
Unsupervised Learning: Clustering

Micha Elsner

March 6, 2014

Supervised learning

So far, we’ve looked at prediction tasks based on annotated
training data:

I Given hand-tagged text, predict tag sequence for new text
I Given treebank parsed by linguists, predict parse trees for

new sentences
I Given sentences and human compressions, figure out how

to compress the way humans do it
I Given English sentences, predict next word in new English

sentence
I A bit different since there’s no “annotation”

Supervised learning
Training data has examples of the (usually hidden) structure
you are learning to predict

2

Unsupervised learning

I Given strings of words, learn a set of POS tags and how to
apply them

I Given sentences, learn a grammar and how to parse with it
I Given sentences, figure out how to compress and remain

grammatical

Unsupervised learning
Propose hidden structures for data without any labeled
examples

3

What do you get out?
Unsupervised learning proposes some structures or labels

I These don’t have intrinsic semantics

Supervised
DT NN VBD IN DT NN
the cat sat on the mat

Unsupervised
C0 C1 C2 C3 C0 C1
the cat sat on the mat

The CX tags don’t mean anything on their own
I They gain meaning through context

I “cat” and “mat” are both C1, so they are the same
I As linguists, we can interpret C1 as “the class of nouns”
I But not all labels we learn map easily to linguistic concepts

4

Why would anyone do this?

Several reasons to do unsupervised learning:
I Data exploration: what is the structure of a large dataset?
I Downstream application: learn features to use for another

task
I Classification but classes keep changing
I Cognitive models of learning

We’ll discuss these in turn

5

Exploratory analysis
You have a lot of data... and you want to know what’s going on
in it (in some generic way)

I Can talk about what instances are similar
I Or what features co-occur

I “It seems like there are three groups of authors. C1
authors like to use words like oil and wheat, C2 authors
use words like stocks and bonds, C3 authors use words
like kitten and ninja”

I Can restate as “authors who talk about oil also talk about
wheat”

I “There are a few major groups of Latin nouns. C1 nouns
take a,ae,am,ā as endings and C2 nouns take us,i,ō,um as
endings”

I Can restate as “nouns that end in ae also end in am”

No direct experimental evaluation; part of a
qualitative/quantitative analysis

6

Downstream application

There’s a task you really care about
I Information extraction, coreference, dialogue structure

You wish you had a
I tagger, parser, dictionary, etc

Build one using unsupervised learning!

I Can’t have linguistically aware features like “number of
nouns”

I But can have “number of C1”, “number of C2”...
I Maybe one of these will be like number of nouns
I Which will make your information extraction system better

Experimental evaluation in terms of information extraction
performance

7

Entailment

Rimell’s entailment system: does “any lingering suspicion that
this was a trick was dispelled” entail “suspicion was dispelled”?
Yes, because both dependency trees have a path:

I suspicion (nsubj,←) was (aux,←) dispelled
This still works if the trees are labeled arbitrarily:

I suspicion (C1,←) was (C2,←) dispelled
Or the arrows are reversed:

I suspicion (C1,→) was (C2,→) dispelled
Same path still in both trees

8

Classification, but classes change
There is a ground truth labeling you want to recover

I You’d use classification
I But the set of classes for each instance is different

For instance coreference:
I Linking “Clinton”, “Hillary Clinton”, “she”
I The set of known entities keeps changing (new people)
I In a new document, might have to link “Justice Ginsburg”,

“Ruth Bader Ginsburg”, “herself”
I Can’t just learn Clinton-specific features

I Labels C1, C2... are individual entities
I So we can label C1: “Clinton”, C1: “Hillary Clinton”, C2:

“Ginsburg”
I Important thing is which are the same

Evaluation: how well do the C1, C2... labels match the true
entity labels?

I Measuring this is a research question
9

Cognitive models of learning

There is a ground truth labeling you want to recover
I But how do people learn it?
I They don’t see labeled examples...

I But they still get the right grammar

Part of speech tagging:
I Can you learn a good set of POS tags from just hearing

sentences?
I If you need UG constraints, what are they?
I Build a system that learns POS tags (with whatever

constraints)
I Compare these tags to human-labeled tags

Evaluation: how well do the C1, C2... labels match the true
POS labels?

I Same eval as for changing labels

10

Not a great motivation

“If we can learn POS tags without labeled data, we can run it on
other languages where there isn’t a treebank!”

I Unsupervised learning isn’t generally a good tool for
cross-linguistic robustness

I Performance on your favorite language doesn’t predict
performance on new languages

I Data isn’t as expensive as you think
I Just pay some people to annotate a little data

I Semi-supervised learning (a bit of labeled data, a lot of
unlabeled data) is better

I Can be a tool for fieldwork/multilingual engineering

11

Methods

Now we know what unsupervised learning is
I And why we might want to do it

But how do we do it?
There are lots of methods:

I We will focus on the Expectation/Maximization algorithm
(EM)

I Popular, flexible, easy to code

12

Clustering

Like classification:
I Data in the form of feature vectors F = [f1, f2 . . . fm]
I Each datapoint has a tag T
I Task: predict T from F

In classification, tag is one of (eg) NN, VB, JJ...
I In clustering, tag is one of C1,C2 . . .Ck

What would a good clustering be like?

13

Good clustering
A good clustering groups points that are similar

I For instance, what do you think about this data?
I F1 and F2 for vowel sounds (Getty, Hillenbrand et al)

14

Clustering for vowels

15

Mathematically

Choose centers of clusters C1,C2: c1,x , c1,y and c2,x , c2,y

I So that each datapoint is close to one center
Distance from a datapoint di = (dx ,dy) to a cluster center C is
written:

||di − C||2 =
√

(dx − cx)2 + (dy − cy)2

Distance to the closest center is:

min
C∗∈[C1,C2]

||di − C∗||2

We want to find cluster centers which minimize this distance:

min
C1=(c1,x ,c1,y),C2=(c2,x ,c2,y)

∑
di∈D

min
C∗∈[C1,C2]

||di − C∗||2

16

How do we deal with this problem?

Finding the overall solution to the problem isn’t easy
I But it has two easy subparts

If we know C1,C2, we can find the closest center to a point:

min
C∗∈[C1,C2]

||di − C∗||2

This is a “classification” step
I Like finding the best tag for a word under Naive Bayes—

just try both options, pick the lowest

17

The other easy part

If we had labeled data (each point is labeled T = C1 or T = C2)

I Finding cx , cy is easy

min
C1=(c1,x ,c1,y))

∑
di :Ti=C1

||di − C1||2

Just compute mean values:
I Like count-and-divide in Naive Bayes training

c1,x =
1

#(Ti = C1)

∑
di

dx

c1,y =
1

#(Ti = C1)

∑
di

dy

18

The k-means algorithm

I Randomly choose two points as cluster centers
I Until bored (or assignments don’t change)

I Assign all points to closest cluster
I Move cluster center to mean of points

19

Starting state

20

Classify points (assign to closest center)

21

Estimate centers (mean of points)

22

And again (classify)

23

And again (estimate)

24

And again (classify 2)

25

And we’re done (estimate 2)

26

Iterative optimization

Notice that each step improves our objective:

min
C1=(c1,x ,c1,y),C2=(c2,x ,c2,y)

∑
di∈D

min
C∗∈[C1,C2]

||di − C∗||2

By reassigning a point di to a new C∗, we reduce ||di −C∗||2 for
that point
By moving cluster C1, we reduce:

min
C1=(c1,x ,c1,y)

∑
di :Ti=C1

||di − C1||2

Running the algorithm never makes things worse...
This does not mean we must converge to the best answer!

27

Local minimum

C1

C2

28

Theory of k-means

We can talk about probabilities instead of distances:
Suppose that probability of a point is inversely proportional to
distance from the center:

P(d |C) ∝ exp−
(
(dx − cx)

2 + (dy − cy)
2
)

∝ means “up to a constant”
I Remember, denominators are boring

Instead of thinking about ||di − C||2 we can think about P(di |C)

29

Comparison to Naive Bayes

Our objective was:

min
C1=(c1,x ,c1,y),C2=(c2,x ,c2,y)

∑
di∈D

min
C∗∈[C1,C2]

||di − C∗||2

Replacing the distance, we get:

max
C1=(c1,x ,c1,y),C2=(c2,x ,c2,y)

∑
di∈D

max
C∗∈[C1,C2]

log P(di |C∗)

If we assume P(C∗) is uniform:
I With two clusters, it’s 1/2

We can put it in without changing the maximum:

max
C1=(c1,x ,c1,y),C2=(c2,x ,c2,y)

∑
di∈D

max
C∗∈[C1,C2]

log P(di |C∗)P(C∗)

30

So at this point...
This is a joint probability...

P(di |C∗)P(C∗) = P(di ,C∗)

And therefore:

max
C1=(c1,x ,c1,y),C2=(c2,x ,c2,y)

∑
di∈D

max
C∗∈[C1,C2]

log P(di ,C∗)

Under the assumptions that:
I P(d |C) is proportional to exp(−dist)
I P(C) is uniform

k-means is trying to maximize joint likelihood of the data and
classification decisions

I For a naive-Bayes-like model
I k-means is similar to “find labels such that a Naive Bayes

classifier is a good model of the data”

31

Conclusion

I Unsupervised learning allows us to learn labels for our
data without training annotations

I The labels gain meaning through “same/different”
distinctions

I Various reasons to do unsupervised learning
I Clustering: classification with no labels
I K-means objective is to find centers that points are close to
I This is like finding Naive Bayes classifier that describes

data points well
I Iterative EM algorithm alternates between classifying and

estimating
I Can get stuck

32

