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1. Introduction

Spatial autoregressive (SAR) processes were introduced with the pioneer works of Whittle (1954) and
Cliff and Ord (1973). There are various estimation problems of interest. In this paper, we develop compu-
tationally simpler methods than the conventional maximum likelihood (ML) method for the estimation of

SAR processes. We propose a generalized method of moments (GMM) for the estimation of such processes.

In the existing econometrics literature, Kelejian and Prucha (1999a) have proposed a method of moments
(MOM) for the estimation of the SAR process Y,, = pW,, ,,Y,, + €, by exploring several moments of Y;, and
Wy nYs. Kelejian and Prucha (1999a) show that their parameter estimators of the model is consistent under
some general regularity conditions. The asymptotic distribution of their estimator, however, has not been
derived. Even though there are Monte Carlo evidences on possible efficiency of their estimators relative to the
ML or the quasi-maximum likelihood (QML) estimator (under normal distribution specification), asymptotic
relative efficiency properties are not available. The advantage of the MOM is the simpler computation with

the MOM estimator than the ML or the QML estimator.

In this paper, we suggest a general GMM estimation framework, which is relatively computationally
simpler than the QML and may have certain asymptotic relative efficiency or robust properties. The GMM
estimation method introduced by Hansen (1982) has broad applications in macroeconometrics, financial
econometrics and various economic fields. Hansen’s GMM method goes beyond the nonlinear two-stage least
squares (2SLS) method of Amemiya (1974) as it incorporates nonlinear moment conditions beyond moment
conditions generated by orthogonality of instrumental variables (IV) and disturbances in a model. The
GMM method has been noted for its possible use with the estimation of spatial models in the presence of
exogenous variables, see, e.g., Anselin (1988, 1990), Land and Deane (1992), Kelejian and Robinson (1993),
Kelejian and Prucha (1997, 1998), Lee (1999), among others. Those GMM methods are 2SLS methods
as their moment conditions are based on exogenous variables in the model. For SAR processes, there are
no relevant exogenous variables in the process and the 2SLS method is not applicable. However, in this
paper, we notice that nonlinear moment conditions are available and they can be used for estimation in the
GMM framework. The MOM in Kelejian and Prucha (1999a) is relevant but their moment equations (after
modification) are only some related components in our estimation framework. Our GMM estimators can
be shown to be consistent and asymptotically normal. Within certain classes of GMM estimators, the best

selection of moment equations can be derived and the corresponding best GMM estimators are available. The
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best GMM estimator may have the same limiting distribution of the QML estimate under any distribution
(satisfying certain general regularity conditions) for the disturbances. The GMM estimation framework can
be easily extended to the estimation of high-order SAR processes.

This paper is organized as follows. In Section 2, the first-order SAR process is considered. The GMM
estimation framework is introduced. Identification issues are discussed. Asymptotic properties of consistency,
asymptotic normality and efficiency are established. GMM estimates with optimal weighting and best
selection of moment equations are derived. In Section 3, the GMM estimation framework in Section 2
is generalized to the regression model where the disturbances form a SAR process. It is shown that the
asymptotic properties of the GMM estimators are not affected when the disturbances are estimated (with
the least squares residuals). Section 4 generalized the GMM framework to the estimation of general high-
order SAR processes. Optimal and best GMM estimators are derived. Conclusions are drawn in Section 5.
All the proofs of the propositions in the text are included in Appendix B. Appendix A collects some useful
lemmas for the proofs.

2. Moment Conditions and Estimation of SAR Processes

A (first-order) SAR process is specified as

Y, = AW, Y, + €, (2.1)

where Y, is the n-dimensional vector of dependent variables, W,, is an n X n constant matrix of spatial
weights with a zero diagonal, and the disturbances €,,; of the vector €, = (ep1,- - -, €nn)’ are independent and
identically distributed (i.i.d.) with zero mean and variance 0. In order to distinguish the true parameters
from other possible values of the parameters, Ao and 03 will denote, respectively, the true parameters of A
and o2. For any value A, let S,,(\) = I,, — A\W,,. At \g, denote S,, = S,,()\o) for simplicity.

The SAR process is supposed to be an equilibrium model. Under the assumption that .S,, is invertible,

the equilibrium solution is

Y, =S, e (2.2)

Because the endogeneity of Y,, and W,,Y,, = Gpe, where G,, = W,,S;! from (2.1) and (2.2), W,.Y,, is
generally correlated with €,. For the IV estimation of the model parameters of (2.1), valid IVs need to be
constructed so that they are uncorrelated with e, but correlated with W,,Y,,. We suggest P,,S,,(\)Y,,, where

P, is a n x n constant matrix with either a zero diagonal or, more generally, ¢tr(P,) = 0, as a possible IV
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function for the estimation of the model (2.1). The intuition behind this is that when P, has a zero diagonal,
the Ith component of the IV vector P, S,Y, (= P,¢,) is Z?:L#l Dn,1j€n;j, Where p, ;5 is the (I, j)th entry of
P,, and €,; is the jth component of €,, which excludes €,; in its linear combination. So, each component of
P, S, Y, is uncorrelated with the corresponding component of €,. The selection of P, with only tr(P,) =0
is more general because a P, with a zero diagonal is a special case. The intuition for P, with tr(P,) = 0
is that while each component of P,S,Y,, may be correlated with the corresponding component of ¢,, the
correlations may cancel each other. This is shown in the following proposition.

Proposition 2.1 For any constant n X n matriz P, with tr(P,) =0, P,S,Y, is uncorrelated with €,,.
Proposition 2.1 provides a moment condition which can be useful for estimation. As P,S,,(A\)Y;, involves the
unknown parameter A, it can not be directly used as an IV in straightforward IV or 2SLS approaches. A

possible way to use P, S, ()Y, for estimation is in the framework of GMM:
m}%ngi(z\), (2.3)

where

9n(A) = Y38, (M) PrSn(N) Y. (2.4)

Alternatively, the GMM estimator An may be solved from the quadratic equation gn(;\n) = 0. Because of
the quadratic expression of g, () in (2.4), one may replace P, by its symmetric counterpart %Pj or, simply
P: where P$ = P, + P! to arrive at the same moment equation and the same GMM estimate.!

Consider the identification problem of Ay in the GMM estimation framework with the moment function
n (2.4). As the moment equation E(g,(A\)) = 0 for a given P, is a quadratic function of A, it may have two
distinct roots. Because S,,(\) = S, + (Ao — A)W,, and S,,(A\)S;; 1 = I, + (Ao — NG,

E(gn(N) = E(€,5,75,(NPuSu(V)S; " en)
= ogtr(S,7 S, (N PaSn (NS, )

(2.5)
oatr[(I, + (Ao — NG Po(I, + (Mo — N)Gy)]

= 03[(Ao — Mtr(PiGr) + (Ao — A)2tr(G), PyGy)]

L If a consistent estimate S\n of \g is available, one might try to use the estimated PnSn(S\n)Yn as an IV

in a straightforward IV or 2SLS estimation approach. It can be shown that the resulted IV estimator can
be consistent. However, the asymptotic distribution of such an IV estimator will depend on the asymptotic
distribution of the initial consistent estimator \,. The resulted IV estimator may or may not have improved
efficiency over the initial consistent estimator. This is so because the derivative of P,S,,(\)Y,, with respect
to Ais —P,W,,Y,,, which is correlated with €,,. The latter does not provide an orthogonality condition which
is needed in order to eliminate the influence of the asymptotic distribution of an initial estimate A,, on the
resulted IV estimator.



by using tr(P,) = 0. The moment equation F(g,()\)) = 0 has two roots A\; and Ay with A\; = X\g and

Ao = X + :w%f% if tr(G!, P,G,) # 0. Because S;! = I, + A\oG.,, the second root can be rewritten

explicitly as Ao = tr[(fﬁ(gi,éjgz;&l]' From (2.5), there will be a unique root Ag if either tr(G, P,G,) = 0

and tr(P:Gy,) # 0, or tr(G,,P,Gy) # 0 and tr(P:G,) = 0. The condition tr(P:G,) # 0 is equivalent

to the nonzero correlation of the IV P:S,.Y,, with W, Y,, because E[(P:S,Y,)W,Y,] = E(e,P:Gre,) =
ogtr(P:G,). In general, tr(G!, P,G,,) would not necessarily be zero and there may be two distinct roots. In
terms of the empirical moment equation g, (\) = 0, because Y,/ S/ (AP, S,(A\)Y, =Y, P,Y,, — \Y,P:W,.Y, +

N2Y!W! P,W,Y,, is a quadratic function of A, the explicit solutions of the empirical moment equation are
My = Y PIWL Y, £ (Y PiWaYo)? = 4(Y W, PaWoaYa) (Yo PaYo)[V2 ) (Y, Wy P Y. (2:6)

In order to distinguish the consistent root from the inconsistent one in (2.6), extra information is necessary.
The extra information needed is the sign of tr(P2G,,) as shown below in Proposition 2.2, i.e., the sign of the
correlation of the IV P?S, Y, and W, Y,.

In order to justify rigorously possible asymptotic properties of the estimators, some regularity conditions
in addition to the structure of the model in (2.1) will be assumed.

Assumption 1: The €,;s are i.i.d. (0,0%) and its moments of order higher than the fourth ewist.

Assumption 2: The weights matrices {W,} are uniformly bounded in both row and column sums. The
elements of Wy, = (wy,;;) are of order O(%) uniformly in i and j.

Assumption 3: The matrices {S; '} are uniformly bounded in both row and column sums.
The fourth or higher moments of €,; exist so that the variances of quadratic forms of €, in this model
can be finite. The uniform boundedness assumptions on W,, and S, ! are originated in a series of papers
by Kelejian and Prucha, see, e.g., Kelejian and Prucha (1998), in order to limit correlation across spatial
units in a manageable degree. The uniform boundedness of matrices is equivalent to the boundedness of a

sequence of norms of matrices. The sequence of square matrices {A,} is uniformly bounded in row sums

(resp. column sums) if and only if the sequence {|| A,, ||} where || - || is the row sums matrix norm (resp.
colum sums matrix norm) is bounded (Horn and Johnson 1985). Any matrix norm || - || has the property
that || AnBn [|<|| An || - || Bn ||- So, it holds immediately that the product of two matrices A, and B,

which are uniformly bounded in row sums (resp. column sums) will be uniformly bounded in row sums (resp.

columns sums).? The order O(ﬁ) of elements of W,, in Assumption 1 has been considered in Lee (1999b).

2 These particular norms have some other useful properties that other matrix norms might not have. For
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It provides explicit features on how the spatial weights matrix W,, shall expand as spatial units increase.

3 However, Lemma A.l implies that

The elements of S, ! in Assumption 3 do not have the order O(ﬁ)
elements of G, = W,, S, have the uniform order O(5-) because W), has and S, is uniformly bounded in
column sums. The constant matrices P,s will be selected to have similar properties of W,.

Assumption 4: The constant matrices {P,} with either a zero diagonal or tr(P,) = 0 are uniformly
bounded in both row and column sums. The elements of P,, = (py ;) are of order 0(%) uniformly in i and
j.

The class consisting of matrix P, that satisfies Assumption 4 and has tr(P,) = 0 will be denoted as Py,,.
The class of matrix P, that satisfies Assumption 4 but has a zero diagonal will be denoted by Ps,,. Because
a matrix P, with a zero diagonal has tr(P,) = 0, Pa, is a subclass of Py,,.

Assumption 5: The {h,} can be a bounded or a divergent sequence with lim,,_, . ﬁnﬂ =0.

The above assumption allows h,, to diverge to infinity but at a rate slower than the rate n. This assumption
includes spatial models with spatial interactions for a unit with only a few of its (near) neighbors as well
as interactions with a large number of neighbors. The latter includes spatial specifications in Case (1991,
1992). If h,, is divergent to infinity at the rate n, one can give an example that the GMM estimator may be
inconsistent. The same phenomenon occurs for the ML or QMLE estimator (Lee 1999b).

Proposition 2.2 Assuming that lim,_ inﬂtr(P,fGn) # 0, if the sign of tr(P:G,,), where P, € Pin,

were positive, the consistent root would be

An = {Y!PSW, Y, — [(Y.PEW,Y,)? — 4(Y. W PaW, Y, (Y. P Y)Y (Y W, PoW,Y,,); (2.7)
if tr(P:Gy,) were negative, the consistent root would be

A = {Y.PEW, Y, + (Y PSW,Y0)2 — 4(Y. W PaW, Yo ) (Y P Y)Y 2 (Y W, Py W, Y. (2.8)

when lim, oo 22tr(G!, P,G,) # 0. In the event that lim,_.o 22tr(G!, P,G,) = 0, Ay = Y P, Y, /Y. PSW,Y,
is the unique consistent root.
Unfortunately, because GG,, involves the unknown parameter )y, one may not, in general, be able to determine

the sign of tr(P:3G,,). However, if an initial consistent estimate of \g is available, the sign of tr(P:G,,) can

example, if x,, is a column vector with uniformly bounded elements, then {|| «,, ||} is bounded with the row
sum norm. This is not so with the Euclidian norm.
3 For example, at \g = 0, S, ! is the identity matrix I,,.
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be estimated. More on this will be discussed later. In particular, there is an interest in selecting P, closely
related to G,,.

Instead of investigating each of the roots as in Proposition 2.2, the following proposition shows that
the GMM estimator A, is locally consistent. In order to show that the objective function of the GMM
can uniformly converge in probability to a well defined limiting function, we assume as usual for nonlinear
estimation in the GMM framework that the parameter space of A\ is a compact set.

Assumption 6: The parameter space A of X is a compact set of the real line with Ay in its interior.
In this assumption, the range of A does not need to be specific but the true parameter \g has to satisfy
Assumption 3. In the literature, it is quite common to specify the range of A to be (—1,1) when W,, ,, is
row-normalized, as it guarantees that S,(\)~! exist whenever A € (—1,1) and S, '()\) can have a series
expansion in terms of the powers of W, (see, e.g., Anselin 1988). Our GMM estimation framework imposes
less restrictive assumptions on the parameter space A.

Proposition 2.3 Suppose that lim,_, inﬂtr(P,fGn) # 0, then the GMM estimator An derived from
minyea, g2(\) for some small neighborhood Ay of \o, is a consistent estimator of \g.

The asymptotic distribution of A, can be derived from a Taylor expansion of g, (\,) at Ag. The first

and second order derivatives of g,,(\) are

d2g, (A
= s Y., Ty ey, (2.9)

dgn(\)
X

The asymptotic distribution of the consistent root A is in the following proposition. In order for the central

limit theorem of a quadratic form in the Appendix to be applicable, Assumption 5) needs to be strengthened.
Assumption 5': lim, ﬁi:i =0 where § > 0 such that E(|e|*T2°) exists.

In the event that ¢ has moments of any finite order, § can be taken to be arbitrarily large. For those cases,

Assumptions 5’ is only slightly stronger than Assumption 5.

Proposition 2.4 Let P, € Py,. The consistent root An from minyep g2(N\) has the asymptotic distri-

) , (2.10)

bution that

no 2
. i—1Pnii tr(Pn Py
hi(/\n—)\o) 2N <O,n1L1§O [(m—?,) izt P, r(Puly)

butr2(PsG,)  mtr2(PsG,)

n

where Ky = f;—} is the kurtosis of €n;.
0

If (i) €y, ~ N(0,031,) or (ii) P, € Pay or (iii) limy— oo by = 00, then

no. D ) tr(P, P?)
= = Xo) = N |0, lim ————nl | 2.11
hn( O) ( n— 00 an_tTQ(Pan)> ( )
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The rate of convergence of the GMM estimator \,, depends on h,,. If {hy} is a bounded sequence, it converges
in probability to Ay at the usual y/n-rate. When {h,} is a divergent sequence, its rate of convergence can
be lower than the /n-rate. These rates of convergence match those of the QMLE in Lee (1999b).

The literature on GMM estimation is silent on the problem of possible multiple roots of moment equa-
tions. It assumes that the moment equations have a unique root. Because of nonlinearity in the objective
function of the GMM method, it is in general difficult to analytically check whether the moment equations
have a unique root or not. For our model, because the nonlinearity is only quadratic, it is relatively easier
to reveal the multiple roots issue. To overcome this difficulty, a possible strategy is to employ a few more
functionally independent moment equations. For our problem, even though each moment equation might
have two distinct roots, the common solution set of distinct moment equations may be a singleton. Suppose
that Py, and Ps, are two distinct n X n constant matrices from P;,. The two corresponding moment equa-
tions will be E(Y,) S (A)P1n,Sn(A\)Y,) = 0 and E(Y,.S! (A\) P2, S, (A\)Y,) = 0. The inconsistent root of the

first moment equation has the value \g + tr(P5,G,)/tr(G,, P1,G,) and the one of the second equation has

. ¢ G e
Ao + tr(Ps,Gy)/tr(G), PapGy). Thus, if trt(TC(il’:ﬁn G)n) # trt(gf:%’;n G)n)7 the common root of the two moment

equations will be the unique \g. Identification of the SAR process in GMM estimation framework can thus be

achieved when distinctive moment conditions are employed. In practice, specific IV matrices from Py, or Po,

tr(W/ Wn)I )

can be constructed from the spatial weights matrix W,,, for examples, W,, itself, (W,’IWn —
and (Wﬁ — %In), etc. The selection of W,, and (W,’an — "(W—T;W)In) is related to the MOM in
Kelejian and Prucha (1999a) as discussed in a subsequent paragraph.

Suppose that Py, -, Py, are m distinct constant square matrices of dimension n from Py,. The set

of IV functions can be Pj, Sy, (A\)Yy,, j =1,---,m. With these IV functions,
gn(A) = (Y, SLAN) P Sn(N) Yo, -+, Y SE (XN P Sn (V) Y5 (2.12)

As in the general GMM framework, these moment equations can be combined into a smaller set of equa-
tions by a constant matrix a, and a GMM estimator can be derived from the minimization problem:
miny ¢/, (A\)a’,angn()). The asymptotic distribution of the GMM estimator A, can be derived from the

Taylor expansion

I8 _ —1 I8
! !
Ay — Ao = — (69"@”)%% 69”()‘”)> 69”(A”)a;angn()\o). (2.13)

O O O



The asymptotic distribution of \,, will involve the variance of In(No) = (€, Pinén, -+, €, Pnnen). For
any square matrix A of dimension n, let vecp(A4) = (a11,+ -+, ann)’ denote the vector formed by the diagonal
elements of A. Furthermore, let Diag(A) = diag(ai1, -+, ann) be the n x n diagonal matrix associated with
the diagonal elements of A.

Lemma 2.1 For any two square matrices A and B of dimension n,
E(€, Ae,, - €/, Be,) = (g — 304)vecy (A)vecp(B) + ag[tr(A)tr(B) + tr(AB*)],

where g = E(ef“-) 18 the fourth moment of €,;.

If (i) both A and B are matrices with zero diagonals, or (ii) tr(A) = tr(B) = 0 and €, ~ N(0,031,),
then E(e!,Ae, - €, Be,,) = oitr(AB®) = ajtr(BA?).
The variance matrix of g,(Ao) can be derived with the results in Lemma 2.1. If (i) the matrices Pj,, j =

1,---,m, are from Pap, or (i) €, ~ N(0,021,) with P;, € Py, for all j = 1,---,m, then var(g,(\o)) = o3 Vi,

where
Vn = : : : = : ; : : (2.14)
1

The second expression in (2.14) follows from the identity that tr(P,Ps,) = 5tr(P;,Ps,). In general,

var(gn(Xo)) = og€2, where
O, = (k4 — 3)[vecp (Pin), - -+ yveep(Pomn)] [veep (Pry), - - -, veen (Pon)] + Vi (2.15)

For any two conformable matrices A and B, it is obvious that ¢r(AB) = ved (A" )vec(B). The V,, in (2.14)
can be rewritten as V,, = $(vec(Pyf,), - - -, vec(Py,,)) (vee(Py,), - -, vec(Ps,,,)). The V;, is nonsingular as long
as P,s are chosen so that vec(Py,) for j =1,---,m are linearly independent. This is so also for €2,,.*
Proposition 2.5 Suppose Pj,, j = 1,---,m, are from Py, so that aplim, %E(gn(/\)) =0 has a
unique root at Ao in A, where a,, converges to ag. Then, the GMM estimator ;\n derived from the minimization

minxea g),(A)a,angn () is a consistent estimator of Ao, and , /ﬁ(;\n — o) L, N(0,%), where

. hn, hin o \—1, 0 hn hn, hn o _
¥ = lim [(—=dy)' agao(~=dy)] 1(7%)/@6@0(7911)@6@0(7%)[(—dn)/%ao(;dn)] g (2.16)

n—oo N

with dy, = (tr(P5,Gp), -+, tr(P3,Gy)) under the assumption that aglim, .o, 2=d,, # 0.

4 If Q, were singular, there would exist a nonzero vector of constants a = (aq,---,q,) such that
o’ gn(Ao) = 0 with probability one. That is, ejl(z;nzl a; Pjn)en = 0 almost everywhere for ¢€,. This would be
possible if and only if Z;n:l a; Py, =0, i.e., vec(Pjy,)s would be linearly dependent.
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From the limiting distribution of An in Proposition 2.5, the optimal choice of the weighting matrix a/,a,,
is, as usual, the inverse of a matrix proportional to the variance matrix of g, (Ao). In general, the optimal
weighting matrix for g, (A\o) is the inverse of ,,. The matrix V,~! can be the optimal weighting matrix in
special circumstances including that €, ~ N(0,021,,) or P,s are from Pa,. A less apparent case is the spatial
process with lim,, .o h,, = oco.

Proposition 2.6 Suppose that the limit of %“-Qn exists and is a nonsingular matriz, and %(Qn -Q,) =
op(1), then the optimal GMM estimator A, derived from minyea gl (N\)%;  gn(N) based on g, (\) with P,s

from Py, has the asymptotic distribution:

1 /hﬂ(im — o) 2 N(0,035,), (2.17)

where %y = (limy, o0 223,,) 7" with Sy = (tr(P5,Gr), - - tr( P, Go) ) Q0 (tr(Pf,Gr), - - - (P Ga))

assuming that the limit of %Em exists and is nonzero. Furthermore,
3 A 3 D
I (Mon) Q0 g0 (Aon) = ogx*(m = 1). (2.18)

For the special cases that (i) Pj,, j = 1,---,m, are from Pay,, or (ii) €, ~ N(0,02l,), or (iii)
limy, o0 by = 00, then V, can be used as the weighting matrix in place of 0 for the optimal GMM es-
timation.

A nice feature of V,, in (2.14) is that it does not involve any unknown parameter of the model and the
computation of the GMM with V! as its weighting matrix does not require a two step procedure as in
a typical optimal GMM estimation. On the other hand, in order to use the general weighting matrix €2,
the moment parameters p4 and o7 need to be estimated. The A\ can be estimated by the GMM without
weighting in an initial step. The initial GMM estimate can be used to estimate the disturbances of €,.
The moments o2 and py can then be estimated by corresponding empirical moments using the estimated
residuals. Alternatively, one may select P,s from Py, and use the corresponding optimal GMM with V!
as the weighting matrix to obtain an initial estimate of \g. The estimated Q,, can be used as the optimal
feasible weighting matrix. The use of V,, does not require these steps. The corresponding V,, gives the
optimal weighting matrix for the moments g,,(A) when the P;,s are selected from P, a subclass of Py,,.
If Pj,s are selected from the broader class Pi,, the corresponding V;, could provide the optimal weighting
matrix only when €, has the moment restriction py = 303 , which includes the normal distributional case,

or when lim,,_, h, = co. With the optimal weighting matrix, the minimized objective function in (2.18)
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is asymptotically x? distributed with (m — 1) degree of freedom, which provides a goodness-of-fit diagnostic
test for the spatial model when m > 1.
The computation of the GMM estimators in Propositions 2.5 and 2.6 is essentially that of the nonlinear
least squares (NLS). Consider the GMM estimation in Proposition 2.5. From (2.12),
m m m m
angn(N) =Y anYy S, (N PinSn(NYn = > anVy PinYo =Y am Yy Wi P Yn A+ an Yy W) P Wy Yo - A2,
1=1 1=1 1=1 1=1
The GMM estimation is equivalent to the NLS estimation of the following nonlinear-in-parameters regression
equation:

Z anleiPlnYn = Z aneriWr/LPlsnYn A - Z anlYéWé]DannYn A%+ ks
=1 =1 =1

where &, is the k-dimensional vector of equation residuals (disturbances). For the optimum GMM estimation

in Proposition 2.6, as

gn(A) = : = : - : A+ : Az,
YS! (A) P Sn(N) Ya Y PonYn YW P: Y, YW/ Ppn W, Y,

it is equivalent to the generalized nonlinear least squares (GNLS) estimation of the nonlinear-in-parameter

equation:
Y! P, Y, Y!W! P8 Y, YW P, W, Y,
: = : A= : N+ &,
Y! PpnYn Y!W! P5 Y, Y!W! P WYy

where &, is a m-dimensional vector of residual with variance matrix ©,,.°

The selection of P,s for IV functions requires them to be matrices either from Py, or Pa,, and be
correlated with G,, in that tr(PSG,,) # 0. Other than those, the selection of P,s can be arbitrary. As the
asymptotic variance of the GMM estimator An depends on the selected P,s. The possible best selection of
P, is an interesting issue. Intuitively, one should choose a P, so that its correlation with G,, be maximized.
One can not use G,, directly for P, because (G,, may neither have a zero diagonal nor a zero trace. Instead
of G, possible candidates may be (G, — ﬂf—"lln) or (G, — Diag(Gy)), which are modified from G,, so that
they are in either Py, or Pa,. The following proposition shows that (G, — %In) and (G,, — Diag(G,))
are also relevant in the evaluation of the trace of the product of P; and G,,.

Lemma 2.2 Suppose that A and B are two n X n matrices.

5 By casting the GMM estimation in a NLS framework, one may also address the identification of A\ via
those nonlinear (moment) equations. The identification of parameters in the MOM in Kelejian and Prucha
(1999a) is addressed via a least square estimation.
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(i) If tr(A) =0, then tr(AB) = tr[A(B — B[ )].

(i1) If Diag(A) =0, then tr(AB) = tr[A(B — Diag(B))].

This lemma states that when A is a square matrix with ¢r(A) = 0, a conformable matrix B in the product AB

can be replaced by (B — MIn) without changing the value tr(AB). Similarly, if A is a square matrix with a

n

zero diagonal, B can be replaced by (B — Diag(B)) without changing the value tr(AB). This lemma implies

that if P, € Pry, tr(P:Gy) = tr(P(Gy — G20 1)), and if P, € Pay, tr(PG,) = tr(P: (G, — Diag(Gy))).

@In) is the optimal matrix within the class of matrices

The following proposition confirms that (G,, —
Pin, and (G,,—Diag(G)) is optimal in Py,,. They are optimal in the sense of maximizing the scalar correlation
coefficient of P75, Y, and W, Y, within their relevant classes. As P:S,Y, = Pje, and W, Y,, = Gp€,, they

have zero means and their scalar variances are, respectively, E(e,, P?%¢,) = oatr(P2*) and E(e, G Gnren) =

tr2(P:G,)

odtr(G,,Gy,). Hence, the squared scalar correlation coefficient of P$S,Y,, and W,,Y,, is r2 = i e e

Proposition 2.7 (i) In the class of constant matrices Pin,

max WQ(P—SGn) _ 1 max tr2(PRGh) _ ltTQ[(Gn - Sn )Gl _ lt?“[(G — MI )*?]
PoePr, tr(P32) 4 piePu tr(P32) 4 4[(G, — 2Caly ys2) 4 " n "7

and, (ii) in the class of constant matrices Pay,,

tr2(P:G,,) 1 tr2(P3Gs) B 1tr?[(G,, — Diag(G,))*G:] 1 . 52
P TP 1A T PE) 1 6l(Gr = DiagGa)y] 2l (Gn — Diag(Gu))T

The intuition that selecting P,, to maximize the correlation of P,S,Y, with W, Y, within the relevant
class may provide best IV estimate is confirmed in the following proposition. Let My, = {;\Un} (resp., May,)
be the class of optimal GMM estimators derived from minyea g, (A2, 1gn()) (resp., minyea g, ( AV, tgn(N)),
where g, ()) is a vector of moments functions with P,s from Py,, (resp., Pay).

Proposition 2.8 Within the class of optimal GMM estimators Mo, , the best estimator is the consistent
root Agp.p derived from minye,[Y,.S! (M) (G — Diag(Gp))Sn(N)Yy]? in the sense that \/%(j\gb)n - o) 5

N(0,39p) with Yoy < 3, where X, is the limiting variance matriz of /hl(j‘v,n —Xo) in Proposition 2.6 and

Yop = ( lim h—"tr[(Gn — Diag(G))*G,)) "t (2.19)

n—oo N
In the event that €, ~ N(0,031,) or for the case that lim, o h, = oo, within the broader class of
estimators M1, the consistent root ;\11,7” derived from minyea Y, S (AN (Gy — ﬂf—"lIn)Sn(/\)Yn]2 1s the best

GMM estimator with /%()A\H,m — o) 2 N(0,%1p) where

Y1 = ( lim h—ntr[(Gn -

L)G,])t (2.20)
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The estimate /A\Qbm is optimal within the class P, regardless of the distribution of €,. For the special
cases that €, is normally distributed or {h,} is a divergent sequence, 5\11,7” is optimal within the broader
class of Py, and may relatively be more efficient than 5\21,7”. The relative efficiency of j\u,m over X2b7n can

be quantified by comparing their precision matrices:

%”{tr[(Gn - l‘7"(571)1,1)%?”] —tr[(Gn — Diag(G,))*Gnl}
= 2 u((Diag(G) — HE2 1 )6,] = 222 r((Diag(G) - L) Diag(G)
= 2% i(Gn,jJ’ - —Z?:;Gn’“)?
i=1

From this, for {h, } being a bounded sequence, 5\11,7” is more precise as it takes into account the variance of
the diagonal elements of G,,. The difference of the precision matrices is two times of the empirical variance
of the diagonal elements of G,,. The empirical variance is zero only for cases where the diagonal elements

of G,, are identical. For the case that lim, .., h, = oo, the difference shall vanish as n goes to infinity

n
G
n

because Gy ;i = O(7=) implies that 237" | (Gy,j; — 2

j=1

)? = L20(3%) = O(3=) = o(1). That is,

n

when lim,, . hy, = 00, Blb,n and B%,n have the same limiting distribution.

However, estimators with P,, from Ps,,, which includes 5\2n, may have some robust properties than those
from P1,,. The consistency of GMM estimator with P, from Py, or Ps, is based on the fundamental moment
property that E(e), P,e,) = 0 as in proof of Proposition 2.1. This is valid because €,;’s are i.i.d. with zero
mean and a common variance. If €,;’s had heteroskedastic variances, E(e,€, ) would be a diagonal matrix not
proportional to an identity matrix. In such a case, when P, is from P1,,, E(e), Pye,) = tr[P,E(enel,)] would
not necessarily be zero. However, when P, has a zero diagonal, tr[P, E(e,€),)] = tr[Diag(P,)E(enel,)] =0
because E(e,e),) is a diagonal matrix and Diag(P,) = 0. So it is possible that X2b7n may be consistent
against unknown heteroskedastic disturbances in the model.”

When ¢, is not normally distributed or {h,,} is a bounded sequence, the GMM estimator 5\11,7” in the
preceding proposition may not have any optimal property. However, it is interesting to note that it has the
same limiting distribution as the QMLE for the model (2.1).

Proposition 2.9 The consistent root j\lb,n derived from minyea[Y, S, (A)(G,, — @In)sn(/\)}’n]2 has

6 The h,, shall be normalized to one in this case.

T A rigorous analysis of the robustness property of this estimator and its associated robust (White’s) test
statistics is beyond the scope of this paper but it shall be investigated in a separate paper.
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the limiting distribution

n r(Gn)\2
n < D . Zi:l(Gn i : ) 1
—(Mbon— o) > N[0, lim |(kg —3 : n +
V7, o =) ( e l( G, ML) (G, TG

(2.21)

which is the same as the QMLE Aqar.n of Ao derived from maxpee In L, (6) where 6 = (X, 0%) and
EA
(2mwo2)2

based on the normal distributional specification of €, in (2.1).8

exp(——= Y S (A)Sn(N)Y,)

L,(0) VIS,

The best estimate in My, (resp., Ma,) associated with (G, — Lf)ln) (resp., (G, — Diag(Gy)))
involves the unknown )\ in G, as G,, = W,,S;;!. The unknown )\ can be estimated with some P,s from
P1,, or Pa, within the GMM framework. With an initial consistent estimate 5\,“ G, can be estimated by
G, = wW,S, 1(5\n) The additional computation for using this feasible best matrix is to obtain the inverse of
Sn(j\n), which, however, needs to be inverted only once.” The following proposition shows that the feasible
GMM estimator with G,, replaced by G, in the IV functions has the same limiting distribution as the
corresponding best GMM estimator in Proposition 2.8.

To simplify the following presentations, for any n x n matrix A,, we shall denote the adjusted matrix
(A, — m;;1—”21,1) or the matrix (4, — Diag(A,)) by A%.

Proposition 2.10 Suppose 5\n s a %—consistent estimate of \g, and Gn = WnS,jl(;\n).

Then, minyea YS!, (A)GLS, (N Y,]? has a consistent oot Ny, which has the same limiting distribution

of Mpn derived from minyea YS! (N)GELS, (\)Y,]2.

The moment equation Y S’ (A\)G%S,,(\)Y;,, = 0 may have two roots. However, the consistent root can
be easily identified because the sign of tr((G%)?G,,) can be determined. This is so, because tr((G2)¢G,,) =
1tr((G3)4(G3)?) > 0 whenever (G5)? # 0.

Proposition 2.11 Under the assumption that lim,,_, %tT[(Gi)d(Gi)d] # 0, the consistent root for
the moment equation Y,'S" (NG S, (A\)Y, =0 is

L
2

S = VLGS WY = [(Va (G WY = VW (G) W - Yo(Ga) Y] T QYW (G W Vo).

(2.22)

¥ The concentrated log likelihood function of A is In L, (A\) = —%(In(27) + 1) — 2In62(A) + In[S,(N)],

where 62(\) = 1Y//S" (A\)S,(\)Y,. Its associated first order derivative is L. (A) %WY,{W/MSn()\)Yn -

=n )Y
tr(WynSy (X)) (see, Lee 1999b). Our moment equation in the GMM framework is not the likelihood
equation %/{‘(A) =0.

9 The Cholesky decomposition, for example, can be an attractive general method. If W, is a sparse

matrix, proper sparse matrix inverse subroutines may be valuable (Page and Barry 1997).
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The best estimators in (2.22) are of interest as they have close form expressions. In a finite sample,
when the numerical value of (Y (G2)IW, Y, )2 —4Y, W/ (G,)*W, Y, - Y (G,,)%Y,, is positive, the best estimates
are immediate available. In the event that the numerical value under the square root operator in (2.22) is
negative, the estimator in (2.22) would take a complex value. In that case, one shall resort to the GMM
minimization and the estimate (minimizer) shall take the value Y, (G2)IW, Y, /Y, W/ (G%)*W,Y,,, which is
equivalent to the root in (2.22) by setting the negative value under the square root operator to zero. In
any case, the computational burden of the best estimators will mainly be in the computation of an initial
consistent estimate by the GMM or NLS and the evaluation of S;! in G,,.

Our GMM estimation has focused on the estimation of the spatial parameter \. With a consistent
2

can be estimated as 62 = € é,/n where é, = Sn(;\n)Yn is the

estimate 5\n available, the parameter o -

estimated residual. By expansion,

1 N TGS n 8 el Gn n
67 = 00 = (=ehen — 08) = (An = Ao) 2 4 (A, = M) 2, (2.23)
€n &G a

The terms E;Cij‘ and “ZaZr are of order O(7-) by Lemma A.3, and (£€),e, —05) = op(1) by the law of

n

large numbers. Hence, 62 is a consistent estimator of 03. The asymptotic distribution of 62 may depend on

the asymptotic distribution of An except for the case that lim,, .., h, = co. This is so as follows. In general,

) 2y _ / 2 [ g Vhn ;s s Q_EEQG%GnEn
\/ﬁ(an_ao)— n(enen_nao)_ hn()‘n_/\O) " enGhen + ( hn()‘n_/\o)) NG "

1 & n 2 vVhy,
= =2 (= 08) =[5 = Xa) - G +op (1),
i=1

4-

S|

3

(2.24)

because 22 = o(1) and Z¢/,G)Gye, = O(i), when A, is | [ 7=

n

consistent. When lim,,_, h, = 00, the

term @GZG;% = Op(\/}L—n) = op(1) and, in this case, \/n(62 — 03) = <=> 1 (ez; — 05) + op(1) 5
N(0, (pg — 0d)). When {h,,} is a bounded sequence, the asymptotic distribution of 62 will depend on the
asymptotic distribution of ;\n evidenced from (2.24). As the best GMM estimate ;\n from Py, has the same
asymptotic distribution as the QMLE under the normal distributional specification and the QMLE of o2 is
also equal to the estimated residuals’ second moments, 62 with the best GMM estimate \,, will have the
same asymptotic distribution of the QMLE of o3.

Kelejian and Prucha (1999a) have suggested an MOM for the estimation of the SAR model (2.1). The

moments used in their estimation are based on the moment properties that E(ele,) = no3, E(el, W) W,e,) =
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odtr(W)/W,) and E(e,,Wye,) = 0. The corresponding vector of empirical moments is
gn(0) = (YS! (NS, (N, —no?, YS! (NW. WS, (N, — otr(W. W,), Y, S, (NW,S,(\)Y,).  (2.25)

They suggest the estimation of 6 by the unweighted MOM: mingeg ¢.,(0)9,(0). Kelejian and Prucha (1999a)
show that the resulted MOM estimator is consistent. Comparing their MOM approach with our GMM
approach, there are some similarities but they are different. The third moment in (2.25) captures the corre-
lation of Wy,e,, and €,,. This moment equation corresponds to a moment equation in our GMM framework by
taking W, for the IV function W,,S,,(\)Y,, as W, € Pa,. By selecting (W, W,, — ”(LWLL) for a moment
function in our GMM framework would have some similarities with the second moment equation in (2.25) of
Kelejian and Prucha (1999a). The moment function Y, S), (\) (W] W,, — wln)Sn(/\)Yn can be written

as
tr(W'W,
an)Sn()\)Yn
" (W W, (2.26)
= (V'S (AW Wy Sp(N)Y; — o2tr(W!Wy)] — ———nln)
n

Y8, (N (W, Wy, —
L8, ()8, ()Y, — o),

which is a linear combination of the first and second moments in (2.25). The MOM in Kelejian and Prucha
(1999a) will jointly estimate A and p. In our GMM framework, the estimation focuses solely on the estima-
tion of \. The linear combination in (2.26) eliminates the estimation of 0 and focuses on the estimation of
A. The 02 can be estimated after the estimation of A via the estimated residuals of €,. Alternatively, given a
value A, 0% can be estimated from the first moment equation implied by (2.25), i.e., 0% = 1Y,/ S/ (X)S,,(A)Y,,.

Substitute this solution for o2 into the second moment in (2.25), one will arrive at the moment func-

tion Y8, (NW. W, Sn(A)Y, — 2Y/SL (NS, (A Yotr(WiW,) = Y8, (A (WLW, — ZWalulp yg (\)Y,, in
our GMM framework. Such a sequential estimation strategy will slightly simplify the computation as it
involves one less parameter in the nonlinear optimization.

Ord (1975) has indicated the possible use of the third moment equation alone in (2.25) to solve for an
estimate of A. He points out that the relative inefficiency of that moment estimate relative to the MLE
increases as A increases and he favors the ML method for estimation. The MOM estimation in Kelejian
and Prucha (1999a) uses the additional first two moments in (2.25). Kelejian and Prucha (1999a) have
considered the consistency but not the asymptotic distribution of their MOM estimators. Their Monte
Carlo experiment has shown efficiency close to those of the QMLESs under a variety of distributions. This is
a much better improvement than that of Ord (1975). However, theoretically, it is unlikely that their moment

method has any efficiency property because the selection of their moment equations has not incorporated
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any efficiency consideration and their suggested MOM does not incorporate proper weighting across their
moment equations. In our GMM framework, our best GMM estimators of A\g and 03 can be asymptotically
efficient as the QMLE for any distribution (satisfying relevant regularity moment conditions).

3. GMM Estimation of the Regression Model with SAR Disturbances

The regression model with SAR disturbances is specified as
Y, = X8 + un, Uy = AWty + €, (3.1)

where €, has zero mean and variance o3 1,,, and W, is a spatial weights matrix. The exogenous variables are
assumed to satisfy the conventional property:

n

exists and is nonsin-

Assumption 7: The elements of X,, are uniformly bounded, and lim,,_, X’/IHX
gular.
This model implies that

Sn(N)Y = Su(N)X 0B+ €n, (3.2)

which is in the Durbin spatial lag form (Anselin 1988).

The regression model is a generalized linear model with variance S;1S,~! for the disturbance vector
Up. Let un(B) =Y, — X,0. A possible estimator of 3 is the generalized least squares estimator (GLSE)
with a consistently estimated variance matrix. In order to estimate the variance matrix S, 15’;—17 one needs
to estimate the unknown parameter A in the SAR disturbance process.

Let 31, = (X! X,) ' XY, be the ordinary least square estimator (OLSE). The disturbance u, can
then be estimated by the estimated residual w), =Y, — XnﬂALyn. The estimated residual is related to e, as
ul = Qnen where @, = (I, — X, (X) X,,) 71 X/)S, 1. We suggest the estimation of A9 by the GMM method:

minyea g, (A)al,angn () with
gn(N) = (u Sl (N Prn SNk, -1 Sp(N) P Su(Mush)- (3.3)

The following proposition shows that the GMM estimator A is \/g-consistent and it has the limiting
distribution of the corresponding GMM estimator of the SAR process for u,, as if u,, is observable.
Proposition 3.1 Suppose Pj,, j =1,---,m, are selected from P1, so that aplim, %ﬂ-E(gn()\)) =0
has a unique root at Ao in A, where a,, converges to ag and g,(\) is in (8.3). Then, the GMM estimator j\n
derived from minyep gl (N)al,angn(\) is a consistent estimator of Ao, and \/%()A\n — o) L, N(0,X%), where

[ b o 17 B hn T [ o h ]
Y = lim (Fdn)/aloao(;dn) (Fdn)’aéao(FQn)a6a0(7dn) {(Fdn)/aéaO(Fdn)} (34)

n—oo
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with d, = (tr(P5,Gr), -+, tr(P3,Gy))', under the assumption that ap lim, ..o 22d, # 0.

With any consistent estimator An of Ao, the following proposition shows that the feasible GLSE is
asymptotically equivalent to the exact GLSE.

Proposition 3.2 Let ;\n be a consistent estimator of \g and S, =1,— ;\an The feasible GLSE ﬁAGm,

where Bgm = (X,QS‘;S‘HXH)_lX,'lS;S‘nYn, has the asymptotic distribution that

Vi(Ba.n — Bo) 5 N(0,02( lim %nggsnxn)—l), (3.5)

n—oo

assuming that the limit of %XéS;San exists and is a nonsingular matric.

As usual, the asymptotic distribution of the GLSE does not require any specific rate on the consistent
estimate ), in the estimation of the weighting matrix. So even though An may converge at a rate lower than
the y/n-rate, the rate of convergence of BGW and its limiting distribution will not be affected.

The following proposition summarizes the main results of the best GMM estimates of Ay for the SAR
disturbance process. It will be useful if A\ in addition to the regression coefficients 3 is also the interest of the
model. This result shows that the same asymptotic efficient properties of estimates for the SAR process hold
for the SAR disturbance process in the GMM framework when the unobservable disturbance w,, is replaced
by its least squares estimated residuals.

Proposition 3.3 Suppose that 5\n is a /s=-consistent estimate of Ao and G, = WnS;l(S\n),

Within the class of optimal GMM estimators Ma,, the best estimator is the consistent root 5\21,7” derived
from minyea[u¥ 8! (N)(Gy — Diag(Gp))S,(\uz)? in the sense that ,/ﬁ(;\gbm — o) 5 N(0,Xqp) with

Yop < X, where X is the limiting variance matriz of /hi(j\n — Xo) in Proposition (3.1) and

Sop = (lim 40 [(Gor — Diag(Gn))*Ga]) =L (3.6)

n—oo N

The consistent Toot Aoy 15

’

;\2b,n = {UZ,(Gn - Diag(én))swnujz - [(UZ (én - Diag(én))swnu:l)Q

— Aur W (G — Diag(Gn))Wat - w' (Gy — Diag(Gy))ut]2 Y/ (2us W (G — Diag(Gn))Wpu).
(3.7)

In the event that €, ~ N(O,crgln) or for the case that lim, . h, = oo, within the broader class of

estimators M, the consistent root Ay, derived from minyea[u® S!(A) (G, — %G”)In)sn()\)uff is the best

GMM estimator with , /ﬁ(jqb,n — o) A N(0,X1), where

Y1 = ( lim h—ntr[(Gn -
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The consistent Toot Ay, 15

Sam = {05 (Go = Gy — [ (G — LG 1 o2
& G G (39
/ A 4 n * ey 13 n *1% * A t n *
4 W (G — T(n L LWt - (G — T(n ) 1w 1Y ul W (G — T(n ) LW,

2

When ¢, is N(0,021,), the asymptotic variance matrix of the MLEs of 3, 02, and ) is known to be

block diagonal:

L (S, X0) (SnXn) 0 0 !
AsyVar(B,0%,\) = 0 20T tT—E,GOr) (3.10)
0 DGn) (G2 + tr(GL,Gr)

o

(see, e.g., p.258 of Anselin and Bera (1998)). Comparing the asymptotic variances and covariances of the
feasible GLSE in (3.5) and the best Ajp,, in (3.8) with those of the MLEs of 8 and A in (3.10), their
asymptotic distributions are the same.?

4. GMM Estimation of High Order SAR Processes
Without loss of generality, consider the estimation of a SAR process with p spatial lags:

Y, = (MW, + AeWap + -+ 2, W)Yo + €5, (4.1)
where €,;s are i.i.d.(0,03) and Wy, [ = 1,---,p are p different spatial weights matrices.!' For this model,
denote A = (A1, A2, -+, Ap), Sn(A) =1, — Zle ANiWin, Sn = Sn(Xo), and G, = W;, S, ! for j=1,---,p.
Assumption 2 will be strengthened to Assumption 2’ below to incorporate all the spatial weights matrices in
this model. Assumption 3 is assumed for the newly defined S,, matrix of this model. The parameter space A

in Assumption 6 will refer to the parameter vector A and is a compact subset of the p-dimensional Euclidian

space.
Assumption 2': The weights matrices {Wy,}, I = 1,--- p, are uniformly bounded in both row and
column sums. The elements of Wy, are of order O(ﬁ) uniformly in i and j for each Il =1,---,p.

For GMM estimation of the model, we suggest the IVs functions P;,S,(A\)Y,, j = 1,---,m, where Pj,s

are constant matrices from either Py, or Ps,. The empirical moment functions are
(P, Sn(M)Y,) YS! (NP1 Sn(A)Ys

gn(A) = : Sn(N)Y, = ; : (4.2)
(PrnSn(N) Y2 Y.'S!(A) P Sn(N) Ya

10 Note that the explicit expression of the asymptotic variance of the MLE of \g from (3.10) is the inverse
2
of tr(G;,Gn) — tTUCO;” (L)_lﬂfg—”l =tr(G:G,) — 2unG—"2 by the inverse formula for a partitioned matrix.

20’3
On the other hand, tr((G,, — @In)s(}n) =tr((Gs — QWI,L)G”) =tr(G:G,) — QWQ(TG”).
1 Tf some of the spatial weights matrices are identical, there is a trivial underidentification problem
(Anselin 1988). Some justifications on the specification of this model can be found in Anselin (1988).
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At Ao, gn(/\O) = (Eizplnena Ty Eizpmnen)l and, hence, E(gn()‘o)) = 0. Tt follows that
o2tr (8,150 (A) PrnSn(X) S5
E(ga() = 5 - (43)
a2tr (S, 18! (\) P S (V) S 1)

Each of the moment equations is a second degree algebraic equation in p variables A\g, kK = 1,---,p and
its solution set is complex and not illuminating. Identification conditions, however, can be derived by
investigating some characteristics of the moment equations E(g,(\)) = 0 of (4.3). As S,(\) = S, +
SoheiAko = M) Wi, Sn(N)SH = Lo+ 30— (Ako — Ak)Grn- Let qui(j) = tr(P5,Grn) and gnpa(j) =

tr(G,, PinGin) for k,1=1,---,p,and j =1,---,m. It follows that

PP
tr(S, 1 S0 (N) P Sn (A Z @,k (7)Ao — Ax) + Z Z @,k (5)(Ako — Ax) (Ao — ),
k=11=1
for j =1,---,m. It is apparent that A\g is a common solution of these m moment equations. Let ¢, j be

the m-dimensional vector with g, ,(j) being its jth element. Similarly, ¢, ki, etc., are defined. Identification
conditions for Ay can be stated in terms of those g, vectors. The necessary and sufficient condition for the
m-moment equations to have a unique solution vector at Ay is that the vectors ¢,s do not have a linear

combination with some nonzero nonlinear coefficients in the form that

Z In KOk + Z Z In,k16k61 = 0. (4.4)

k=11=1

This condition is a necessary and sufficient condition for identification of the p-order SAR process in the
GMM framework. A sufficient condition is that the ¢,s are linearly independent. As the g,s together will
form a matrix of dimension m x [p(p + 1)], in order to have the sufficient identification condition satisfied,
the number of P,s has to be at least as p(p + 1). Weaker sufficient conditions are available. If there were
a solution of A\; not equal to Ajp, the moment equation (4.4) would have 6; # 0. This would imply that
each of ¢, 1 and ¢, 11 would be linearly dependent on all the other [p(p 4+ 1) — 1] vectors. So it is sufficient
to identify A1 if either g,,1 or g, 11 are linearly independent of the other [p(p + 1) — 1] vectors. Once the
identification of g is achieved, the moment equations in (4.4) will be reduced to the moment equations for
a (p — 1)-order SAR process. A set of weaker identification conditions can thus be recursively derived.

The variance matrix of g, (\o) is var(gn(Xo)) = 03y, where Q,, has the general expression in (2.15) if
P;,’s are from Py, and equals V,, in (2.14) if P;,’s are from Ps,,. The derivatives of g,,(A) with respect to
A form the matrix
(Wi Yo) Py Sn (N Yy, -, (WpnYo) P Sn(N)Y,,

dgn(N)
N

(WlnYn)/PﬁmSn(/\)Ym B (anYn)/Prfann(/\)Yn
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It follows that W = —0¢D,, where

tr(P,Gin), o, tr(P5,Gpn)
D, = z 5 (45)
tT(PfiLnGln)a ) tT(PrfznGZD”)

is a m X p matrix. The following proposition summarizes the asymptotic distribution of the GMM estimator
for this model, the optimal GMM estimator with a given vector of moment functions, and the best GMM

estimates from Py, or Pa,.

Proposition 4.1 Suppose Pj,, j =1,---,m, are selected from P1, so that aplim,, };E(gn()\)) =0
has a unique root at Ao in A, where a,, converges to ag and g,(\) is in (4.2). Then, the GMM estimator j\n

derived from minyep gl (N)al a,gn(N) is a consistent estimator of Ao, and , /ﬁ(j\n - o) 2, N(0,X), where

n— oo n

h h ~h h h h h -
S = lim |(Z2D,)ahao(“2D,)|  (Z2D,) ahao(=20)ahao(~=D,) |(=2D,) ahao(~=2D,)| . (4.6
|20, dhaol 22| (22D, Y ahan( 22 ahan(220,) [ (22D dhan(22D,) | L (1)

with Dy, in (4.5) under the assumption that aglim, %Dn has a full column rank p.

The optimal choice of a, corresponds to a) = (%"Qn)_%. With the optimal a,, the optimal GMM
estimator X% with moments g,(\) in (4.2) derived from minyey ¢/, (N gn(N) has \/g(j\fl — o) L,
N(0,%*), where $* = plim,,_, (£ D/, Q1 D,,) L.

Furthermore, the best selections of Pps from Pay are (Gjn, — Diag(Gjn)) for j = 1,---,p. When ¢,

is normally distributed or lim,,_,o h, = oo, the best selection of P,’s from Py, are (G, — @In),
j=1,---,p.

The following proposition demonstrates that the feasible best estimators can be constructed with a
\/%—consistent estimate ;\n of \g. It generalizes Proposition 2.10 to the high order SAR process.

Proposition 4.2 Suppose that A is a \/g-consistent estimate of \g. Let G'jn = anS;l(j\n); j=
1,--,p.

Within the class of optimal GMM estimators Ma,, the best estimator is the consistent root S\Qb)n de-
rived from minyea g5, (A)Va tgs,(\) where Vi, is a p x p matriz with its (j,1)th entry being tr[(Gj, —
Diag(Gn)) (G — Diag(Gin))®], and gi,(N) is a p-dimensional vector with its jth entry being Y;.S! (A (G jn —
Diag(éjn))Sn(/\)Yn in the sense that \/%(5\21,,” — o) A N(0,X0p) with Yo, < X, where X is the limiting
variance matriz of \/hz(;\n — Xo) in Proposition (4.1) and Lo, = (lim,—.o0 22 V55) 7L,

In the event that €, ~ N(O,o%[n) or for the case that lim,,_.., h, = oo, within the broader class of

estimators My, the best estimator is the consistent root j\u,m derived from minyep gf; ()\)Vlz_lg’fn(/\) where
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Vi, is a p x p matriz with its (j,1)th entry being tr[(Gn — @In)(ém - @In)s], and g7,(A) is a
p-dimensional vector with its jth entry Y, S! (\) (éyn - @IH)SH(A)YM and it has the limiting distribution
\/%(;\11,7,I - o) B, N(0,%1,) where X1, = (limy, 00 Eanl*n)_1

For the high order SAR process, the moment functions for the GMM estimation are no longer quadratic
functions of a single parameter. It becomes algebraically intractable to pinpoint the explicit consistent
solution of a moment equation. A possible strategy to implement the feasible best GMM in Proposition 4.2
is to start the nonlinear optimization search with the initial consistent estimate A, as the starting point.'?
The initial consistent estimate can be made available as in Proposition 4.1 when enough distinct matrices P,,s
are used in the GMM estimation. The constant matrices to initialize the GMM estimation can be matrices

tr(W!, Wi,

constructed from the spatial weights matrices Wj,s of the model, e.g., Wj,, (WJ'nWln - —L—1,),

(Win Wi, — wln), etc., for j,1 = 1,---,p. Alternatively, the best moment functions in Proposition
4.2 can be supplemented with these inefficient moment functions to formulate an extended optimal GMM
estimation. With extra moment functions, it is possible to identify uniquely the true parameters as discussed
before. The additional moment functions will not increase the asymptotic efficient of the best GMM estimator
but it helps to isolate the consistent root.!?

As the moment functions are second order polynomials of several parameters, the computation of the
GMM estimator can be much simpler than the corresponding QML method for the model.!* The GMM
optimization is numerically equivalent to a NLS estimation for a regression equation with nonlinear in
parameters. For the p-order SAR process, the regression coeflicients are linear functions of A; and products
AjAg for j,k=1,---p. For the feasible best GMM estimators, the additional computation is on the inverse
matrix S (), at an initiate consistent estimate Ay,.

5. Conclusions

In this paper, we have suggested GMM for the estimation of SAR processes. The GMM can be com-

putationally simpler than the computation of the QMLE. We consider asymptotic properties of the GMM

12" What we have in mind are numerical algorithms such as the Newton method where the update estimate
from an initial consistent estimate in each iteration is also consistent.

13 For this extended GMM objective function, optimization search can in principle start at any arbitrary
initial point.

14 The existing literature does not have sufficient discussions on the implementation of the ML method
for a high-order SAR model. The implementation of the likelihood function can be demanding as it involves
the evaluation of the Jacobian of S, (\) at any possible value of A\. Ord’s device (Ord 1975) of evaluating
the determinant of (I,, — pW,, ,,) based on the eigenvector decomposition of W, ,, will not be generalizable
for handling the Jacobian of the likelihood function of a higher order SAR model.
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estimators. We discuss the construction of optimal GMM estimators with given moment equations as well as
the best selection of moment equations in some broad classes of moment equations. The best GMM estimator
is shown to have the same limiting distribution of the QMLE (under normal distributional specification).
The GMM can be extended to the estimation of high-order SAR processes. As contrary to the QML method,
the computational complexity of the GMM estimator does not increase as more spatial lags are introduced.
It can also be applied to the estimation of regression models with SAR disturbances.

In this paper, we focus solely on the estimation of SAR processes but not SAR models with mixed
spatial lags and exogenous variables. For the latter models, GMM estimation methods have been proposed
and discussed in various manuscripts and articles including Anselin (1988, 1990), Land and Deane (1992),
Kelejian and Robinson (1993), Kelejian and Prucha (1997, 1998), Lee (1999a), among others. However, the
proposed GMMs are either linear IV, 2SLS, or generalized 2SLS methods. The validity of those methods relies
exclusively on the presence of exogenous variables in the model to construct their IVs. Those methods can
not be applied to (pure) SAR processes as there are no relevant exogenous variables in the processes. Even
though our proposed GMM framework in this paper is specifically designed for the estimation of (pure) SAR
processes, it may be extended for the estimation of mixed regressive SAR models by incorporating exogenous

variables in the GMM framework. Results on that direction of research shall be reported in a separate paper.
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Appendix A: Some Useful Lemmas

This appendix summarizes results which are useful for the subsequent proofs of our propositions in the
text. Frequent notations used in the text are assumed to be understood and will be used in the following
Lemmas without interpretation. For example, W, refers to a n x n spatial weights matrix, 5, refers to
(I, — AoW,) or (I, — Zle AiWin), Gy = W, St etc. Elements €,; of the n disturbance vector €, are
always assumed to be i.i.d. with zero mean, variance o2 and finite fourth moments 4 in the Lemmas.

For any n x n matrix A, which is uniformly bounded in both row and column sums, a linear trans-
formation of A,, which preserves the uniform boundedness property will be denoted by AL. The particular
transformations of A4, to (A4, — WQ) and (A, — Diag(A,)) are linear, and will be denoted as A% to
simplify presentation.

Lemma A.1 Suppose that the elements a,, ;; of the sequence of n xn matrices {A, }, where A, = [an,i;],
have the order O(ﬁ) uniformly in all i and j; and {B,} is a sequence of conformable n X n matrices.

(1) If {B,} are uniformly bounded in column sums, then the elements of A, By, have the uniform order

O(-).

hn

(2) If {B,} are uniformly bounded in row sums, then the elements of B, A, have the uniform order

O(L).

For both cases (1) and (2), |tr(A,By)| = |tr(B,A,)| = O(3%).
Proof: Consider (1). Let an;; = Cz—nj Because ayij = 0(%) uniformly in ¢ and j, there exists a
constant ¢ so that |c, ;| < ¢ for all ¢, j and n. Because {B,,} is uniformly bounded in column sums, there

exists a constant co so that Y _, b, x;| < ¢2 for all n and j. Let a;,, be the ith row of A, and b, ; be the

[th column of B,,. It follows that

1 & € — cic
| nbn | < h_z |Cn,ijbnji| < h—l Z by 1] < %7
n i n S0 n

for all ¢ and [. Furthermore, [tr(A,B,)| = | Y iy @inbni| < >y lainbni| < cicaq=. These prove the
results in (1). The results in (2) follow from (1) because (B, A,) = A}, B;, and the uniform boundedness in
row sums of {B,} is equivalent to the uniform boundedness in column sums of {B/}. Q.E.D.
Lemma A.2 Let A, = [a;;] be an n-dimensional square matriz. Then
1) E(e,Anen) = 0?tr(An),
2) E(e,Anen)? = (pa — 30*) Y1, a2, + o [tr?(A,) + tr(A, AL) + tr(A2)], and
3) var(el, Ay V) = (pa — 30*) Y0, aZ + o*[tr(AnAL) + tr(A2)].
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Proof: See Lee (1999b).  Q.E.D.

Lemma A.3 Suppose that {A,} are uniformly bounded in both row and column sums, and the el-

ements of A, = [an,;] have the order an;; = O(hln) uniformly in all i and j. Then, E(e), Anen) =

O(3-), var(e, Anen) = O(3%), and €, Apen, = Op(3-). Furthermore, if limy, oo o =0, then Loel Ay, —

%E(e;Anen) =op(1).

Proof: E(e,Ane,) = o*tr(A,) = O(3=) by Lemma A.1. From Lemma A.2, the variance of €, A,e,

is var(e, Anen) = (pa — 30*) 31y al ;i + o'[tr(A,A},) + tr(AZ)]. Lemma A.1 implies that tr(A?%) and

tr(A,Ay,) are of order O(3=). As Y1 ah ;; < tr(A, A7), it follows that 337, af ;; = O(3%). Hence,

i=1 %n,ii i=1 %n,ii

var(e, Anén) = O(75).

When 22 = o(1), E((e, Anen)?) = var(e, Anen) + E%(€, Ape,) = O(max[7, ()?]) = O((%V} The
generalized Chebyshev inequality implies that P(22|e, A,e,| > M) < 5 (22)2E(le), Anenl?) = 720(1)
and, hence, 22¢/ A,¢, = Op(1). Finally, because var(Z2¢/ A, ¢,) = O(&) = o(1), the Chebyshev inequality
implies that ¢/ A, ¢, — L2 E(e, Ane,) = op(1). Q.E.D.

Lemma A.4 Suppose that {A,} is a sequence of symmetric matrices with row and column sums uni-
formly bounded in absolute value and the entries a,;; of A, are of order O(hL) The €p1,- -+, €pn are i.1.d.

random variables with zero mean and finite variance 0%, and its moment E(|e|*T2?) for some § > 0 exists.

Let U?Qn be the variance of Q,, where Q,, = V! A,V, — o*tr(A,). Assume that the variance crén 18 bounded

142
away from zero at the rate 7=. If lim,, o ﬁﬂn—é =0, then ;OQ& L, N(0,1).

Proof: See Kelejian and Prucha (1999b) and Lee (1999b).

Lemma A.5 Suppose that the elements of the sequences of n-dimensional column vectors Z1, and Zay
are uniformly bounded. If {A,} are uniformly bounded in either row or column sums, then |Z1, AnZan| =
O(n).

Proof: Trivial.

Lemma A.6 Suppose that A, is a n X n matrix with its column sums being uniformly bounded and
elements of the n x k matriz C,, are uniformly bounded. Then, %C;Anen = Op(1), Furthermore, if the
limit of %C’;AnA;ICn exists and is positive definite, then ﬁC,/lAn% 5 N(0,02lim, %C,’IAnA;Cn),

Proof: See Lee (1999b).  Q.E.D.

Lemma A.7 Consider S,(\) = I, — 328 \jWjn. Suppose that {| SyU Y and {|| Wy, ||} for j =

1,---,p, where || - || is a matriz norm, are bounded. Then, {|| S,(A\)~t ||} are uniformly bounded in a
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neighborhood of Ag.

Proof:'> Let ¢ be a constant so that || S, ! [|[< cand || W), [|[<cfor j =1,---,p, and all n. We note
that S, ' (N) = (S — 22851 (A = Xjo)Win) ™ = Sy (L — Ra(N) ™! where R,(N) = 3281 (Aj — Ajo) G- By
the submultiplicative property of a matrix norm, || G, [|<|| Wjn || - || Spt ||< ¢ for all j and n.

Let Bi(Ao) = {X: 221 [N — Xo| < &} Tt follows that, for any A € Bi(Ao), || Ra(N) < X25_1 [N —
Xol- || Gjn |I< 1. Hence, (I,, — R,(N)) for A € By()\g) is invertible and it has the expansion that (I,, —

R,(\)~t =332, RE()\) (Horn and Johnson 1985). We note that
P P

| Ra) 1 < O 1N = Aol | Gy IDF < (,max || Gjn || I = Aol
=1 =1
p p
< max G 15O 1N = 2o <O 1A = Xl
=1 =1

Honce, || Iy = Ra(Y) 1S Sio | Aa) I SR(e S50 Iy = Mo = gy < oo for
A € Bi(Ag). The final result follows by taking a close neighborhood B(Ag) of Ag contained within Bi (o).
In B(Ao), SUPyep(rg) € D=1 [Aj = Ajo| < 1. Therefore,

&
sup || S, TN IS, - sup || Iy — Ru(A) [[< sup
AEB(Ao) AeB(Ao) xeB(Ag) L =220 1 [\ = Aol

Q.E.D.

< 0O0.

Lemma A.8 Suppose that 2= (g, (\) — E(g,()\)) = op(1) uniformly in X € A, and 22 E(g, (X)) = 0 has

n n
a unique Toot at Ao in A as n goes to infinity. The A and 5\; are, respectively, the roots of the moment

equations gn,(\,) = 0 and g*(A\%) = 0. If Ba(g(X) — gn(N)) = op(1) uniformly in X € A, then both An and

Ay, converge in probability to \o.

In addition, suppose that %ﬂagg—/@ converges in probability to a well defined limit function Q(X) uniformly
in A € A with Q(X\o) # 0, and 1/22g,(Xo) = Op(1). If %(@5@ — 99y — 45 (1) uniformly in X € A,

oA
and 4/ h; (95 (Ao) — gn(Xo)) = op(1), then both 1/%()A\n — Xo) and ,/%(;\j‘l — Xo) have the same limiting

distribution.
Proof: The convergence of A, to Ao follows from the uniform convergence of Ba (g, (N) — B(g,(N))) to
zero in probability and the identification uniqueness condition at Ao. As 22[g%(X) — E(gn(N))] = L= (g5 () —

9n(N) + 22[g,,(X) — E(gn(N))] = op(1) uniformly in A, the consistency of A% follows.

For the limiting distribution, the Taylor expansion of g, (5\,1) =0 at \g implies that

T ) = (L2000 1 [l ) )1y g, 000+ o),

15 This Lemma and its proof generalize those for the first-order SAR model in Lee (1999b).
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because A, lying between A and Ao converges in probability to Ag. For 5\,*1, the Taylor expansion of

g,ﬁ(;\j‘l) = 0 implies that
E@Z ~ o) = —<h—;—agf§”>‘l\/§gmo> = (IOl 0p<1>>—1<\/§gn(xo> +op(1)
_Q()‘O)_l\/%gn()\o) + op(1).

These show that 5\; has the same limiting distribution as M. Q.E.D.

Lemma A.9 Let A, and B, be n x n matrices, uniformly bounded in both row and column sums. Let
Cn(X\) = WiS7EH(N) for some I, where S, (\) = I,, — E;n:l AWy, Suppose that N\, is a \/g—consistent
estimator of Ay and ﬂ:_é = o(1) for some 6 > 0. Then,

(i) Lol Al ' (C4A,) — C%H(Ng))Bnen = op(1), and
(i1) |/l (C0n) = CEO0))en = op(1).

Proof: For any n x n matrix M, M¢ = M — Diag(M) or = M — ﬂnMZIn is a transformed n x n matrix.

This transformation is linear because Diag is a linear transformation and ¢r is a linear function.

As S, = Su(An) = 381 (Anj — Ajo)Wjn, it follows that

St () = St = 87 (M) S0 = Su(A)IST ! = S (A)D (Anj = Ajo)Ginl.

Jj=1

By induction,

Spt(An) — S, :S;Ifj[zpj(ﬂm = 2j0)Gjnl® + 8, ()]
k=1 j=1

for any positive integer m.

(Anj = Ajo)Gyn]™ 1, (A.1)

.M@

1

J

Let T, = —n”-enA;I(Cd( n) — C%(X\g))Bnen. With the above expansion, T;, = Ty,; + T},2 where
i SN
Tnl Al Gln Z Z ]k)dBnen
k=1 j=1

and T),5 = %ﬂe;A;(WlnSgl(;\n)[ le(;\nj = Xj0)Gin]™ H)9Bye,. The term T),; can be rewritten as

m p p
A A h,
Tu=Y > > (A= Awo) - (Mo — /\jkO);EZAZ(GlnGjm -+ Gjyn) " Buen = op(1),

because Lxe! A! (G1,Gyyp -+ Gjpn) Bnen = Op(1) by Lemma A.3, and Ajn — Ajo = op(1). For Tpa, let || - |

be either the maximum row sum norm or the maximum column sum norm. One has

P P R h
n
|Tﬂ2| < Z Z |/\nj1 - )‘j10| e |)‘ﬂjm+1 - /\jm+10|7 ” 621 ” ! ” €n ”

Ji=1 Jm+1=1
AL WS (M) Gy - Gy ) By |

P

p
“ . h
<c Z Z |/\nj1 - /\j10|"'|)‘ﬂjm+1 - )‘jm+10|7n ” E;L ” ! ” €n ”

Ji=1 Jm+1=1
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for some constant ¢, where the last inequality holds because the uniform boundedness of S, ! in row (resp.
column) sums implies that S, !()\) is uniformly bounded in row (resp. column) sums, uniformly in a small

neighborhood of \y by Lemma A.7; and the product of relevant matrices is uniformly bounded in either row

BTk pl+s

or column sums. We note that, for any finite positive k; and ko, n’“h’”(#)m = < (F2—)m=F1 = o(1)

for large enough m. Hence,

p . hn ,
Z 5 P = Al - Mol - € - e |

Jm+1=1

h m—+41
< nhn(?n) 2 |\/ Anji = Aji0)| |\/ A = Njms10)] Z |6m =op(1),

J1= 1 Jm+41=1

because L 3" | |€,,;| converges in probability to the absolute first moment of €,; and , /hl(j\n —Xo) = Op(1).
These show that Ty,2 = op(1).

Similarly, let U,, = \/%ﬂ-e;(cg(j\n) — C%(\o))én. Then, U, = Uy + Uy where
hn SRS kyd
Unl = 7’L Glnz Z nj — _]0 ]n] ) €n
k=
m P p R n
=20 Z ngt = A0) - g = Ajio) - [ =€ (Gun Gy - Gjn)?en = op(1)
because y/22¢/ (GinGjn -+ - Gjn)?€n = Op(1) by Lemma A.4; and
p
Un2 = Wln Z - ]m+1)d6n

nJl - J10 ' ()‘njm+1 - /\7m+10) (WlnS (S‘n)Gjln T Gjm+1n)d€n-

I
M
M

The term U,z = op(1) because

p p
n < n < i 3 77,
[ Uz [<ed - > |\/h_()‘nj1_/\j10)|"'|\/h_(/\ﬂjm+1_)‘jm+10)|h7€ n( 7

Ji=1 ]m,#»l*l
= Op(l).

Q.E.D.
Lemma A.10 Suppose that the elements of the n X k matrix X,, are uniformly bounded, and the limit
lim,, o %X,’LX,L exists and is nonsingular, then
(i) the projectors M, and (I, — M,), where M, = X, (X! X)X}, are uniformly bounded in both row
and column sums; and

(ii) €, Al My Bpe, = Op(1) for any n x n matrices A,, and B,, uniformly bounded in column sums.
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1 !
ﬁXanen are of order

ﬁe;A;Xn(%X;Xn)‘lﬁX{anen =0p(1). Q.E.D.

Lemma A.11 Suppose that the elements of the n x k matriz C,, are uniformly bounded, the n xn matrix

Proof: Part (i) is a result in Lee (1999b). For (ii), because ﬁXéAnen and

Op(1) by Lemma A.6, €/, A M,,Bpe, =

~ 1+6
Ay, is uniformly bounded in column sums, A, is a , /37--consistent estimator, and hjl = o(1) for some 6 > 0.

Then, -=C’ (Gin(An))E Anen = Op(1), where G (N) = Win S (A) with Sp(\) = I, — > AiWin.

vn
Proof: With (A.1), Gin(A,) can be expanded as
m P
Gin(An) = Gin + Gin Y 1> (Anj = 2j0)Ginl* + Gin(An)[Y_ (A G
k=1 j=1 j=1
It follows that ;_C;(Gln(;\n))LAnen = Z=Cl Gl Anen + Ryt + Rz where
m p p . 1
Z Z ”Jl JlO : ()\njk - /\jko) : %C;L(GMGJ&” T ijﬂ)LAnem

k=1j1=1 jk:1
and Ry = =320 1+ L st = 23,00 Mjis = Xi10)C(Gin (M) G -+ G i) P A€y The
term R, is of order op(1) because %C{L(Gln(}jln <+ Gin)FAnen, = Op(1) by Lemma A.6 and Ay — Ao =
op(1l). For R,2, with either maximum row or column sum norm || - ||,

| Rz [| <02 el

p p
’ Z e Z |)‘n47‘1 - /\47‘10| T |/\njm+1 - )‘jm+10|' || (Gln(/\n)Ghn T Gjm+1n)LAn ||

J1=1 Jm+41=1

<e 21/2 m+1z Z|’“J Z|€”l|

|\/ n]l J10 |\/ ”]m+1 - Jm+10)| - OP( )

by using a large enough m in expansion. Hence \/LEC’;L(GM(;\”))LA”E” = \/LEC,’IGﬁLAnen +op(1). The final

Ji= 1 Jm41=1

result follows from Lemma A.6. Q.E.D.

Lemma A.12 Suppose that A,, B, and C, are matrices uniformly bounded in column sums, X,

~ 146
satisfies the assumptions in Lemma A.10, Ay is /3=-consi h’;L = op(l) for some § > 0.

Then, €, A" (Gin(An))E Bl M,,Crey, = Op(1), where M, = X, (X! X)) " X! and Gin(A) = Win S (N) where
Sp(A) = In — Z?:l AjWin.

Proof: As B, is uniformly bounded in row sums and elements of X,, are uniformly bounded, elements

of B/, X,, are uniformly bounded. Hence, by Lemmas A.6 and A.11,

. . 1 R
¢ A (Gin(A)EB, M, Cre, = ' (Grn(A)) Bl X)) <—X;Xn> (—=X' Cpen) = Op(1).
n Vvn

\/_ TL n
Q.E.D.
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Appendix B: Proofs
Proof of Proposition 2.1: E[(P,S,Y,) €,] = E[(Pnen) €n] = E(e),Poen) = oitr(P,) =0.  Q.E.D.
Proof of Proposition 2.2: Consider (2.7). Denote a, = YW, P,W,Y,, b, = Y, P:W,Y,, and

en = Y'PY,. Asb, = e;S;_leGnen and elements of G,, have the uniform order O(hln), Lemma A.3

together with Lemma A.1 imply that 2 (b, — E(b,)) = op(1), where E(b,) = o3tr(S, 'P;G,). Similarly,
as a, = €,Gl,P,Gren, 22 (a, — E(ay)) = op(1), where E(a,) = o¢tr(G,P,G,). For c,, because S, =
I, + X\oG,,, one has the expansion that c, = e;S;_anS;len =, (P, + NP:G, + NG, P,G,)e,. Because
elements of P, have the uniform order 0(%) and P, is uniformly bounded in both row and column sums
by Assumption 4, 22[€/ P,e, — o2tr(P,)] = o,(1) by Lemma A.3. Similarly, the probability convergence

h

holds for the other two terms in the expansion of ¢,. Hence, “=(c, — E(c,)) = op(1), where E(c,) =

o2tr(S, 1P, S 1) = o N [tr(PEGy) + Aotr(GY, P,G,)], by using tr(P,) = 0. These implies that

n

A 1/2
A, — {h_nE(bn) - {(};—”E(bn))z - 4%E(an)h—;E(0n)} } / <2h—;E(an)> = o0p(1) (B.1)

(White (1984), Prop. 2.30). Because S, ! = I,, + A\oG,, it follows that

<—E(bn)>2 _ 4%13(%)%"13(%)

ho , , ho
= 03(7)2[157’2(5 _1P,fGn) — 4t7"(G;PnGn)tr(Sn_anSTZl)] = Ué(;)QtTQ(PSGn)

n

and, hence, if tr(P:G,,) were positive,

1/2
hn hn 2 hﬂ h”
LE(b,) — | [ 2E®,)) —4=2E(a,)—=E(c,
() - | (2B~ 422 B(e) 2 Ble)
2h7‘b '—1ps s 2h7‘b / s h’n
=00 [tr(S, " P:G,) —tr(P;G,)] = 0§ - Aotr(G, PGy = 2_n E(an)Ao-

Therefore, A, — Ao = 0p(1) from (B.1) and A, converges in probability to Ag. Otherwise, A, in (2.8) will be
the consistent one.
With A, = Y. P, Y, /Y, P:W,Y, in the remaining part of the proposition, Lemma A.3 implies that

An — E(cy)/E(by) = op(1). Suppose that lim,,_.o Ztr(G’, P,Gy) = 0. It follows that

E(en) tr(PiGn) | o tr(GyPuGh) tr(PG,)
7 n )\ /n — A . n + 1) = A + 1 7
B~ S Py VS PG e pay O = et

because Latr(S,"1PsG,,) = Latr(P3G,) + Aol tr (G P2G) = L2tr(PG,)+0(1) by using S, ' = I, +AG.
Therefore, A, — Ao = op(1). Q.E.D.
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Proof of Proposition 2.3: Lemmas A.1 and A.3 imply that 22[e/ H,e, — o2tr(H,)] = 0,(1) where
H, =S 1P,S71, G, P:S-t or G/ P,G, in this proposition. As g,(\) = ¢,5. 1P, S en—Ae, G PSS e+
A2€l, G, P,G ey, it follows that 2xg,(\) — 22 E(g,(\)) = op(1) and, hence, (%2g,()))? — Qn(A) = op(1),

where Q,,(\) = (&

L2 B(g,,(A))?, uniformly in A in any bounded subset of \.
As E(gn(Xo)) = 0 because tr(P,) = 0, it remains to show that A is a strict local minimizer of @, (\)

for large n. The first and second order derivatives of @, () are dQ;/\(A) = Q(QTL'J—)QE(gn()\))M and

2N
Eg = 20k (L + Bl () FEER). A,

d\? dA d\?

d2Qn()‘0) _ I o dE(gn()‘O)) 2_ hnyo 4 / ! psa—1\12 _ o 4 hy s 2

where the last expression follows because 2\otr (G, P, Gy) — tr(GL PSS, 1) = —tr(P:G,,) by using S, 1 =
I, + AoGyp. Under the assumed regularity condition, (L=tr(P5G,,))? > 0 for large n and, hence, A is a strict
local minimizer.

The consistency of A, follows from the uniform convergence in probability of (%f- gn(A) — Qn (X)) to zero
and the local identification of Ay in A (White 1994, Theorem 3.4). Q.E.D.

Proof of Proposition 2.4: From the Taylor expansion 0 = g,,(An) = gn(Ao) + ag’é—(/\;‘")(;\n — o) where

A, lies between \,, and Ao, and (2.9),

. . - - [h, By - - Ih,
G = o) = [—Y,gsg(An)P;WnYn} 2RV S P,S, Y, = —Y,{Sjl(/\n)P,anYn} \/22e! Pren,
hn n n n n

because Y, S! P, S, Y,, = €, P,e,. Explicitly,

hn - hn - hn
n n n

Lemma A.3 implies that 22Y! W) PsW,.Y,, = el G! P3G e, = Opy(1) and

n—m-n

Y)W/ P:S,Y, — E(Y,W! P:S,Y,)] = —[e,Gl Pie, — ogtr(PEG,)] = 0,(1).

n—n-mn

3 |F
3 |F

As Ay, — Ao = 0,(1), it follows that

—1
G — o) = [aé%tr(PﬁGn) 4 op(1)} \/%"E;Pnen. (B.2)

As E(e, Pyen) = 0, and “avar(e, Pre,) = (s — 305) 230 Pi i+ oglatr(P,P3) = O(1) from Lemmas
A.2 and A.1, Lemma A.4 implies that €, P,e, /var? (¢/, Poey) A N(0,1). The asymptotic distribution for A,
follows from (B.2).
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For the special case that €, ~ N(0,031,), k4 —3 = 0. When P,, € Pay, pni; =0 foralli =1,---,n

Finally, as 37, p2 ;; = O(3%), iy ph i/ (2 tr?(P3Gy)) = O(7=) = o(1) if limy, oo hy = 00.  Q.E.D.
Proof of Lemma 2.1: As €, Ae, e, Be, = > -, Z?:l Y oreq 2oy @ijbri€ni€nj€nken, the mutual inde-
pendence of €,;s implies that E(epi€njenken) #O0onlyif (i =j=k=1), (i=4k=1), ({=kj=1),or
(t=1,j =k). It follows that
E(e,Aey - €, Ben) = > aiibiiBen;) + > > (aiib; + aijbij + aijbji) E(ehiel))
i =1 j#i
= (/14 - 30’3) Z aiibii + 0g Z Z a“-bjj + a;bij + aijbji)
i=1 i=1 j=1

= (g — 303 )vecn (A)vecp(B) + og[tr(A)tr(B) + tr(AB') + tr(AB)].

Q.E.D.

Proof of Proposition 2.5: By a similar argument in the proof of Proposition (2.3), —ﬂ-an [gn(X) —

E(gn(A))] = 0p(1) uniformly in A in any bounded set. It follows that

(222 (N 090 (0) — (222 By (N)) a0 B g (A)) = 0p(1)

uniformly in A € A. As \g is the unique minimizer of lim, oo (£2)2E(g,(\))a,a, E(gn())), the consistency
of ;\n follows from the uniform convergence of A in A and the identification uniqueness of A\ in A.
As a—gln@ = =D} (A) where D, (A) = (Y. S, (NP W, Yy, -, YS! (NP2, W,.Y,,), the Taylor expansion

of —ﬂ—a angn(j\n) =0 at )\ implies that

- IR SN h R
» (A —Xo) = [n D, (\n)a,,an - D,(A\n) - D, (\n)al,an - (€, Pinény €0 Prnen)’.

Because 22V S/ (X)) PE,W,Y,, = o2 tetr(PgGr) + op(1),

. h
hi(/\n —Xo) = [%Ué‘d;a;andn + op(l)]_l(ag%d; + 0p(1))al,any/ Fn(e;Plnen, e Ponen) . (B.3)

As an /3= (€, Pinén, -+, €, Prnen) = %ﬂe;(z;n:l an;Pjn)€n, where a, = (an1,- -+, Gnm), the central limit

theorem in Lemma A.4 is applicable to this quadratic form. Lemma A.2 implies that

VaI‘ Z CLnJ in En
(,U4 - 30'0 Z Z any 7n u + UétT[(Z aanjn)(Z anljt)lsnﬂ
=1 j=1 =1

j=1

oa{(ks — 3)an(vecp(Prn), - - -, vecn(Pmn)) (veen(Pry), - - -, vecp (Pon))al, + anVyal,}
= 0ga,Q,al,.
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Hence, \/gan(e;rplnen, <o € Prnén) LA N(0, ogao(lim, %"Qn)a{)). The asymptotic distribution of A
follows from the expansion (B.3). Q.E.D.

Proof of Proposition 2.6: From (2.16), the generalized Schwartz inequality shows that the optimal
weighting matrix of ajag is the limit of %Qn When e, is normally distributed, x4 = 3 and Q,, = V,,. If Pj,s
are from Pa,, vecp(Pjn) = 0 and Q,, = V,,. For the case that lim,,_,o h,, = o0, i“-vecD(P Yvecp(Pr,) =

by O(%) = O(ﬁ) = 0(1) because the elements of P,s are of order 0(%), and, hence, lim,, %"(Qn—vn) =
0.
The consistency and asymptotic distribution shall follow by showing that the stochastic ), can be

replaced by the nonstochastic €2,,. For consistency, because

hn A — hn — hn A — —

n

it is sufficient to show that =g/ (\)(Q;! — Q;,1)gn () = 0,(1) uniformly in A € A. Let | || be the Euclidean

or maximum row sum norm for vectors and matrices. Then

I 220 )" = 99 1 (B2 g 17 1 (2607 — (2200,) 7

From the proofs of preceding propositions, %2[g,,(\) — E(g,()))] has the order op(1) uniformly in A € A,

|

b B(gn(N) | + || 22[gn(X) = E(gn(N))] I= Op(1). Therefore,

i.e., supyen || 2= (9, (A) — E(gn(N)) |= 0p(1). On the other hand,

hy, hy, r_ _ hy, _ h,
|| ?E(gﬂ()‘)) || < 0'3 . I{laX { 7#/‘(5” 1Pj”Sn 1) +A (G;P]Snsn ) + /\2 —tr
j=1,m

(G}, PinGn)

=0()
uniformly in A € A. Hence, || Lg,()) |<|

%g;(/\)(flgl — Q7 1gn () = 0,(1) uniformly in A € A.
For its limiting distribution, it is sufficient to show that Q; L can be replaced by €, ! in the Taylor

~ A _ -1 A
expansion that | /7= (Ay.n — Ao) = [%D;(An)leDn(An) DL (A)Qt A/ (el Pryeny -+, € Pranen)’. As
in the proof of the preceding proposition, one has —ED (An) = Op(1). Thus,

h B i

Dy, ()0t = D ()" + =D () ((SH0) ™ = (=220) 7Y = D (Aa) Q5 + 0p(1)

and 22D/ (X)) D, (An) = 22D/ (M), Dy (An) + 0p(1). The asymptotic distribution follows.

For the overidentification test, by the Taylor expansion, gn(j\vm) = gn(No) — Dn(;\n)(;\v,n —Xo). It

\/%7 n(j\v,n) = \/% n()\O) - %Dn(;\n) : \/%(;\U,n - AO)
= {In - Dn(j‘n)[D:z(/_\n)ﬂr_len(/_\n)]_lD/ /_\ 1}\/7 n )‘0
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and

)2 ) = ) 2t 0

- 4 B A h
D)2 (220, )2 g, )
L) (B, 2 [ B, )

Q)7L = 9712 Du () D5 (M) D (X))

From the proof of Proposition 2.5, \/%gn (Mo) i N(0, 08 lim, o0 229,,). Hence, g/, Pon)(2) " gn (o) 5
oax?(m —1). Q.E.D.

Proof of Lemma 2.2: (i) follows because tr(A - ﬂnélln) = ﬂngltr(A) = 0. (ii) follows because
tr(A - Diag(B)) = tr(Diag(A) - Diag(B)) =0. Q.E.D.

Proof or Proposition 2.7: For any two squares matrices A and B, the Cauchy-Schwartz inequality
implies that [tr(AB)|> < tr(A?)tr(B?) (see, e.g., Zhang 1999, p.25). As P$ is symmetric, tr(P:G,) =
tr(G, P3) = tr(P:G1,) and, hence, tr(P:G,) = $tr(P:G3).

Suppose P, € Pi,, Lemma 2.2 implies that tr(PSG:) = tr[P:(G: — 2LS")I”)] = tr[P:(G, —
WI,L)S]. The Cauchy-Schwartz inequality implies that tr?(P$(G, — @In)s) < tr(P)tr[(G, —
ﬂf—”lIn)SQ], and, hence, tr?(P:(G,, — ﬂf—”lIn)s)/tr(Pf) < tr[(Gp, — ﬂf—”lIn)SQ]. The last equality holds
because tr[(G,, — Lfl’Y")In)SGfl] =tr[(Gy, — @In)ﬂ].

Similar arguments are applicable to P,, € Pa, using the property tr(P:G:) = tr(P3 (G, — Diag(Gp))?®)
from Lemma 2.2. Q.E.D.

Proof of Proposition 2.8: For any matrix P, € Ma,, tr(P;G,) = +tr[Ps(Gs — 2Diag(Gy))]. The

matrix X,, in Proposition 2.6 can be rewritten as

Son = 7 (tr[Pr, (G}, = 2Diag(Gn))), - - -, tr[Py,, (G}, — 2Diag(Gn))))

e e
~—
=
I
~—

Vo Nt [P, (G, — 2Diag(Gn))), - -+, tr[ P}, (G3, — 2Diag(Gy))]).
Note that % = (lim,,— o %Ebn)_l where
Yon = tr[(GS — 2Diag(G,))Gr]/tr[(Grn — Diag(Gp)) (G — 2Diag(Gy))]

= %tr[(GfL — 2Diag(G,))(GS, — 2Diag(G,,)]

from Proposition (2.6). This is so, because, as G,, — Diag(G,) € Pay,, its corresponding Q, = V,, =
tr[(Gy,, — Diag(G,))(G, — Diag(G,))?] in (2.14). So it is sufficient to compare Xy, with ¥,,. We note
that for any conformable matrices A and B, tr(AB) = vecd (A" )vec(B). Let C = vec(GS — 2Diag(Gy))
and D = (vec(Py,),--,vec(Pg,)). Then, from (B.4) and the second expression of V,, in (2.14), %, =
%C”D(D’D)_lD’C and Xy, = %C’C’. By the generalized Schwartz inequality, Y., < Xp,.
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Similar argument is applicable to My, by using tr(P:G,) = tr(P3(GS — 2%],1)) for P, € Pi,
when ¢, ~ N(0,021,) or lim,_ h, = co. This is so, because when ¢, ~ N(0,021,), 2, = V,,; and for the
case that lim,,_ o h, = 00, lim,, o0 %(Qn —V,)=0. Q.E.D.

Proof of Proposition 2.9: The asymptotic distribution of /A\um follows from (2.10) with P, = G,, —
%Iw It is shown in Lee (1999b) that the QMLE estimator j\QM,n has the asymptotic distribution

that /2 (Agarn — o) 2 N(0,Sxx + BaaQ8a) where Sy = (limy oo 22 [tr(C,CY) + tr(C2))) ™" and

Q= (kg —3)lim, oo 22 37 C2 . with O, = G, — 220 [, The limiting distributions of Ay, and Agarn

are exactly the same. Q.E.D.

Proof of Proposition 2.10: For consistency, it is sufficient to show that 224, (\) — 22 g, (X) = 0p(1)

uniformly in A € A. Explicitly, 22(g,(A) — go(X)) = Tn1 — ATz + A*Ty,3 where Tp,; = %6%5;;1(@” -
Gn)4S; e, Tno = L2l G (G5 —G3)US, e, and Ty = L€l GY (G — G )G ey The terms Ty, j = 1,2, 3,
are all of order op(1) by Lemma A.9. Hence 22, (\)—22g, ()\) = op(1) uniformly in A € A. The consistency
of ;\n follows from the first part of Lemma A.8.

For the asymptotic distribution, consider %ﬂagg—i)‘) and /790 (Xo). As Sp(A) =S5 — (A = Ao) W,

Pyt (0)(G8) WY = e 6 (G yen — (0 — Ao el G (GS) G
n n n
hp, hnp,

= _E;LG;L(GfI)dGn - ()‘ - )‘0) E;LG;L(GfL)dGnEn + Ry1 + Ryo,
n

n
where R,,; = L€l G, (G3)de,— el G, (GS) %€, and Ryp = el G (G3) G ren— e, G! (G3) G ey Lemma

A.9 implies that both R,1 = op(1) and R,2 = op(1). Hence,

toyr g (@)WY, = Py (0)(G2) WY + op (L),
n n

uniformly in A € A, ie., %"(agg—y‘) - 89{;—/9)) = op(1) uniformly in A € A. For the other term,

\/ h—nYéS,/l(Gn)dSnYn =4/ ﬁe;GZen + ﬁe;l[((é}n)d — Ge, =1/ ﬁe;GZen +op(1),
n n n n

by Lemma A.9 (ii), i.e., \/%(gn()\o) — gn(Xo)) = op(1). Hence, by Lemma A.8, the feasible GMM estima-
tor derived from minyea[Y}. S’ (A)(Gn)%S, (N\)Y,]? has the same limiting distribution as that derived from
minyea [V, S (N)GLS,(\)Y,]2. Q.E.D.

Proof of Proposition 2.11: This is a special case of Proposition 2.2 with the qualification that G,,
can be replaced by G, as in Proposition 2.10. Q.E.D.

Proof of Proposition 3.1: To prove this proposition, we shall show that GMM moment equations

using u) and those using wu, (as if it is observed) satisfy the conditions in Lemma A.8.
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As uf = (I, — My)un,
ry SN P (s, = (I = M) S5, (\) PaSn(N) (I = MY
=u, S, (N Py Sn(Nuy — ul, M, Sl (NP3 S, (N uy, + ul, M, Sh(N) PySy (N) My uy,
= u, 1, (A PSy (N uy + O,(1)
uniformly in A € A (as X is linear in S,,(\)) by Lemma A.10 after substituting u,, by S, '¢,. Hence, in par-
ticular, 2= (u¥ S, (N) P Sn(Nuf, — ul St (M) PrSn(Nus) = op(1), and (/Lo (ut' S!, P, Spul, — uly Sty P Spuy,) =
op(1), as 2 = o(1).
For the derivative of the moment function, as a%(u;/S;I(/\)PnSn(/\)u;) = —u¥ 8, (N PsW,us, @g@ =
—D! (\) where D, (\) = (u 8! (N PF, Wyut, - u 8 (N PS, W,ut) . By expansion,
SN PiWoa,
=ul, (I, — M,)S,(\)PW,, (I, — M,)uy,
=u), S (NP Wyhuy — ul, My, S, (N PEWuy, — ul, S (N PEW,, My, + ul, My, Sh (N PEW,, My,
= ul,SI (NP Wy, + op(1)
uniformly in A € A by Lemma A.10. In particular, u? S/, (\) P W,ul, = u/, S (\) PEW,u, + op(1) uniformly
in A € A. The consistency and the asymptotic distribution of A, follow from Lemma A.8 and Proposition
25. Q.E.D.

Proof of Proposition 3.2: Because Ay — Ao = op(1),

1, a 1 -1 o1
=X 8 80Xy = =X/ Xy — M= X WEX, + X2 =X W W, X,
n n n n
1 1 1
= =X/ X, — A=X.W:X, + N2=X. W' W, X, + op(1)
n n n

1
= —X%S;San + Op(l),
n

and
1 ) A 1 < 1 . 1
— XSSy = —=X" 5" St — (An — Ao)—=X' Wou, + (A2 = N)—=X' W' W, u,,
1
= — XS en +op(1) B N0, 02( lim XSS, X)),
n

\/_ n—oo
by Lemma A.6. Hence,
5 1o, aa T e 1 !
i(Bom — o) = (Ex;ls;lsnxn> L X g G BN <o,ag < lim Ex,gsygsylxn) ) .
Q.E.D.
Proof of Proposition 3.3: Denote g*(\) = u* S’ (A\)(Gn)4S,(N)u?. It is sufficient to show that this
moment function and its derivative are close enough to those of g, (\) where g, () = u, S, (A)(G)?Sn (M) tn
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so that Lemma A.8 is applicable. Specifically, it shall be shown that g} (\) — gn,(A) = O,(1) and a—g;;\'ﬁ -
aggi/\) = Op(1) uniformly in A € A. These properties are stronger than those sufficient conditions in Lemma
AS.

Because u}, = (I, — Mp)un, g5(X) = gn(A) + En(X) where
En(A) = —ul, SH(AN(GE) S0 (V) My + 1l My S (M) (G) S0 (A) My,

Substituting u,, = S;, '€, in the terms of E, (\), Lemma A.12 is applicable and all the three terms of E,,()\)
are of order Op(1) uniformly in A € A. The uniform order holds because A is linear in S,,(A). Hence, g (\) =
gn(A) + Op(1) uniformly in A € A. Consequently, one has, in particular, that = g*(\) = Lxg,(\) + op(1)

and /%9;(/\0) = ,/%ﬂ-g;(/\o) + op(1) because in”- =o(1).

The first order derivative of g’ (1)) is

ag:;,(A) _ " s *
=~y (In — Mn)Wr/L(GZ)dSn(/\)(In — My )uy,
_ 99n(V)
B + R, (N)

where R, (X) = u/, M, W/ (G5)2S, ()t +ul, W (G2)1S,, (N) My, —uly My W (G2) %S, (X) M,y By a similar
argument, R,(A\) = Op(1) uniformly in A € A by Lemma A.12. This implies, in turn, that %ﬂ-@g@ =
%Mg}l + op(1) uniformly in A € A.
The consistency of the estimator A, and its asymptotic distribution follow from Lemma A.8.  Q.E.D.
Proof of Proposition 4.1: Consider each component of g,(A). The lth component of g,(\) is
YS! (A)PinSn(N)Yy = €,5.,715" (N) Pin S, (N\) Sy Le,. By expansion,
p p PP
SN PinSn(N) = Pin = > AW, Pin = P Y A Win + 3 > N, Pin Wi
j=1 j=1 k=1 j=1
Lemmas A.1 and A.3 imply 2= (e, Hye, — o3tr(H,)) = op(1) where H, = S P, St ST P WSt
and S;;lwyfnPanan;l. It follows that (YS! (\)PinSn(N)Y, — E(Y.Sh (A PySn(N)Yy)) = op(1) and
h

220y (gn(A) = E(gn(N))) = op(1) uniformly in A € A. With remaining arguments similar to those of the proof

of Proposition 2.5, the consistency of A, follows from uniform convergence and the identification uniqueness

condition.
The Taylor expansion of @gi—j‘)a;angn(j\n) =0 at \g implies that
n . hy, Og, (;\n) ;o ha 89n(5\n) - h, g, (;\n) / hn /
—)\n—)\ = |——2— n=—_ —_r- n - Pnn7"'; Pmnn~
hn( ) [n ax T T o P VR Vi (enPine n €n)
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As B(e, Py Wjn Sy en) = 03tr(P,Gn), LY LB, Wi Yo = 2, B, Wy Sy e, = o bt (P, Gyn) +0p (1),

Hence, with uniform convergence of %(agg)(\/\) - E(ngik))) to zero in probability uniformly in A € A,

9920u) — D, 1 0p(1), and

) i h, B Ton
hi(An = X0) = [o§ =Dl =Dy + 00 (D] 7 (03 2Dl + 0p (D)) (€ Prans -+ € Prann):
n n

The distribution of 5\n follows from Lemma A 4.

The optimal GMM weight for al,a,, is (h; Q,)~! by the generalized Schwartz inequality. From the

asymptotic variance matrix of the optimal GMM with P,s, (G}, — Diag(G;y)) with j = 1,---, p are the best
P,s from Ps,, by the generalized Schwartz inequality. When € is normally distributed, §2,, = V,,. For the case
that lim,, o hy, = 00, Q,, = V,, + 0p(1). For both cases, the best selections from P;,, are (G, — @Inﬁ
ji=1--p. Q.E.D.

Proof of Proposition 4.2 This proposition states that the feasible best estimators with G'jns will have
the same asymptotic distributions as those best estimators with G,s.

Because the number of the best moment functions p is equal to the number of the unknown parameters
As, asymptotically, the minimization of g;,/l(/\)ijl_lg;n()\) is equivalent to solve the corresponding p moment
equations g7, (\) = 0 for each j = 1,2. The difference %”-(g;‘n(/\) — gjn(N)) is a vector of dimension p. Its Ith

component is

ﬁ ’g! Y ) d _ n & g1 . L
Y18, (N [Gin(Mn) = Gl 'S (VYa = ~2€,8,7H (I, Z/\ NG (M) — Gin)? Z:: W;n)Si ke,

= 1Inl,jl — Z)\Tanz+ZZ)\)\Tn3lzya

=1 j=1

where Ty = 22¢/ SV [Grn(An) — Gin)S;y Yen, Tnogi = 26, Gl (G (M) — G3,)7S7 M en, and Tz iy =
bue G, [Gin(An) — G12]?Gjnen. This decomposition slightly generalizes that in the proof of Proposition
2.10 for the first SAR process. The proof of this proposition can parallel to that of Proposition 2.10 for each

component of the p moment equations and their derivatives. Q.E.D.
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