn except for the case that limn→∞ hn =∞. This is so as follows. In general,

√
n(�σ2n − σ20) =

1√
n
(²0n²n − nσ20)−

r
n

hn
(�λn − λ0)

√
hn
n
²0nG

s
n²n + (

r
n

hn
(�λn − λ0))2 · hn√

n

²0nG
0
nGn²n
n

=
1√
n

nX
i=1

(²2ni − σ20)−
r
n

hn
(�λn − λ0) ·

√
hn
n
²0nG

s
n²n + oP (1),

(2.24)

because hn
n = o(1) and 1

n²
0
nG

0
nGn²n = O( 1hn ), when

�λn is
q

n
hn
-consistent. When limn→∞ hn = ∞, the

term
√
hn
n ²0nG

s
n²n = OP (

1√
hn
) = oP (1) and, in this case,

√
n(�σ2n − σ20) = 1√

n

Pn
i=1(²

2
ni − σ20) + oP (1) D→

N(0, (µ4 − σ40)). When {hn} is a bounded sequence, the asymptotic distribution of �σ2n will depend on the

asymptotic distribution of �λn evidenced from (2.24). As the best GMM estimate �λn from P1n has the same

asymptotic distribution as the QMLE under the normal distributional speciÞcation and the QMLE of σ20 is

also equal to the estimated residuals� second moments, �σ2n with the best GMM estimate �λn will have the

same asymptotic distribution of the QMLE of σ20 .

Kelejian and Prucha (1999a) have suggested an MOM for the estimation of the SAR model (2.1). The

moments used in their estimation are based on the moment properties that E(²0n²n) = nσ
2
0 , E(²

0
nW

0
nWn²n) =
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σ20tr(W
0
nWn) and E(²

0
nWn²n) = 0. The corresponding vector of empirical moments is

gn(θ) = (Y
0
nS

0
n(λ)Sn(λ)Yn − nσ2, Y 0nS0n(λ)W 0

nWnSn(λ)Yn − σ2tr(W 0
nWn), Y

0
nS

0
n(λ)WnSn(λ)Yn)

0. (2.25)

They suggest the estimation of θ by the unweighted MOM: minθ∈Θ g0n(θ)gn(θ). Kelejian and Prucha (1999a)

show that the resulted MOM estimator is consistent. Comparing their MOM approach with our GMM

approach, there are some similarities but they are different. The third moment in (2.25) captures the corre-

lation ofWn²n and ²n. This moment equation corresponds to a moment equation in our GMM framework by

taking Wn for the IV function WnSn(λ)Yn as Wn ∈ P2n. By selecting (W 0
nWn − tr(W 0

nWn)
n In) for a moment

function in our GMM framework would have some similarities with the second moment equation in (2.25) of

Kelejian and Prucha (1999a). The moment function Y 0nS
0
n(λ)(W

0
nWn − tr(W 0

nWn)
n In)Sn(λ)Yn can be written

as

Y 0nS
0
n(λ)(W

0
nWn − tr(W

0
nWn)

n
In)Sn(λ)Yn

= [Y 0nS
0
n(λ)W

0
nWnSn(λ)Yn − σ2tr(W 0

nWn)]− tr(W
0
nWn)

n
[Y 0nS

0
n(λ)Sn(λ)Yn − nσ2],

(2.26)

which is a linear combination of the Þrst and second moments in (2.25). The MOM in Kelejian and Prucha

(1999a) will jointly estimate λ and ρ. In our GMM framework, the estimation focuses solely on the estima-

tion of λ. The linear combination in (2.26) eliminates the estimation of σ2 and focuses on the estimation of

λ. The σ2 can be estimated after the estimation of λ via the estimated residuals of ²n. Alternatively, given a

value λ, σ2 can be estimated from the Þrst moment equation implied by (2.25), i.e., σ2 = 1
nY

0
nS

0
n(λ)Sn(λ)Yn.

Substitute this solution for σ2 into the second moment in (2.25), one will arrive at the moment func-

tion Y 0S0n(λ)W
0
nWnSn(λ)Yn − 1

nY
0
nS

0
n(λ)Sn(λ)Yntr(W

0
nWn) = Y 0nS

0
n(λ)(W

0
nWn − tr(W 0

nWn)
n In)Sn(λ)Yn in

our GMM framework. Such a sequential estimation strategy will slightly simplify the computation as it

involves one less parameter in the nonlinear optimization.

Ord (1975) has indicated the possible use of the third moment equation alone in (2.25) to solve for an

estimate of λ. He points out that the relative inefficiency of that moment estimate relative to the MLE

increases as λ increases and he favors the ML method for estimation. The MOM estimation in Kelejian

and Prucha (1999a) uses the additional Þrst two moments in (2.25). Kelejian and Prucha (1999a) have

considered the consistency but not the asymptotic distribution of their MOM estimators. Their Monte

Carlo experiment has shown efficiency close to those of the QMLEs under a variety of distributions. This is

a much better improvement than that of Ord (1975). However, theoretically, it is unlikely that their moment

method has any efficiency property because the selection of their moment equations has not incorporated
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any efficiency consideration and their suggested MOM does not incorporate proper weighting across their

moment equations. In our GMM framework, our best GMM estimators of λ0 and σ
2
0 can be asymptotically

efficient as the QMLE for any distribution (satisfying relevant regularity moment conditions).

3. GMM Estimation of the Regression Model with SAR Disturbances

The regression model with SAR disturbances is speciÞed as

Yn = Xnβ + un, un = λWnun + ²n, (3.1)

where ²n has zero mean and variance σ
2
0In, and Wn is a spatial weights matrix. The exogenous variables are

assumed to satisfy the conventional property:

Assumption 7: The elements of Xn are uniformly bounded, and limn→∞
X0
nXn

n exists and is nonsin-

gular.

This model implies that

Sn(λ)Yn = Sn(λ)Xnβ + ²n, (3.2)

which is in the Durbin spatial lag form (Anselin 1988).

The regression model is a generalized linear model with variance S−1n S
0−1
n for the disturbance vector

un. Let un(β) = Yn − Xnβ. A possible estimator of β is the generalized least squares estimator (GLSE)

with a consistently estimated variance matrix. In order to estimate the variance matrix S−1n S
0−1
n , one needs

to estimate the unknown parameter λ in the SAR disturbance process.

Let �βL,n = (X 0
nXn)

−1X 0
nYn be the ordinary least square estimator (OLSE). The disturbance un can

then be estimated by the estimated residual u∗n = Yn −Xn �βL,n. The estimated residual is related to ²n as

u∗n = Qn²n where Qn = (In−Xn(X 0
nXn)

−1X 0
n)S

−1
n . We suggest the estimation of λ0 by the GMM method:

minλ∈Λ g0n(λ)a0nangn(λ) with

gn(λ) = (u
∗0
n S

0
n(λ)P1nSn(λ)u

∗
n, · · · , u∗

0
n Sn(λ)PmnSn(λ)u

∗
n)
0. (3.3)

The following proposition shows that the GMM estimator �λn is
q

n
hn
-consistent and it has the limiting

distribution of the corresponding GMM estimator of the SAR process for un as if un is observable.

Proposition 3.1 Suppose Pjn, j = 1, · · · ,m, are selected from P1n so that a0 limn→∞ hn
n E(gn(λ)) = 0

has a unique root at λ0 in Λ, where an converges to a0 and gn(λ) is in (3.3). Then, the GMM estimator �λn

derived from minλ∈Λ g0n(λ)a
0
nangn(λ) is a consistent estimator of λ0, and

q
n
hn
(�λn−λ0) D−→ N(0,Σ), where

Σ = lim
n→∞

·
(
hn
n
dn)

0a00a0(
hn
n
dn)

¸−1
(
hn
n
dn)

0a00a0(
hn
n
Ωn)a

0
0a0(

hn
n
dn)

·
(
hn
n
dn)

0a00a0(
hn
n
dn)

¸−1
(3.4)
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with dn = (tr(P
s
1nGn), · · · , tr(P smnGn))0, under the assumption that a0 limn→∞ hn

n dn 6= 0.

With any consistent estimator �λn of λ0, the following proposition shows that the feasible GLSE is

asymptotically equivalent to the exact GLSE.

Proposition 3.2 Let �λn be a consistent estimator of λ0 and �Sn = In− �λnWn. The feasible GLSE �βG,n,

where �βG,n = (X
0
n
�S0n �SnXn)

−1X 0
n
�S0n �SnYn, has the asymptotic distribution that

√
n( �βG,n − β0) D→ N(0,σ20( limn→∞

1

n
X 0
nS

0
nSnXn)

−1), (3.5)

assuming that the limit of 1
nX

0
nS

0
nSnXn exists and is a nonsingular matrix.

As usual, the asymptotic distribution of the GLSE does not require any speciÞc rate on the consistent

estimate �λn in the estimation of the weighting matrix. So even though �λn may converge at a rate lower than

the
√
n-rate, the rate of convergence of �βG,n and its limiting distribution will not be affected.

The following proposition summarizes the main results of the best GMM estimates of λ0 for the SAR

disturbance process. It will be useful if λ0 in addition to the regression coefficients β is also the interest of the

model. This result shows that the same asymptotic efficient properties of estimates for the SAR process hold

for the SAR disturbance process in the GMM framework when the unobservable disturbance un is replaced

by its least squares estimated residuals.

Proposition 3.3 Suppose that �λn is a
q

n
hn
-consistent estimate of λ0 and �Gn =WnS

−1
n (�λn).

Within the class of optimal GMM estimatorsM2n, the best estimator is the consistent root �λ2b,n derived

from minλ∈Λ[u∗
0
n S

0
n(λ)(

�Gn − Diag( �Gn))Sn(λ)u∗n]2 in the sense that
q

n
hn
(�λ2b,n − λ0) D→ N(0,Σ2b) with

Σ2b ≤ Σ, where Σ is the limiting variance matrix of
q

n
hn
(�λn − λ0) in Proposition (3.1) and

Σ2b = ( lim
n→∞

hn
n
tr[(Gn −Diag(Gn))sGn])−1. (3.6)

The consistent root �λ2b,n is

�λ2b,n = {u∗0n ( �Gn −Diag( �Gn))sWnu
∗
n − [(u∗

0
n (
�Gn −Diag( �Gn))sWnu

∗
n)
2

− 4u∗0nW 0
n( �Gn −Diag( �Gn))Wnu

∗
n · u∗

0
n ( �Gn −Diag( �Gn))u∗n]

1
2 }/(2u∗0nW 0

n( �Gn −Diag( �Gn))Wnu
∗
n).
(3.7)

In the event that ²n ∼ N(0,σ20In) or for the case that limn→∞ hn = ∞, within the broader class of

estimatorsM1n, the consistent root �λ1b,n derived from minλ∈Λ[u∗
0
n S

0
n(λ)( �Gn− tr( �Gn)

n In)Sn(λ)u
∗
n]
2 is the best

GMM estimator with
q

n
hn
(�λ1b,n − λ0) D→ N(0,Σ1b), where

Σ1b = ( lim
n→∞

hn
n
tr[(Gn − tr(Gn)

n
In)

sGn])
−1. (3.8)
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The consistent root �λ1b,n is

�λ1b,n = {u∗0n ( �Gn −
tr( �Gn)

n
In)

sWnu
∗
n − [(u∗

0
n ( �Gn −

tr( �Gn)

n
In)

sWnu
∗
n)
2

− 4u∗0nW 0
n( �Gn −

tr( �Gn)

n
In)Wnu

∗
n · u∗

0
n ( �Gn −

tr( �Gn)

n
In)u

∗
n]

1
2 }/(2u∗0nW 0

n( �Gn −
tr( �Gn)

n
In)Wnu

∗
n).

(3.9)

When ²n is N(0,σ
2
0In), the asymptotic variance matrix of the MLEs of β, σ

2, and λ is known to be

block diagonal:

AsyV ar(β,σ2,λ) =


1
σ20
(SnXn)

0(SnXn) 0 0

0 n
2σ40

tr(Gn)
σ20

0 tr(Gn)
σ20

tr(G2n) + tr(G
0
nGn)


−1

(3.10)

(see, e.g., p.258 of Anselin and Bera (1998)). Comparing the asymptotic variances and covariances of the

feasible GLSE in (3.5) and the best �λ1b,n in (3.8) with those of the MLEs of β and λ in (3.10), their

asymptotic distributions are the same.10

4. GMM Estimation of High Order SAR Processes

Without loss of generality, consider the estimation of a SAR process with p spatial lags:

Yn = (λ1W1n + λ2W2n + · · ·+ λpWpn)Yn + ²n, (4.1)

where ²njs are i.i.d.(0,σ
2
0) and Wln, l = 1, · · · , p are p different spatial weights matrices.11 For this model,

denote λ = (λ1,λ2, · · · ,λp)0, Sn(λ) = In −
Pp

j=1 λjWjn, Sn = Sn(λ0), and Gjn = WjnS
−1
n for j = 1, · · · , p.

Assumption 2 will be strengthened to Assumption 20 below to incorporate all the spatial weights matrices in

this model. Assumption 3 is assumed for the newly deÞned Sn matrix of this model. The parameter space Λ

in Assumption 6 will refer to the parameter vector λ and is a compact subset of the p-dimensional Euclidian

space.

Assumption 20: The weights matrices {Wln}, l = 1, · · · , p, are uniformly bounded in both row and

column sums. The elements of Wln are of order O(
1
hn
) uniformly in i and j for each l = 1, · · · , p.

For GMM estimation of the model, we suggest the IVs functions PjnSn(λ)Yn, j = 1, · · · ,m, where Pjns

are constant matrices from either P1n or P2n. The empirical moment functions are

gn(λ) =

 (P1nSn(λ)Yn)
0

...
(PmnSn(λ)Yn)

0

Sn(λ)Yn =
 Y 0nS

0
n(λ)P1nSn(λ)Yn

...
Y 0nS0n(λ)PmnSn(λ)Yn

 . (4.2)

10 Note that the explicit expression of the asymptotic variance of the MLE of λ0 from (3.10) is the inverse

of tr(GsnGn)− tr(Gn)
σ20

( n
2σ40
)−1 tr(Gn)

σ20
= tr(GsnGn)− 2 tr

2(Gn)
n by the inverse formula for a partitioned matrix.

On the other hand, tr((Gn − tr(Gn)
n In)

sGn) = tr((G
s
n − 2 tr(Gn)

n In)Gn) = tr(G
s
nGn)− 2 tr

2(Gn)
n .

11 If some of the spatial weights matrices are identical, there is a trivial underidentiÞcation problem
(Anselin 1988). Some justiÞcations on the speciÞcation of this model can be found in Anselin (1988).
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At λ0, gn(λ0) = (²
0
nP1n²n, · · · , ²0nPmn²n)0 and, hence, E(gn(λ0)) = 0. It follows that

E(gn(λ)) =

 σ20tr(S
0−1
n S0n(λ)P1nSn(λ)S

−1
n )

...
σ20tr(S

0−1
n S0n(λ)PmnSn(λ)S

−1
n )

 . (4.3)

Each of the moment equations is a second degree algebraic equation in p variables λk, k = 1, · · · , p and

its solution set is complex and not illuminating. IdentiÞcation conditions, however, can be derived by

investigating some characteristics of the moment equations E(gn(λ)) = 0 of (4.3). As Sn(λ) = Sn +Pp
k=1(λk0 − λk)Wkn, Sn(λ)S

−1
n = In +

Pp
k=1(λk0 − λk)Gkn. Let qn,k(j) = tr(P sjnGkn) and qn,kl(j) =

tr(G0knPjnGln) for k, l = 1, · · · , p, and j = 1, · · · ,m. It follows that

tr(S
0−1
n S0n(λ)PjnSn(λ)S

−1
n ) =

pX
k=1

qn,k(j)(λk0 − λk) +
pX
k=1

pX
l=1

qn,kl(j)(λk0 − λk)(λl0 − λl),

for j = 1, · · · ,m. It is apparent that λ0 is a common solution of these m moment equations. Let qn,k be

the m-dimensional vector with qn,k(j) being its jth element. Similarly, qn,kl, etc., are deÞned. IdentiÞcation

conditions for λ0 can be stated in terms of those qn vectors. The necessary and sufficient condition for the

m-moment equations to have a unique solution vector at λ0 is that the vectors qns do not have a linear

combination with some nonzero nonlinear coefficients in the form that

pX
k=1

qn,kδk +

pX
k=1

pX
l=1

qn,klδkδl = 0. (4.4)

This condition is a necessary and sufficient condition for identiÞcation of the p-order SAR process in the

GMM framework. A sufficient condition is that the qns are linearly independent. As the qns together will

form a matrix of dimension m× [p(p + 1)], in order to have the sufficient identiÞcation condition satisÞed,

the number of Pns has to be at least as p(p + 1). Weaker sufficient conditions are available. If there were

a solution of λ1 not equal to λ10, the moment equation (4.4) would have δ1 6= 0. This would imply that

each of qn,1 and qn,11 would be linearly dependent on all the other [p(p+ 1) − 1] vectors. So it is sufficient

to identify λ10 if either qn,1 or qn,11 are linearly independent of the other [p(p + 1) − 1] vectors. Once the

identiÞcation of λ10 is achieved, the moment equations in (4.4) will be reduced to the moment equations for

a (p− 1)-order SAR process. A set of weaker identiÞcation conditions can thus be recursively derived.

The variance matrix of gn(λ0) is var(gn(λ0)) = σ
4
0Ωn, where Ωn has the general expression in (2.15) if

Pjn�s are from P1n, and equals Vn in (2.14) if Pjn�s are from P2n. The derivatives of gn(λ) with respect to

λ form the matrix

∂gn(λ)

∂λ0
= −

 (W1nYn)
0P s1nSn(λ)Yn, · · · , (WpnYn)

0P s1nSn(λ)Yn
...

...
(W1nYn)

0P smnSn(λ)Yn, · · · , (WpnYn)
0P smnSn(λ)Yn

 .
20



It follows that ∂E(gn(λ0))∂λ0 = −σ20Dn where

Dn =

 tr(P s1nG1n), · · · , tr(P s1nGpn)
...

...
tr(P smnG1n), · · · , tr(P smnGpn)

 (4.5)

is a m×p matrix. The following proposition summarizes the asymptotic distribution of the GMM estimator

for this model, the optimal GMM estimator with a given vector of moment functions, and the best GMM

estimates from P1n or P2n.

Proposition 4.1 Suppose Pjn, j = 1, · · · ,m, are selected from P1n so that a0 limn→∞ hn
n E(gn(λ)) = 0

has a unique root at λ0 in Λ, where an converges to a0 and gn(λ) is in (4.2). Then, the GMM estimator �λn

derived from minλ∈Λ g0n(λ)a
0
nangn(λ) is a consistent estimator of λ0, and

q
n
hn
(�λn−λ0) D−→ N(0,Σ), where

Σ = lim
n→∞

·
(
hn
n
Dn)

0a00a0(
hn
n
Dn)

¸−1
(
hn
n
Dn)

0a00a0(
hn
n
Ωn)a

0
0a0(

hn
n
Dn)

·
(
hn
n
Dn)

0a00a0(
hn
n
Dn)

¸−1
, (4.6)

with Dn in (4.5) under the assumption that a0 limn→∞ hn
n Dn has a full column rank p.

The optimal choice of an corresponds to a
∗
n = (hnn Ωn)

− 1
2 . With the optimal a∗n, the optimal GMM

estimator �λ∗n with moments gn(λ) in (4.2) derived from minλ∈Λ g0n(λ)Ω
−1
n gn(λ) has

q
hn
n (
�λ∗n − λ0) D−→

N(0,Σ∗), where Σ∗ = plimn→∞(
hn
n D

0
nΩ

−1
n Dn)

−1.

Furthermore, the best selections of Pns from P2n are (Gjn − Diag(Gjn)) for j = 1, · · · , p. When ²n
is normally distributed or limn→∞ hn = ∞, the best selection of Pn�s from P1n are (Gjn − tr(Gjn)

n In),

j = 1, · · · , p.

The following proposition demonstrates that the feasible best estimators can be constructed with aq
n
hn
-consistent estimate �λn of λ0. It generalizes Proposition 2.10 to the high order SAR process.

Proposition 4.2 Suppose that �λn is a
q

n
hn
-consistent estimate of λ0. Let �Gjn = WjnS

−1
n (�λn), j =

1, · · · , p.

Within the class of optimal GMM estimators M2n, the best estimator is the consistent root �λ2b,n de-

rived from minλ∈Λ g∗
0
2n(λ)V

∗−1
2n g∗2n(λ) where V ∗2n is a p × p matrix with its (j, l)th entry being tr[( �Gjn −

Diag( �Gjn))( �Gln−Diag( �Gln))s], and g∗2n(λ) is a p-dimensional vector with its jth entry being Y 0nS0n(λ)( �Gjn−

Diag( �Gjn))Sn(λ)Yn in the sense that
q

n
hn
(�λ2b,n − λ0) D→ N(0,Σ2b) with Σ2b ≤ Σ, where Σ is the limiting

variance matrix of
q

n
hn
(�λn − λ0) in Proposition (4.1) and Σ2b = (limn→∞ hn

n V
∗
2n)

−1.

In the event that ²n ∼ N(0,σ20In) or for the case that limn→∞ hn = ∞, within the broader class of

estimatorsM1n, the best estimator is the consistent root �λ1b,n derived from minλ∈Λ g∗
0
1n(λ)V

∗−1
1n g∗1n(λ) where
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V ∗1n is a p × p matrix with its (j, l)th entry being tr[( �Gjn − tr( �Gjn)
n In)( �Gln − tr( �Gln)

n In)
s], and g∗1n(λ) is a

p-dimensional vector with its jth entry Y 0nS0n(λ)( �Gjn− tr( �Gjn)
n In)Sn(λ)Yn, and it has the limiting distributionq

n
hn
(�λ1b,n − λ0) D→ N(0,Σ1b) where Σ1b = (limn→∞ hn

n V
∗
1n)

−1.

For the high order SAR process, the moment functions for the GMM estimation are no longer quadratic

functions of a single parameter. It becomes algebraically intractable to pinpoint the explicit consistent

solution of a moment equation. A possible strategy to implement the feasible best GMM in Proposition 4.2

is to start the nonlinear optimization search with the initial consistent estimate �λn as the starting point.
12

The initial consistent estimate can be made available as in Proposition 4.1 when enough distinct matrices Pns

are used in the GMM estimation. The constant matrices to initialize the GMM estimation can be matrices

constructed from the spatial weights matrices Wjns of the model, e.g., Wjn, (W
0
jnWln − tr(W 0

jnWln

n In),

(WjnWln − tr(WjnWln)
n In), etc., for j, l = 1, · · · , p. Alternatively, the best moment functions in Proposition

4.2 can be supplemented with these inefficient moment functions to formulate an extended optimal GMM

estimation. With extra moment functions, it is possible to identify uniquely the true parameters as discussed

before. The additional moment functions will not increase the asymptotic efficient of the best GMM estimator

but it helps to isolate the consistent root.13

As the moment functions are second order polynomials of several parameters, the computation of the

GMM estimator can be much simpler than the corresponding QML method for the model.14 The GMM

optimization is numerically equivalent to a NLS estimation for a regression equation with nonlinear in

parameters. For the p-order SAR process, the regression coefficients are linear functions of λj and products

λjλk for j, k = 1, · · · p. For the feasible best GMM estimators, the additional computation is on the inverse

matrix S−1n (�λn) at an initiate consistent estimate �λn.

5. Conclusions

In this paper, we have suggested GMM for the estimation of SAR processes. The GMM can be com-

putationally simpler than the computation of the QMLE. We consider asymptotic properties of the GMM

12 What we have in mind are numerical algorithms such as the Newton method where the update estimate
from an initial consistent estimate in each iteration is also consistent.
13 For this extended GMM objective function, optimization search can in principle start at any arbitrary
initial point.
14 The existing literature does not have sufficient discussions on the implementation of the ML method
for a high-order SAR model. The implementation of the likelihood function can be demanding as it involves
the evaluation of the Jacobian of Sn(λ) at any possible value of λ. Ord�s device (Ord 1975) of evaluating
the determinant of (In − ρWn,n) based on the eigenvector decomposition of Wn,n will not be generalizable
for handling the Jacobian of the likelihood function of a higher order SAR model.
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estimators. We discuss the construction of optimal GMM estimators with given moment equations as well as

the best selection of moment equations in some broad classes of moment equations. The best GMM estimator

is shown to have the same limiting distribution of the QMLE (under normal distributional speciÞcation).

The GMM can be extended to the estimation of high-order SAR processes. As contrary to the QML method,

the computational complexity of the GMM estimator does not increase as more spatial lags are introduced.

It can also be applied to the estimation of regression models with SAR disturbances.

In this paper, we focus solely on the estimation of SAR processes but not SAR models with mixed

spatial lags and exogenous variables. For the latter models, GMM estimation methods have been proposed

and discussed in various manuscripts and articles including Anselin (1988, 1990), Land and Deane (1992),

Kelejian and Robinson (1993), Kelejian and Prucha (1997, 1998), Lee (1999a), among others. However, the

proposed GMMs are either linear IV, 2SLS, or generalized 2SLS methods. The validity of those methods relies

exclusively on the presence of exogenous variables in the model to construct their IVs. Those methods can

not be applied to (pure) SAR processes as there are no relevant exogenous variables in the processes. Even

though our proposed GMM framework in this paper is speciÞcally designed for the estimation of (pure) SAR

processes, it may be extended for the estimation of mixed regressive SAR models by incorporating exogenous

variables in the GMM framework. Results on that direction of research shall be reported in a separate paper.
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Appendix A: Some Useful Lemmas

This appendix summarizes results which are useful for the subsequent proofs of our propositions in the

text. Frequent notations used in the text are assumed to be understood and will be used in the following

Lemmas without interpretation. For example, Wn refers to a n × n spatial weights matrix, Sn refers to

(In − λ0Wn) or (In −
Pp

j=1 λjWjn), Gn = WnS
−1
n , etc. Elements ²ni of the n disturbance vector ²n are

always assumed to be i.i.d. with zero mean, variance σ2 and Þnite fourth moments µ4 in the Lemmas.

For any n × n matrix An which is uniformly bounded in both row and column sums, a linear trans-

formation of An which preserves the uniform boundedness property will be denoted by ALn . The particular

transformations of An to (An − tr(An)
n In) and (An − Diag(An)) are linear, and will be denoted as Adn to

simplify presentation.

Lemma A.1 Suppose that the elements an,ij of the sequence of n×n matrices {An}, where An = [an,ij ],

have the order O( 1hn ) uniformly in all i and j; and {Bn} is a sequence of conformable n× n matrices.

(1) If {Bn} are uniformly bounded in column sums, then the elements of AnBn have the uniform order

O( 1hn ).

(2) If {Bn} are uniformly bounded in row sums, then the elements of BnAn have the uniform order

O( 1hn ).

For both cases (1) and (2), |tr(AnBn)| = |tr(BnAn)| = O( nhn ).

Proof: Consider (1). Let an,ij =
cn,ij
hn
. Because an,ij = O( 1hn ) uniformly in i and j, there exists a

constant c1 so that |cn,ij | ≤ c1 for all i, j and n. Because {Bn} is uniformly bounded in column sums, there

exists a constant c2 so that
Pn

k=1 |bn,kj | ≤ c2 for all n and j. Let ai,n be the ith row of An and bn,l be the

lth column of Bn. It follows that

|ai,nbn,l| ≤ 1

hn

nX
j=1

|cn,ijbn,jl| ≤ c1
hn

nX
j=1

|bn,jl| ≤ c1c2
hn

,

for all i and l. Furthermore, |tr(AnBn)| = |Pn
i=1 ai,nbn,i| ≤

Pn
i=1 |ai,nbn,i| ≤ c1c2

n
hn
. These prove the

results in (1). The results in (2) follow from (1) because (BnAn)
0 = A0nB0n and the uniform boundedness in

row sums of {Bn} is equivalent to the uniform boundedness in column sums of {B0n}. Q.E.D.

Lemma A.2 Let An = [aij ] be an n-dimensional square matrix. Then

1) E(²0nAn²n) = σ2tr(An),

2) E(²0nAn²n)
2 = (µ4 − 3σ4)

Pn
i=1 a

2
ii + σ

4[tr2(An) + tr(AnA
0
n) + tr(A

2
n)], and

3) var(²0nAnVn) = (µ4 − 3σ4)
Pn

i=1 a
2
ii + σ

4[tr(AnA
0
n) + tr(A

2
n)].
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Proof: See Lee (1999b). Q.E.D.

Lemma A.3 Suppose that {An} are uniformly bounded in both row and column sums, and the el-

ements of An = [an,ij ] have the order an,ij = O( 1hn ) uniformly in all i and j. Then, E(²0nAn²n) =

O( nhn ), var(²
0
nAn²n) = O(

n
hn
), and ²0nAn²n = OP (

n
hn
). Furthermore, if limn→∞ hn

n = 0, then hn
n ²

0
nAn²n −

hn
n E(²

0
nAn²n) = oP (1).

Proof: E(²0nAn²n) = σ2tr(An) = O( nhn ) by Lemma A.1. From Lemma A.2, the variance of ²0nAn²n

is var(²0nAn²n) = (µ4 − 3σ4)
Pn

i=1 a
2
n,ii + σ

4[tr(AnA
0
n) + tr(A

2
n)]. Lemma A.1 implies that tr(A2n) and

tr(AnA
0
n) are of order O(

n
hn
). As

Pn
i=1 a

2
n,ii ≤ tr(AnA

0
n), it follows that

Pn
i=1 a

2
n,ii = O( nhn ). Hence,

var(²0nAn²n) = O(
n
hn
).

When hn
n = o(1), E((²0nAn²n)2) = var(²0nAn²n) + E2(²0nAn²n) = O(max[ nhn , (

n
hn
)2]) = O(( nhn )

2). The

generalized Chebyshev inequality implies that P (hnn |²0nAn²n| ≥ M) ≤ 1
M2 (

hn
n )

2E(|²0nAn²n|2) = 1
M2O(1)

and, hence, hnn ²
0
nAn²n = OP (1). Finally, because var(

hn
n ²

0
nAn²n) = O(

hn
n ) = o(1), the Chebyshev inequality

implies that hn
n ²

0
nAn²n − hn

n E(²
0
nAn²n) = oP (1). Q.E.D.

Lemma A.4 Suppose that {An} is a sequence of symmetric matrices with row and column sums uni-

formly bounded in absolute value and the entries an,ij of An are of order O(
1
hn
). The ²n1, · · · , ²nn are i.i.d.

random variables with zero mean and Þnite variance σ2, and its moment E(|²|4+2δ) for some δ > 0 exists.

Let σ2Qn
be the variance of Qn where Qn = V

0
nAnVn − σ2tr(An). Assume that the variance σ2Qn

is bounded

away from zero at the rate n
hn
. If limn→∞ h

1+ 2
δ

n

n = 0, then Qn

σQn

D−→ N(0, 1).

Proof: See Kelejian and Prucha (1999b) and Lee (1999b).

Lemma A.5 Suppose that the elements of the sequences of n-dimensional column vectors Z1n and Z2n

are uniformly bounded. If {An} are uniformly bounded in either row or column sums, then |Z01nAnZ2n| =

O(n).

Proof: Trivial.

Lemma A.6 Suppose that An is a n × n matrix with its column sums being uniformly bounded and

elements of the n × k matrix Cn are uniformly bounded. Then, 1√
n
C0nAn²n = OP (1), Furthermore, if the

limit of 1nC
0
nAnA

0
nCn exists and is positive deÞnite, then

1√
n
C0nAn²n

D→ N(0,σ20 limn→∞ 1
nC

0
nAnA

0
nCn).

Proof: See Lee (1999b). Q.E.D.

Lemma A.7 Consider Sn(λ) = In −
Pp
j=1 λjWjn. Suppose that {k S−1n k} and {k Wjn k} for j =

1, · · · , p, where k · k is a matrix norm, are bounded. Then, {k Sn(λ)−1 k} are uniformly bounded in a
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neighborhood of λ0.

Proof:15 Let c be a constant so that k S−1n k≤ c and k Wjn k≤ c for j = 1, · · · , p, and all n. We note

that S−1n (λ) = (Sn −
Pp

j=1(λj − λj0)Wjn)
−1 = S−1n (In −Rn(λ))−1 where Rn(λ) =

Pp
j=1(λj − λj0)Gjn. By

the submultiplicative property of a matrix norm, k Gjn k≤kWjn k · k S−1n k≤ c2 for all j and n.

Let B1(λ0) = {λ :
Pp

j=1 |λj − λ0| < 1
c2 }. It follows that, for any λ ∈ B1(λ0), k Rn(λ) k≤

Pp
j=1 |λj −

λj0|· k Gjn k< 1. Hence, (In − Rn(λ)) for λ ∈ B1(λ0) is invertible and it has the expansion that (In −

Rn(λ))
−1 =

P∞
k=0R

k
n(λ) (Horn and Johnson 1985). We note that

k Rn(λ) kk ≤ (
pX
j=1

|λj − λj0|· k Gjn k)k ≤ ( max
j=1,...,p

k Gjn k ·
pX
j=1

|λj − λj0|)k

≤ max
j=1,...p

k Gjn kk ·(
pX
j=1

|λj − λj0|)k ≤ c2k(
pX
j=1

|λj − λ0|)k.

Hence, k In − Rn(λ) k≤
P∞

k=0 k Rn(λ) kk≤
P∞

k=0(c
2
Pp

j=1 |λj − λ0|)k = 1

1−c2
Pp

j=1
|λj−λ0| < ∞ for

λ ∈ B1(λ0). The Þnal result follows by taking a close neighborhood B(λ0) of λ0 contained within B1(λ0).

In B(λ0), supλ∈B(λ0) c
2
Pp

j=1 |λj − λj0| < 1. Therefore,

sup
λ∈B(λ0)

k S−1n (λ) k≤k S−1n k · sup
λ∈B(λ0)

k In −Rn(λ) k≤ sup
λ∈B(λ0)

c

1− c2Pp
j=1 |λj − λ0|

<∞.

Q.E.D.

Lemma A.8 Suppose that hnn (gn(λ)− E(gn(λ)) = oP (1) uniformly in λ ∈ Λ, and hn
n E(gn(λ)) = 0 has

a unique root at λ0 in Λ as n goes to inÞnity. The �λn and �λ
∗
n are, respectively, the roots of the moment

equations gn(�λn) = 0 and g
∗
n(
�λ∗n) = 0. If

hn
n (g

∗
n(λ)− gn(λ)) = oP (1) uniformly in λ ∈ Λ, then both �λn and

�λ∗n converge in probability to λ0.

In addition, suppose that hnn
∂gn(λ)
∂λ converges in probability to a well deÞned limit function Q(λ) uniformly

in λ ∈ Λ with Q(λ0) 6= 0, and
q

hn
n gn(λ0) = OP (1). If

hn
n (

∂g∗n(λ)
∂λ − ∂gn(λ)

∂λ ) = oP (1) uniformly in λ ∈ Λ,

and
q

hn
n (g

∗
n(λ0) − gn(λ0)) = oP (1), then both

q
n
hn
(�λn − λ0) and

q
n
hn
(�λ∗n − λ0) have the same limiting

distribution.

Proof: The convergence of �λn to λ0 follows from the uniform convergence of hnn (gn(λ) − E(gn(λ))) to

zero in probability and the identiÞcation uniqueness condition at λ0. As
hn
n [g

∗
n(λ)−E(gn(λ))] = hn

n (g
∗
n(λ)−

gn(λ)) +
hn
n [gn(λ)− E(gn(λ))] = oP (1) uniformly in Λ, the consistency of �λ∗n follows.

For the limiting distribution, the Taylor expansion of gn(�λn) = 0 at λ0 implies thatr
n

hn
(�λn − λ0) = (−hn

n

∂gn(λ̄n)

∂λ
)−1
r
hn
n
gn(λ0) = −Q(λ0)−1

r
hn
n
gn(λ0) + oP (1),

15 This Lemma and its proof generalize those for the Þrst-order SAR model in Lee (1999b).
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because λ̄n lying between �λn and λ0 converges in probability to λ0. For �λ∗n, the Taylor expansion of

g∗n(�λ∗n) = 0 implies thatr
n

hn
(�λ∗n − λ0) = −(

hn
n

∂g∗n(λ̄
∗
n)

∂λ
)−1
r
hn
n
g∗n(λ0) = −(

hn
n

∂gn(λ̄
∗
n)

∂λ
+ oP (1))

−1(

r
hn
n
gn(λ0) + oP (1))

= −Q(λ0)−1
r
hn
n
gn(λ0) + oP (1).

These show that �λ∗n has the same limiting distribution as �λn. Q.E.D.

Lemma A.9 Let An and Bn be n× n matrices, uniformly bounded in both row and column sums. Let

Cn(λ) = WlnS
−1
n (λ) for some l, where Sn(λ) = In −

Pm
j=1 λjWjn. Suppose that �λn is a

q
n
hn
-consistent

estimator of λ0 and
h1+δn

n = o(1) for some δ > 0. Then,

(i) hn
n ²

0
nA

0
n(C

d
n(
�λn)− Cdn(λ0))Bn²n = oP (1), and

(ii)
q

hn
n ²

0
n(C

d
n(
�λn)− Cdn(λ0))²n = oP (1).

Proof: For any n×n matrix M , Md =M −Diag(M) or =M − tr(M)
n In is a transformed n×n matrix.

This transformation is linear because Diag is a linear transformation and tr is a linear function.

As Sn − Sn(�λn) =
Pp

j=1(
�λnj − λj0)Wjn, it follows that

S−1n (�λn)− S−1n = S−1n (�λn)[Sn − Sn(�λn)]S−1n = S−1n (�λn)[

pX
j=1

(�λnj − λj0)Gjn].

By induction,

S−1n (�λn)− S−1n = S−1n
mX
k=1

[

pX
j=1

(�λnj − λj0)Gjn]k + S−1n (�λn)[

pX
j=1

(�λnj − λj0)Gjn]m+1, (A.1)

for any positive integer m.

Let Tn =
hn
n ²

0
nA

0
n(C

d
n(
�λn)− Cdn(λ0))Bn²n. With the above expansion, Tn = Tn1 + Tn2 where

Tn1 =
hn
n
²0nA

0
n(Gln

mX
k=1

[

pX
j=1

(�λnj − λj0)Gjn]k)dBn²n

and Tn2 =
hn
n ²

0
nA

0
n(WlnS

−1
n (�λn)[

Pp
j=1(

�λnj − λj0)Gjn]m+1)dBn²n. The term Tn1 can be rewritten as

Tn1 =

mX
k=1

pX
j1=1

· · ·
pX

jk=1

(�λj1 − λj10) · · · (�λjk0 − λjk0)
hn
n
²0nA

0
n(GlnGj1n · · ·Gjkn)dBn²n = oP (1),

because hn
n ²

0
nA

0
n(GlnGj1n · · ·Gjkn)dBn²n = Op(1) by Lemma A.3, and �λjn − λj0 = oP (1). For Tn2, let k · k

be either the maximum row sum norm or the maximum column sum norm. One has

|Tn2| ≤
pX

j1=1

· · ·
pX

jm+1=1

|�λnj1 − λj10| · · · |�λnjm+1 − λjm+10|
hn
n
k ²0n k · k ²n k

· k A0n(WlnS
−1
n (�λn)Gj1 · · ·Gjm+1)

dBn k

≤ c
pX

j1=1

· · ·
pX

jm+1=1

|�λnj1 − λj10| · · · |�λnjm+1 − λjm+10|
hn
n
k ²0n k · k ²n k
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for some constant c, where the last inequality holds because the uniform boundedness of S−1n in row (resp.

column) sums implies that S−1n (λ) is uniformly bounded in row (resp. column) sums, uniformly in a small

neighborhood of λ0 by Lemma A.7; and the product of relevant matrices is uniformly bounded in either row

or column sums. We note that, for any Þnite positive k1 and k2, n
k1hk2n (

hn
n )

m = h
m+k2
n

nm−k1 ≤ (h
1+δ
n

n )m−k1 = o(1)

for large enough m. Hence,

pX
j1=1

· · ·
pX

jm+1=1

|�λnj1 − λj10| · · · |�λnjm+1 − λjm+10|
hn
n
k ²0n k · k ²n k

≤ nhn(hn
n
)
m+1
2

pX
j1=1

· · ·
pX

jm+1=1

|
r
n

hn
(�λnj1 − λj10)| · · · |

r
n

hn
(�λnjm+1 − λjm+10)|(

1

n

nX
i=1

|²ni|)2 = oP (1),

because 1
n

Pn
i=1 |²ni| converges in probability to the absolute Þrst moment of ²ni and

q
n
hn
(�λn−λ0) = OP (1).

These show that Tn2 = oP (1).

Similarly, let Un =
q

hn
n ²

0
n(C

d
n(
�λn)− Cdn(λ0))²n. Then, Un = Un1 + Un2 where

Un1 =

r
hn
n
²0n(Gln

mX
k=1

[

pX
j=1

(�λnj − λj0)Gjn]k)d²n

=

mX
k=1

pX
j1=1

· · ·
pX

jk=1

(�λnj1 − λj10) · · · (�λnjk − λjk0) ·
r
hn
n
²0n(GlnGj1n · · ·Gjkn)d²n = oP (1)

because
q

hn
n ²

0
n(GlnGj1n · · ·Gjkn)d²n = OP (1) by Lemma A.4; and

Un2 =

r
hn
n
²0n(WlnS

−1
n (�λn)[

pX
j=1

(�λnj − λj0)Gjn]m+1)d²n

=

r
hn
n

pX
j1=1

· · ·
pX

jm+1=1

(�λnj1 − λj10) · · · (�λnjm+1 − λjm+10)²
0
n(WlnS

−1
n (�λn)Gj1n · · ·Gjm+1n)

d²n.

The term Un2 = oP (1) because

k Un2 k ≤ c
pX

j1=1

· · ·
pX

jm+1=1

|
r
n

hn
(�λnj1 − λj10)| · · · |

r
n

hn
(�λnjm+1 − λjm+10)|h

1
2
nn

3
2 (
hn
n
)
m+1
2 (

1

n

nX
i=1

|²ni|)2

= oP (1).

Q.E.D.

Lemma A.10 Suppose that the elements of the n× k matrix Xn are uniformly bounded, and the limit

limn→∞ 1
nX

0
nXn exists and is nonsingular, then

(i) the projectors Mn and (In −Mn), where Mn = Xn(X
0
nXn)

−1X 0
n, are uniformly bounded in both row

and column sums; and

(ii) ²0nA
0
nMnBn²n = OP (1) for any n× n matrices An and Bn uniformly bounded in column sums.
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Proof: Part (i) is a result in Lee (1999b). For (ii), because 1√
n
X 0
nAn²n and

1√
n
X 0
nBn²n are of order

OP (1) by Lemma A.6, ²
0
nA

0
nMnBn²n =

1√
n
²0nA0nXn(

1
nX

0
nXn)

−1 1√
n
X 0
nBn²n = OP (1). Q.E.D.

Lemma A.11 Suppose that the elements of the n×k matrix Cn are uniformly bounded, the n×n matrix

An is uniformly bounded in column sums, �λn is a
q

n
hn
-consistent estimator, and

h1+δn

n = o(1) for some δ > 0.

Then, 1√
n
C 0n(Gln(�λn))

LAn²n = OP (1), where Gln(λ) =WlnS
−1
n (λ) with Sn(λ) = In −

Pp
j=1 λjWjn.

Proof: With (A.1), Gln(�λn) can be expanded as

Gln(�λn) = Gln +Gln

mX
k=1

[

pX
j=1

(�λnj − λj0)Gjn]k +Gln(�λn)[
pX
j=1

(�λnj − λj0)Gjn]m+1.

It follows that 1√
n
C0n(Gln(�λn))

LAn²n =
1√
n
C 0nG

L
lnAn²n +Rn1 +Rn2 where

Rn1 =

mX
k=1

pX
j1=1

· · ·
pX

jk=1

(�λnj1 − λj10) · · · (�λnjk − λjk0) ·
1√
n
C0n(GlnGj1n · · ·Gjkn)LAn²n,

and Rn2 =
1√
n

Pp
j1=1

· · ·Pp
jm+1=1

(�λnj1 −λj10) · · · (�λnjm+1 −λjm+10)C
0
n(Gln(

�λn)Gj1n · · ·Gjm+1n)
LAn²n. The

term Rn1 is of order oP (1) because
1√
n
C 0n(GlnGj1n · · ·Gjkn)LAn²n = OP (1) by Lemma A.6 and �λn − λ0 =

oP (1). For Rn2, with either maximum row or column sum norm k · k,
k Rn2 k ≤ n−1/2 k C 0n k · k ²n k

·
pX

j1=1

· · ·
pX

jm+1=1

|�λnj1 − λj10| · · · |�λnjm+1 − λjm+10|· k (Gln(�λn)Gj1n · · ·Gjm+1n)
LAn k

≤ cn2−1/2(hn
n
)m+1

kX
i=1

(
1

n

nX
j=1

|cn,ij |) · 1
n

nX
l=1

|²nl|

·
pX

j1=1

· · ·
pX

jm+1=1

|
r
n

hn
(�λnj1 − λj10)| · · · |

r
n

hn
(�λnjm+1 − λjm+10)| = oP (1),

by using a large enough m in expansion. Hence 1√
n
C0n(Gln(�λn))

LAn²n =
1√
n
C0nG

L
lnAn²n + oP (1). The Þnal

result follows from Lemma A.6. Q.E.D.

Lemma A.12 Suppose that An, Bn and Cn are matrices uniformly bounded in column sums, Xn

satisÞes the assumptions in Lemma A.10, �λn is
q

n
hn
-consistent, and

h1+δn

n = oP (1) for some δ > 0.

Then, ²0nA0n(Gln(�λn))LB0nMnCn²n = OP (1), where Mn = Xn(X
0
nXn)

−1X 0
n and Gln(λ) =WlnS

−1
n (λ) where

Sn(λ) = In −
Pp

j=1 λjWjn.

Proof: As B0n is uniformly bounded in row sums and elements of Xn are uniformly bounded, elements

of B0nXn are uniformly bounded. Hence, by Lemmas A.6 and A.11,

²0nA
0
n(Gln(

�λn))
LB0nMnCn²n = (

1√
n
²0nA

0
n(Gln(

�λn))
LB0nXn)

µ
1

n
X 0
nXn

¶−1
(
1√
n
X 0
nCn²n) = OP (1).

Q.E.D.
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Appendix B: Proofs

Proof of Proposition 2.1: E[(PnSnYn)
0²n] = E[(Pn²n)0²n] = E(²0nPn²n) = σ20tr(Pn) = 0. Q.E.D.

Proof of Proposition 2.2: Consider (2.7). Denote an = Y 0nW 0
nPnWnYn, bn = Y 0nP snWnYn, and

cn = Y 0nPnYn. As bn = ²0nS
0−1
n P snGn²n and elements of Gn have the uniform order O( 1hn ), Lemma A.3

together with Lemma A.1 imply that hn
n (bn − E(bn)) = oP (1), where E(bn) = σ20tr(S

0−1
n P snGn). Similarly,

as an = ²0nG0nPnGn²n,
hn
n (an − E(an)) = oP (1), where E(an) = σ20tr(G

0
nPnGn). For cn, because S

−1
n =

In + λ0Gn, one has the expansion that cn = ²
0
nS

0−1
n PnS

−1
n ²n = ²

0
n(Pn + λ0P

s
nGn + λ

2
0G

0
nPnGn)²n. Because

elements of Pn have the uniform order O( 1hn ) and Pn is uniformly bounded in both row and column sums

by Assumption 4, hnn [²
0
nPn²n − σ20tr(Pn)] = op(1) by Lemma A.3. Similarly, the probability convergence

holds for the other two terms in the expansion of cn. Hence,
hn
n (cn − E(cn)) = oP (1), where E(cn) =

σ20tr(S
0−1
n PnS

−1
n ) = σ20λ0[tr(P

s
nGn) + λ0tr(G

0
nPnGn)], by using tr(Pn) = 0. These implies that

�λn −
(
hn
n
E(bn)−

·
(
hn
n
E(bn))

2 − 4hn
n
E(an)

hn
n
E(cn)

¸1/2)
/

µ
2
hn
n
E(an)

¶
= op(1) (B.1)

(White (1984), Prop. 2.30). Because S−1n = In + λ0Gn, it follows thatµ
hn
n
E(bn)

¶2
− 4hn

n
E(an)

hn
n
E(cn)

= σ40(
hn
n
)2[tr2(S

0−1
n P snGn)− 4tr(G0nPnGn)tr(S

0−1
n PnS

−1
n )] = σ40(

hn
n
)2tr2(P snGn)

and, hence, if tr(P snGn) were positive,

hn
n
E(bn)−

"µ
hn
n
E(bn)

¶2
− 4hn

n
E(an)

hn
n
E(cn)

#1/2
= σ20

hn
n
[tr(S

0−1
n P snGn)− tr(P snGn)] = σ20

hn
n
λ0tr(G

0
nP

s
nGn) = 2

hn
n
E(an)λ0.

Therefore, �λn− λ0 = oP (1) from (B.1) and �λn converges in probability to λ0. Otherwise, �λn in (2.8) will be

the consistent one.

With �λn = Y 0nPnYn/Y 0nP snWnYn in the remaining part of the proposition, Lemma A.3 implies that

�λn − E(cn)/E(bn) = oP (1). Suppose that limn→∞ hn
n tr(G

0
nPnGn) = 0. It follows that

E(cn)

E(bn)
= λ0

tr(P snGn)

tr(S
0−1
n P snGn)

+ λ20
tr(G0nPnGn)
tr(S

0−1
n P snGn)

= λ0
tr(P snGn)

tr(S
0−1
n P snGn)

+ o(1) = λ0 + o(1),

because hn
n tr(S

0−1
n P snGn) =

hn
n tr(P

s
nGn)+λ0

hn
n tr(G

0
nP

s
nGn) =

hn
n tr(P

s
nGn)+o(1) by using S

−1
n = In+λ0Gn.

Therefore, �λn − λ0 = oP (1). Q.E.D.
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Proof of Proposition 2.3: Lemmas A.1 and A.3 imply that hn
n [²

0
nHn²n − σ20tr(Hn)] = op(1) where

Hn = S
0−1
n PnS

−1
n , G0nP snS−1n , orG0nPnGn in this proposition. As gn(λ) = ²0nS

0−1
n PnS

−1
n ²n−λ²0nG0nP snS−1n ²n+

λ2²0nG
0
nPnGn²n, it follows that

hn
n gn(λ) − hn

n E(gn(λ)) = oP (1) and, hence, (
hn
n gn(λ))

2 − Qn(λ) = oP (1),

where Qn(λ) = (
hn
n E(gn(λ))

2, uniformly in λ in any bounded subset of λ.

As E(gn(λ0)) = 0 because tr(Pn) = 0, it remains to show that λ0 is a strict local minimizer of Qn(λ)

for large n. The Þrst and second order derivatives of Qn(λ) are
dQn(λ)
dλ = 2(hnn )

2E(gn(λ))
dE(gn(λ))

dλ and

d2Qn(λ)
dλ2 = 2(hnn )

2{(dE(gn(λ)dλ )2 + E(gn(λ))
d2E(gn(λ))

dλ2 }. At λ0,

d2Qn(λ0)

dλ2
= 2(

hn
n
)2
µ
dE(gn(λ0))

dλ

¶2
= 2(

hn
n
)2σ40 [2λ0tr(G

0
nPnGn)− tr(G0nP snS−1n )]2 = 2σ40

·
hn
n
tr(P snGn)

¸2
,

where the last expression follows because 2λ0tr(G
0
nPnGn) − tr(G0nP snS−1n ) = −tr(P snGn) by using S−1n =

In+λ0Gn. Under the assumed regularity condition, (
hn
n tr(P

s
nGn))

2 > 0 for large n and, hence, λ0 is a strict

local minimizer.

The consistency of �λn follows from the uniform convergence in probability of (hnn gn(λ)−Qn(λ)) to zero

and the local identiÞcation of λ0 in Λ (White 1994, Theorem 3.4). Q.E.D.

Proof of Proposition 2.4: From the Taylor expansion 0 = gn(�λn) = gn(λ0)+
∂gn(λ̄n)
∂λ (�λn−λ0) where

λ̄n lies between �λn and λ0, and (2.9),r
n

hn
(�λn − λ0) =

·
hn
n
Y 0nS

0
n(λ̄n)P

s
nWnYn

¸−1r
hn
n
Y 0nS

0
nPnSnYn =

·
hn
n
Y 0nS

0
n(λ̄n)P

s
nWnYn

¸−1r
hn
n
²0nPn²n,

because Y 0nS0nPnSnYn = ²0nPn²n. Explicitly,

hn
n
Y 0nS

0
n(λ̄n)P

s
nWnYn =

hn
n
Y 0nW

0
nP

s
nSnYn − (λ̄n − λ0)

hn
n
Y 0nW

0
nP

s
nWnYn.

Lemma A.3 implies that hn
n Y

0
nW

0
nP

s
nWnYn =

hn
n ²

0
nG

0
nP

s
nGn²n = Op(1) and

hn
n
[Y 0nW

0
nP

s
nSnYn − E(Y 0nW 0

nP
s
nSnYn)] =

hn
n
[²0nG

0
nP

s
n²n − σ20tr(P snGn)] = op(1).

As λ̄n − λ0 = op(1), it follows thatr
n

hn
(�λn − λ0) =

·
σ20
hn
n
tr(P snGn) + op(1)

¸−1r
hn
n
²0nPn²n. (B.2)

As E(²0nPn²n) = 0, and hn
n var(²

0
nPn²n) = (µ4 − 3σ40)hnn

Pn
i=1 p

2
n,ii + σ

4
0
hn
n tr(PnP

s
n) = O(1) from Lemmas

A.2 and A.1, Lemma A.4 implies that ²0nPn²n/var
1
2 (²0nPn²n)

D→ N(0, 1). The asymptotic distribution for �λn

follows from (B.2).
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For the special case that ²n ∼ N(0,σ20In), κ4 − 3 = 0. When Pn ∈ P2n, pn,ii = 0 for all i = 1, · · · , n.

Finally, as
Pn
i=1 p

2
n,ii = O(

n
h2n
),
Pn

i=1 p
2
n,ii/(

hn
n tr

2(P snGn)) = O(
1
hn
) = o(1) if limn→∞ hn =∞. Q.E.D.

Proof of Lemma 2.1: As ²0nA²n²
0
nB²n =

Pn
i=1

Pn
j=1

Pn
k=1

Pn
l=1 aijbkl²ni²nj²nk²nl, the mutual inde-

pendence of ²nis implies that E(²ni²nj²nk²nl) 6= 0 only if (i = j = k = l), (i = j, k = l), (i = k, j = l), or

(i = l, j = k). It follows that

E(²0nA²n · ²0nB²n) =
nX
i=1

aiibiiE(²
4
ni) +

nX
i=1

nX
j 6=i
(aiibjj + aijbij + aijbji)E(²

2
ni²

2
nj)

= (µ4 − 3σ40)
nX
i=1

aiibii + σ
4
0

nX
i=1

nX
j=1

(aiibjj + aijbij + aijbji)

= (µ4 − 3σ40)vec0D(A)vecD(B) + σ40 [tr(A)tr(B) + tr(AB0) + tr(AB)].
Q.E.D.

Proof of Proposition 2.5: By a similar argument in the proof of Proposition (2.3), hn
n an[gn(λ) −

E(gn(λ))] = op(1) uniformly in λ in any bounded set. It follows that

(
hn
n
)2g0n(λ)a

0
nangn(λ)− (

hn
n
)2E(g0n(λ))a

0
nanE(gn(λ)) = op(1)

uniformly in λ ∈ Λ. As λ0 is the unique minimizer of limn→∞(hnn )
2E(gn(λ))a

0
nanE(gn(λ)), the consistency

of �λn follows from the uniform convergence of λ in Λ and the identiÞcation uniqueness of λ0 in Λ.

As
∂g0n(λ)
∂λ = −D0

n(λ) where Dn(λ) = (Y
0
nS

0
n(λ)P

s
1nWnYn, · · · , Y 0nS0n(λ)P smnWnYn)

0, the Taylor expansion

of
∂g0n(�λn)
∂λ a0nangn(�λn) = 0 at λ0 implies thatr

n

hn
(�λn − λ0) =

·
hn
n
D0
n(λ̄n)a

0
nan

hn
n
Dn(λ̄n)

¸−1
hn
n
D0
n(λ̄n)a

0
nan

r
hn
n
(²0nP1n²n, · · · , ²0nPmn²n)0.

Because hn
n Y

0
nS

0
n(λ̄n)P

s
lnWnYn = σ

2
0
hn
n tr(P

s
lnGn) + oP (1),r

n

hn
(�λn − λ0) = [hn

n
σ40d

0
na

0
nandn + op(1)]

−1(σ20
hn
n
d0n + op(1))a

0
nan

r
hn
n
(²0nP1n²n, · · · , ²0nPmn²n)0. (B.3)

As an
q

n
hn
(²0nP1n²n, · · · , ²0nPmn²n)0 =

q
hn
n ²

0
n(
Pm
j=1 anjPjn)²n, where an = (an1, · · · , anm), the central limit

theorem in Lemma A.4 is applicable to this quadratic form. Lemma A.2 implies that

var(²0n(
mX
j=1

anjPjn)²n)

= (µ4 − 3σ40)
nX
i=1

((

mX
j=1

anjPjn)ii)
2 + σ40tr[(

mX
j=1

anjPjn)(

mX
l=1

anlP
s
ln)]

= σ40{(κ4 − 3)an(vecD(P1n), · · · , vecD(Pmn))0(vecD(P1n), · · · , vecD(Pmn))a0n + anVna0n}

= σ40anΩna
0
n.
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Hence,
q

hn
n an(²

0
nP1n²n, · · · , ²0nPmn²n)0 D→ N(0,σ40a0(limn→∞ hn

n Ωn)a
0
0). The asymptotic distribution of

�λn

follows from the expansion (B.3). Q.E.D.

Proof of Proposition 2.6: From (2.16), the generalized Schwartz inequality shows that the optimal

weighting matrix of a00a0 is the limit of
hn
n Ωn. When ²n is normally distributed, κ4 = 3 and Ωn = Vn. If Pjns

are from P2n, vecD(Pjn) = 0 and Ωn = Vn. For the case that limn→∞ hn = ∞, hnn vec0D(Pjn)vecD(Pln) =
hn
n O(

n
h2n
) = O( 1hn ) = o(1) because the elements of Pns are of order O(

1
hn
), and, hence, limn→∞ hn

n (Ωn−Vn) =

0.

The consistency and asymptotic distribution shall follow by showing that the stochastic �Ωn can be

replaced by the nonstochastic Ωn. For consistency, because

hn
n
g0n(λ)�Ω

−1
n gn(λ) =

hn
n
g0n(λ)Ω

−1
n gn(λ) +

hn
n
g0n(λ)(�Ω

−1
n − Ω−1n )gn(λ),

it is sufficient to show that hnn g
0
n(λ)(

�Ω−1n −Ω−1n )gn(λ) = op(1) uniformly in λ ∈ Λ. Let k k be the Euclidean

or maximum row sum norm for vectors and matrices. Then

k hn
n
g0n(λ)(�Ω

−1
n − Ω−1n )gn(λ) k≤ (hn

n
k gn(λ) k)2 k (hn

n
�Ωn)

−1 − (hn
n
Ωn)

−1 k .

From the proofs of preceding propositions, hnn [gn(λ) − E(gn(λ))] has the order oP (1) uniformly in λ ∈ Λ,

i.e., supλ∈Λ k hn
n (gn(λ)− E(gn(λ)) k= oP (1). On the other hand,

k hn
n
E(gn(λ)) k ≤ σ20 max

j=1,···,m

½¯̄̄̄
hn
n
tr(S

0−1
n PjnS

−1
n )

¯̄̄̄
+ λ

¯̄̄̄
hn
n
tr(G0nP

s
jnS

−1
n )

¯̄̄̄
+ λ2

¯̄̄̄
hn
n
tr(G0nPjnGn)

¯̄̄̄¾
= O(1)

uniformly in λ ∈ Λ. Hence, k hn
n gn(λ) k≤k hn

n E(gn(λ)) k + k hn
n [gn(λ) − E(gn(λ))] k= OP (1). Therefore,

hn
n g

0
n(λ)(�Ω

−1
n − Ω−1n )gn(λ) = op(1) uniformly in λ ∈ Λ.

For its limiting distribution, it is sufficient to show that �Ω−1n can be replaced by Ω−1n in the Taylor

expansion that
q

n
hn
(�λv,n− λ0) =

h
hn
n D

0
n(λ̄n)�Ω

−1
n Dn(λ̄n)

i−1
D0
n(λ̄n)�Ω

−1
n ·

q
hn
n (²

0
nP1n²n, · · · , ²0nPmn²n)0. As

in the proof of the preceding proposition, one has hnn Dn(λ̄n) = OP (1). Thus,

D0
n(λ̄n)�Ω

−1
n = D0

n(λ̄n)Ω
−1
n +

hn
n
D0
n(λ̄n)((

hn
n
�Ωn)

−1 − (hn
n
Ωn)

−1) = D0
n(λ̄n)Ω

−1
n + oP (1)

and hn
n D

0
n(λ̄n)�Ω

−1
n Dn(λ̄n) =

hn
n D

0
n(λ̄n)Ω

−1
n Dn(λ̄n) + oP (1). The asymptotic distribution follows.

For the overidentiÞcation test, by the Taylor expansion, gn(�λv,n) = gn(λ0) − Dn(λ̄n)(�λv,n − λ0). It

follows that r
hn
n
gn(�λv,n) =

r
hn
n
gn(λ0)− hn

n
Dn(λ̄n) ·

r
n

hn
(�λv,n − λ0)

= {In −Dn(λ̄n)[D0
n(λ̄n)�Ω

−1
n Dn(λ̄n)]

−1D0
n(λ̄n)�Ω

−1
n }

r
hn
n
gn(λ0),
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and

g0n(�λv,n)(�Ωn)
−1gn(�λv,n) =

r
hn
n
g0n(λ0)(

hn
n
�Ωn)

−1/2{In − �Ω−1/2n Dn(λ̄n)[D
0
n(λ̄n)�Ω

−1
n Dn(λ̄n)]

−1

·D0
n(λ̄n)�Ω

−1/2
n }(hn

n
�Ωn)

−1/2
r
hn
n
gn(λ0).

From the proof of Proposition 2.5,
q

hn
n gn(λ0)

D→ N(0,σ40 limn→∞ hn
n Ωn). Hence, g

0
n(
�λv,n)(�Ωn)

−1gn(�λv,n)
D→

σ40χ
2(m− 1). Q.E.D.

Proof of Lemma 2.2: (i) follows because tr(A · tr(B)n In) =
tr(B)
n tr(A) = 0. (ii) follows because

tr(A ·Diag(B)) = tr(Diag(A) ·Diag(B)) = 0. Q.E.D.

Proof or Proposition 2.7: For any two squares matrices A and B, the Cauchy-Schwartz inequality

implies that |tr(AB)|2 ≤ tr(A2)tr(B2) (see, e.g., Zhang 1999, p.25). As P sn is symmetric, tr(P
s
nGn) =

tr(G0nP
s
n) = tr(P

s
nG

0
n) and, hence, tr(P

s
nGn) =

1
2 tr(P

s
nG

s
n).

Suppose Pn ∈ P1n, Lemma 2.2 implies that tr(P snGsn) = tr[P sn(G
s
n − 2 tr(Gn)

n In)] = tr[P sn(Gn −
tr(Gn)
n In)

s]. The Cauchy-Schwartz inequality implies that tr2(P sn(Gn − tr(Gn)
n In)

s) ≤ tr(P s2n )tr[(Gn −
tr(Gn)
n In)

s2], and, hence, tr2(P sn(Gn − tr(Gn)
n In)

s)/tr(P s2n ) ≤ tr[(Gn − tr(Gn)
n In)

s2]. The last equality holds

because tr[(Gn − tr(Gn)
n In)

sGsn] = tr[(Gn − tr(Gn)
n In)

s2].

Similar arguments are applicable to Pn ∈ P2n using the property tr(P snGsn) = tr(P sn(Gn −Diag(Gn))s)

from Lemma 2.2. Q.E.D.

Proof of Proposition 2.8: For any matrix Pn ∈M2n, tr(P
s
nGn) =

1
2 tr[P

s
n(G

s
n − 2Diag(Gn))]. The

matrix Σvn in Proposition 2.6 can be rewritten as

Σvn =
1

4
(tr[P s1n(G

s
n − 2Diag(Gn))], · · · , tr[P smn(Gsn − 2Diag(Gn))])

· V −1n (tr[P s1n(G
s
n − 2Diag(Gn))], · · · , tr[P smn(Gsn − 2Diag(Gn))])0.

(B.4)

Note that Σb = (limn→∞ hn
n Σbn)

−1 where

Σbn = tr
2[(Gsn − 2Diag(Gn))Gn]/tr[(Gn −Diag(Gn))(Gsn − 2Diag(Gn))]

=
1

2
tr[(Gsn − 2Diag(Gn))(Gsn − 2Diag(Gn)]

from Proposition (2.6). This is so, because, as Gn − Diag(Gn) ∈ P2n, its corresponding Ωn = Vn =

tr[(Gn − Diag(Gn))(Gn − Diag(Gn))s] in (2.14). So it is sufficient to compare Σbn with Σvn. We note

that for any conformable matrices A and B, tr(AB) = vec0(A0)vec(B). Let C = vec(Gsn − 2Diag(Gn))

and D = (vec(P s1n), · · · , vec(P smn)). Then, from (B.4) and the second expression of Vn in (2.14), Σvn =

1
2C

0D(D0D)−1D0C and Σbn = 1
2C

0C. By the generalized Schwartz inequality, Σvn ≤ Σbn.
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Similar argument is applicable to M1n by using tr(P
s
nGn) =

1
2 tr(P

s
n(G

s
n − 2 tr(Gn)

n In)) for Pn ∈ P1n
when ²n ∼ N(0,σ20In) or limn→∞ hn =∞. This is so, because when ²n ∼ N(0,σ20In), Ωn = Vn; and for the

case that limn→∞ hn =∞, limn→∞ hn
n (Ωn − Vn) = 0. Q.E.D.

Proof of Proposition 2.9: The asymptotic distribution of �λ1b,n follows from (2.10) with Pn = Gn −
tr(Gn)
n In. It is shown in Lee (1999b) that the QMLE estimator �λQM,n has the asymptotic distribution

that
q

n
hn
(�λQM,n − λ0) D→ N(0,Σλλ + ΣλλΩΣλλ) where Σλλ = (limn→∞ hn

n [tr(CnC
0
n) + tr(C

2
n)])

−1 and

Ω = (κ4−3) limn→∞ hn
n

Pn
i=1 C

2
n,ii with Cn = Gn− tr(Gn)

n In. The limiting distributions of �λ1b,n and �λQM,n

are exactly the same. Q.E.D.

Proof of Proposition 2.10: For consistency, it is sufficient to show that hn
n �gn(λ)− hn

n gn(λ) = oP (1)

uniformly in λ ∈ Λ. Explicitly, hn
n (�gn(λ) − gn(λ)) = Tn1 − λTn2 + λ2Tn3 where Tn1 = hn

n ²
0
nS

0−1
n ( �Gn −

Gn)
dS−1n ²n, Tn2 =

hn
n ²

0
nG

0
n(
�Gsn−Gsn)dS−1n ²n, and Tn3 =

hn
n ²

0
nG

0
n(
�Gn−Gn)dGn²n. The terms Tnj , j = 1, 2, 3,

are all of order oP (1) by Lemma A.9. Hence
hn
n �gn(λ)− hn

n gn(λ) = oP (1) uniformly in λ ∈ Λ. The consistency

of �λn follows from the Þrst part of Lemma A.8.

For the asymptotic distribution, consider hnn
∂gn(λ)
∂λ and

q
n
hn
gn(λ0). As Sn(λ) = Sn − (λ− λ0)Wn,

hn
n
Y 0nS

0
n(λ)(

�Gsn)
dWnYn =

hn
n
²0nG

0
n(
�Gsn)

d²n − (λ− λ0)hn
n
²0nG

0
n(
�Gsn)

dGn²n

=
hn
n
²0nG

0
n(G

s
n)
d²n − (λ− λ0)hn

n
²0nG

0
n(G

s
n)
dGn²n +Rn1 +Rn2,

where Rn1 =
hn
n ²

0
nG

0
n(
�Gsn)

d²n−hn
n ²

0
nG

0
n(G

s
n)
d²n andRn2 =

hn
n ²

0
nG

0
n(
�Gsn)

dGn²n−hn
n ²

0
nG

0
n(G

s
n)
dGn²n. Lemma

A.9 implies that both Rn1 = oP (1) and Rn2 = oP (1). Hence,

hn
n
Y 0nS

0
n(λ)( �G

s
n)
dWnYn =

hn
n
Y 0nS

0
n(λ)(G

s
n)
dWnYn + oP (1),

uniformly in λ ∈ Λ, i.e., hnn (∂�gn(λ)∂λ − ∂gn(λ)
∂λ ) = oP (1) uniformly in λ ∈ Λ. For the other term,r

hn
n
Y 0nS

0
n(
�Gn)

dSnYn =

r
hn
n
²0nG

d
n²n +

r
hn
n
²0n[( �Gn)

d −Gdn]²n =
r
hn
n
²0nG

d
n²n + oP (1),

by Lemma A.9 (ii), i.e.,
q

n
hn
(�gn(λ0)− gn(λ0)) = oP (1). Hence, by Lemma A.8, the feasible GMM estima-

tor derived from minλ∈Λ[Y 0nS0n(λ)( �Gn)dSn(λ)Yn]2 has the same limiting distribution as that derived from

minλ∈Λ[Y 0nS
0
n(λ)G

d
nSn(λ)Yn]

2. Q.E.D.

Proof of Proposition 2.11: This is a special case of Proposition 2.2 with the qualiÞcation that Gn

can be replaced by �Gn as in Proposition 2.10. Q.E.D.

Proof of Proposition 3.1: To prove this proposition, we shall show that GMM moment equations

using u∗n and those using un (as if it is observed) satisfy the conditions in Lemma A.8.
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As u∗n = (In −Mn)un,

u∗
0
n S

0
n(λ)PnSn(λ)u

∗
n = u

0
n(In −Mn)S

0
n(λ)PnSn(λ)(In −Mn)un

= u0nS
0
n(λ)PnSn(λ)un − u0nMnS

0
n(λ)P

s
nSn(λ)un + u

0
nMnS

0
n(λ)PnSn(λ)Mnun

= u0nS
0
n(λ)PnSn(λ)un +Op(1)

uniformly in λ ∈ Λ (as λ is linear in Sn(λ)) by Lemma A.10 after substituting un by S−1n ²n. Hence, in par-

ticular, hn
n (u

∗0
n S

0
n(λ)PnSn(λ)u

∗
n − u0nS0n(λ)PnSn(λ)un) = oP (1), and

q
hn
n (u

∗0
n S

0
nPnSnu

∗
n − u0nS0nPnSnun) =

oP (1), as
hn
n = o(1).

For the derivative of the moment function, as ∂
∂λ(u

∗0
n S

0
n(λ)PnSn(λ)u

∗
n) = −u∗

0
n S

0
n(λ)P

s
nWnu

∗
n,

∂g0n(λ)
∂λ =

−D0
n(λ) where Dn(λ) = (u

∗0
n S

0
n(λ)P

s
1nWnu

∗
n, · · · , u∗

0
n S

0
n(λ)P

s
mnWnu

∗
n)
0. By expansion,

u∗
0
n S

0
n(λ)P

s
nWnu

∗
n
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0
n(λ)P

s
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s
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0
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0
n(λ)P

s
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= u0nS
0
n(λ)P

s
nWnun + oP (1)

uniformly in λ ∈ Λ by Lemma A.10. In particular, u∗0n S0n(λ)P snWnu
∗
n = u

0
nS

0
n(λ)P

s
nWnun + oP (1) uniformly

in λ ∈ Λ. The consistency and the asymptotic distribution of �λn follow from Lemma A.8 and Proposition

2.5. Q.E.D.

Proof of Proposition 3.2: Because �λn − λ0 = oP (1),
1

n
X 0
n
�S0n �SnXn =

1

n
X 0
nXn − �λn

1

n
X 0
nW

s
nXn +
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1

n
X 0
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0
nWnXn
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n
X 0
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s
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2
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0
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=
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0
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and
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n
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n
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X 0
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0
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n
X 0
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n
X 0
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=
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n
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0
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D→ N(0,σ20( limn→∞X
0
nS

0
nSnXn)

−1),

by Lemma A.6. Hence,

√
n( �βG,n − β0) =

µ
1

n
X 0
n
�S0n �SnXn

¶−1
1√
n
X 0
n
�S0n �Snun

D→ N

Ã
0,σ20

µ
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1
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Q.E.D.

Proof of Proposition 3.3: Denote g∗n(λ) = u
∗0
n S

0
n(λ)(

�Gn)
dSn(λ)u

∗
n. It is sufficient to show that this

moment function and its derivative are close enough to those of gn(λ) where gn(λ) = u
0
nS

0
n(λ)(

�Gn)
dSn(λ)un
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so that Lemma A.8 is applicable. SpeciÞcally, it shall be shown that g∗n(λ) − gn(λ) = Op(1) and ∂g∗n(λ)
∂λ −

∂gn(λ)
∂λ = OP (1) uniformly in λ ∈ Λ. These properties are stronger than those sufficient conditions in Lemma

A.8.

Because u∗n = (In −Mn)un, g
∗
n(λ) = gn(λ) + En(λ) where

En(λ) = −u0nS0n(λ)( �Gsn)dSn(λ)Mnun + u
0
nMnS

0
n(λ)( �Gn)

dSn(λ)Mnun.

Substituting un = S
−1
n ²n in the terms of En(λ), Lemma A.12 is applicable and all the three terms of En(λ)

are of order OP (1) uniformly in λ ∈ Λ. The uniform order holds because λ is linear in Sn(λ). Hence, g∗n(λ) =

gn(λ) + OP (1) uniformly in λ ∈ Λ. Consequently, one has, in particular, that hn
n g

∗
n(λ) =

hn
n gn(λ) + oP (1)

and
q

hn
n g

∗
n(λ0) =

q
hn
n g

∗
n(λ0) + oP (1) because

hn
n = o(1).

The Þrst order derivative of g∗n(λ) is

∂g∗n(λ)
∂λ

= −u∗0n S0n(λ)( �Gsn)dSn(λ)u∗n

= −u0n(In −Mn)W
0
n( �G

s
n)
dSn(λ)(In −Mn)un

=
∂gn(λ)

∂λ
+Rn(λ)

where Rn(λ) = u
0
nMnW

0
n( �G

s
n)
dSn(λ)un+u

0
nW

0
n( �G

s
n)
dSn(λ)Mnun−u0nMnW

0
n( �G

s
n)
dSn(λ)Mnun. By a similar

argument, Rn(λ) = OP (1) uniformly in λ ∈ Λ by Lemma A.12. This implies, in turn, that hn
n
∂g∗n(λ)
∂λ =

hn
n
∂gn(λ)
∂λ + oP (1) uniformly in λ ∈ Λ.

The consistency of the estimator �λn and its asymptotic distribution follow from Lemma A.8. Q.E.D.

Proof of Proposition 4.1: Consider each component of gn(λ). The lth component of gn(λ) is

Y 0nS0n(λ)PlnSn(λ)Yn = ²0nS
0−1
n S0n(λ)PlnSn(λ)S−1n ²n. By expansion,

S0n(λ)PlnSn(λ) = Pln −
pX
j=1

λjW
0
jnPln − Pln

pX
j=1

λjWjn +

pX
k=1

pX
j=1

λjλkW
0
jnPlnWkn.

Lemmas A.1 and A.3 imply hn
n (²

0
nHn²n − σ20tr(Hn)) = oP (1) where Hn = S

0−1
n PlnS

−1
n , S

0−1
n P slnWjnS

−1
n ,

and S
0−1
n W 0

jnPlnWknS
−1
n . It follows that hn

n (Y
0
nS

0
n(λ)PlnSn(λ)Yn − E(Y 0nS0n(λ)PlnSn(λ)Yn)) = oP (1) and

hn
n an(gn(λ)−E(gn(λ))) = oP (1) uniformly in λ ∈ Λ. With remaining arguments similar to those of the proof

of Proposition 2.5, the consistency of �λn follows from uniform convergence and the identiÞcation uniqueness

condition.

The Taylor expansion of
∂g0n(�λ)
∂λ a0nangn(�λn) = 0 at λ0 implies thatr

n

hn
(�λn − λ0) = −

·
hn
n

∂g0n(λ̄n)
∂λ

a0nan
hn
n

∂gn(λ̄n)

∂λ0

¸−1
hn
n

∂g0n(λ̄n)
∂λ0

a0nan

r
hn
n
(²0nP1n²n, · · · , ²0nPmn²n).
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As E(²0nP
s
lnWjnS

−1
n ²n) = σ

2
0tr(P

s
lnGjn),

hn
n Y

0
nS

0
nP

s
lnWjnYn =

hn
n ²

0
nP

s
lnWjnS

−1
n ²n = σ

2
0
hn
n tr(P

s
lnGjn)+oP (1).

Hence, with uniform convergence of hn
n (

∂gn(λ)
∂λ − E(∂gn(λ)∂λ )) to zero in probability uniformly in λ ∈ Λ,

∂gn(λ̄n)
∂λ = −Dn + oP (1), andr
n

hn
(�λn − λ0) = [σ40

hn
n
D0
na

0
nan

hn
n
Dn + oP (1)]

−1(σ20
hn
n
D0
na

0
nan + oP (1))

r
hn
n
(²0nP1n²n, · · · , ²0nPmn²n).

The distribution of �λn follows from Lemma A.4.

The optimal GMM weight for a0nan is (
hn
n Ωn)

−1 by the generalized Schwartz inequality. From the

asymptotic variance matrix of the optimal GMM with Pns, (Gjn−Diag(Gjn)) with j = 1, · · · , p are the best

Pns from P2n by the generalized Schwartz inequality. When ² is normally distributed, Ωn = Vn. For the case

that limn→∞ hn =∞, Ωn = Vn + oP (1). For both cases, the best selections from P1n are (Gjn − tr(Gjn)
n In),

j = 1, · · · , p. Q.E.D.

Proof of Proposition 4.2 This proposition states that the feasible best estimators with �Gjns will have

the same asymptotic distributions as those best estimators with Gjns.

Because the number of the best moment functions p is equal to the number of the unknown parameters

λs, asymptotically, the minimization of g∗
0
jn(λ)V

∗−1
jn g∗jn(λ) is equivalent to solve the corresponding p moment

equations g∗jn(λ) = 0 for each j = 1, 2. The difference
hn
n (g

∗
jn(λ)− gjn(λ)) is a vector of dimension p. Its lth

component is

hn
n
Y 0nS

0
n(λ)[Gln(

�λn)−Gln]dSn(λ)Yn = hn
n
²0nS

0−1
n (In −

pX
i=1

λiW
0
in)[Gln(

�λn)−Gln]d(In −
pX
j=1

λjWjn)S
−1
n ²n

= Tn1,l −
pX
i=1

λiTn2,li +

pX
i=1

pX
j=1

λiλjTn3,lij ,

where Tn1,l =
hn
n ²

0
nS

0−1
n [Gln(�λn) − Gln]dS−1n ²n, Tn2,li =

hn
n ²

0
nG

0
in[G

s
ln(
�λn) − Gsln]dS−1n ²n, and Tn3,lij =

hn
n ²

0
nG

0
in[Gln(

�λn) − Gln]dGjn²n. This decomposition slightly generalizes that in the proof of Proposition

2.10 for the Þrst SAR process. The proof of this proposition can parallel to that of Proposition 2.10 for each

component of the p moment equations and their derivatives. Q.E.D.
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