Bayesian models and inference by sampling

Micha Elsner

August 30, 2012

Trivia

Suggestions of papers to present: by tonight!

- I'll send out papers tomorrow
- First paper will be McMurray, Aslin and Toscano on Tuesday
- Begin discussion on Carmen (at least one comment by Monday night)
Auditors: still encouraged to make it official

Classical methods

Last lecture, described simple mixture model... and max-likelihood estimation with EM

- Two problems with this approach:
- Local maxima (EM converges to bad solution)
- Overfitting (likelihood always higher for more complex models)

This lecture: Bayesian methods/sampling
Proposed as solutions to both these problems...
Plus a way to impose biases on the model
Warning: not always actual solutions!

Recall from last time

Our standard model of the /a/-li/ data as a mixture of 2 gaussians

Let $X: x_{0} \ldots x_{N}$ be the list of vowels, with $N=90$.
Let $Z: z_{0} \ldots z_{N} \in\{0,1\}$ be class indicators

$$
\begin{aligned}
& z_{i} \sim \text { Bernoulli }(\pi) \\
& x_{i} \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

- Recall: circles (z and x) are random variables
- No circle (μ and Σ) are parameters

Bayesian models: priors

Replace parameters with random variables

 Let $X: x_{0} \ldots x_{N}$ be the list of vowels, with $N=90$. Let $Z: z_{0} \ldots z_{N} \in\{0,1\}$ be class indicators$$
\begin{aligned}
\pi & \sim \operatorname{Dirichlet}(a, b) \\
\mu, \Sigma & \sim \operatorname{NIW}\left(\mu_{0}, k, \Lambda, \nu\right) \\
z_{i} & \sim \operatorname{Bernoulli}(\pi) \\
x_{i} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

- Will discuss specific prior distributions (Dirichlet, NIW) later

- Recall: circles (z, x, μ, Σ) are random variables
- No circle (a, b etc) are parameters
(hyperparameters)

Why priors?

Why do priors help?

- Control overfitting (by penalizing more complex models)
- Express explicit biases ("soft" universals, markedness)
- Smooth out estimates based on insufficient data
- If only one datapoint, frequentist $\hat{\pi}$ either 0 or 1
- Advanced: structured model- allow different clusters to share some information
"Fake data" interpretation
Can think of prior as supplying "fake observations" a priori For instance, Dirichlet(1, 1) means:
- Pretend, in addition to our data, we have one extra /i/
- ...and one extra /a/
- So $\hat{\pi}$ can never be 0 !

Parameters vs hyperparameters

Is choosing hyperparameters any less arbitrary than choosing parameters? Does it introduce bias?

- Choice of hyperparameters generally less important than choice of parameters
- Priors grow less influential as data increases
- So maybe the same hyperparameters work across languages
- Even if the same parameter values wouldn't
- Can try to avoid accusations of bias by:
- Using "uninformative" priors to avoid bias
- Or "empirical Bayes": priors near data averages

If you want to introduce (theoretically justified) biases, can ignore all this!

Replacing the likelihood

Old model: marginalizing over the latent variables
Probability of data as function of parameters:

$$
P(x ; \hat{\mu}, \hat{\Sigma}, \hat{\pi})=\sum_{z} P(x \mid z ; \hat{\mu}, \hat{\Sigma}) P(z \mid \hat{\pi})
$$

Goal is to maximize likelihood by choosing parameters...
New model: marginalizing over the latent variables
Probability of data given hyperparameters:
The posterior probability:

$$
\begin{array}{r}
P\left(x \mid a, b, \mu_{0}, \Lambda, k, \nu\right)=\int_{\mu, \Sigma, \pi} \sum_{z} P(x \mid z, \mu, \Sigma) P(z \mid \pi) \\
P\left(\mu, \Sigma \mid \mu_{0}, \Lambda, k, \nu\right) P(\pi \mid a, b)
\end{array}
$$

How we use the posterior

Maximum a posteriori (MAP) inference
Replace integral with maximization ("max-likelihood with priors")

$$
\begin{aligned}
\hat{\mu}, \hat{\Sigma}, \hat{\pi}=\operatorname{argmax}_{\mu, \Sigma, \pi} & \sum_{z} P(x \mid z ; \mu, \Sigma) P(z \mid \pi) \\
& P\left(\mu \mid \mu_{0}, \Lambda, k, \nu\right) P(\pi \mid a, b)
\end{aligned}
$$

Use entire posterior distr.
For instance, what is expected mean of /i/ category given our data?

$$
\begin{aligned}
E\left[\mu_{/ i /} \mid x, a, \ldots\right] & = \\
& \int_{\mu, \Sigma, \pi} \mu_{/ i /} \sum_{z} P(x \mid z, \mu, \Sigma) P(\mu \mid \ldots
\end{aligned}
$$

Requires us to approximate (complicated) integral

Why look at the posterior instead of MAP?

Statisticians will give you reasons:

- Look only at what we really care about
- What is the average mean (over all variances)...
- vs the mean at a particular variance
- Sometimes MAP solution is an outlier (requires very specific parameter setting; typical solution more robust)
- Or posterior could be multimodal (different good clusterings)
- (Difficult to represent this: mean won't do)

Honestly I think statisticians care more than we do...
But the sampling technique we will see is very popular
...and can also be used for MAP estimates.

Approximating an integral by sampling

Want to know the mean of /i/ category:

$$
\begin{aligned}
E\left[\mu_{/ i /} \mid x, a, \ldots\right] & = \\
& \int_{\mu, \Sigma, \pi} \mu / i / \sum_{z} P(x \mid z, \mu, \Sigma) P(\mu \mid \ldots
\end{aligned}
$$

Can't evaluate analytically, so:

- Take many (M) samples from $P(\mu \mid x, a \ldots)$
- Use mean over samples
- $\frac{1}{M} \sum_{m=1}^{M} \mu_{(i /}^{m}$
- As M grows, this approaches true expectation
- Expectation also usually close to MAP (not always!)

Pause for deep breath

- Bayesian model has prior distributions on parameters
- Deal with overfitting, express prior beliefs
- Integrate over all possible parameters to get expected values
- Can take integral by sampling from posterior given data

New goal: take samples from model posterior

How do we sample?

Basic distributions

Easy to sample from most textbook distributions: Library functions in your favorite language:
x = random.normalvariate(mu, sigma)
(Typically by inverting cumulative distr. fn)
To sample from more complex distribution, build on these basic functions

Gibbs sampling

Gibbs sampling
To sample from joint distribution over many RVs:

$$
P\left(z_{1} \ldots z_{n}, \mu, \Sigma, \pi \mid x_{1} \ldots x_{n}, a, b \ldots\right)
$$

- Initialize at random
- Do forever:
- For each RV in turn, compute distribution conditioned on other RVs:

$$
P\left(z_{1} \mid z_{2} \ldots z_{n}, \mu, \Sigma, \pi, x_{1} \ldots\right)
$$

- Sample new value from that distribution:

$$
z_{1} \leftarrow P\left(z_{1} \mid z_{2} \ldots\right)
$$

- Entire state $\left(z_{1} \ldots z_{n}, \mu, \Sigma, \pi\right)$ is sample from P

Gibbs vs EM

- Like EM, Gibbs spends most of time computing
$P\left(z_{i}=0 \mid x_{i}, \mu, \Sigma, \pi\right)$
- Unlike EM, Gibbs also needs conditionals on the parameters, eg: $P(\pi \mid z, a, b)$
- Unlike EM, Gibbs samples instead of maximizing or taking expectations
- Posterior usually increases on avg. (similar to likelihood)
- But can decrease slightly due to random chance...
- No explicit test for convergence
- Gibbs can escape local maxima
- But this happens with very low probability

Final result

Choosing a prior

Besides the model-specific question of which prior to choose, there are mathematical issues

- Choosing the right kind of prior distribution makes programs more efficient...
- And easier to code

Consider π in our model (π is prior $p(z=0)$)
Standard Gibbs sweep requires:

$$
\pi \sim P\left(\pi \mid z_{1} \ldots z_{n}, a, b\right)
$$

If this is a toolbox function (eg random. beta) we are done... Otherwise, can be very difficult

Conjugacy

What is $P\left(\pi \mid z_{1} \ldots z_{n}\right)$? Use Bayes' rule....

$$
P\left(\pi \mid z_{1} \ldots z_{n}, a, b\right) \propto P\left(z_{1} \ldots z_{n} \mid \pi\right) P(\pi \mid a, b)
$$

(\propto : read "proportional to".)
Since π is $p\left(z_{i}=0\right) \ldots$

$$
P\left(z_{1} \ldots z_{n} \mid \pi\right) P(\pi \mid a, b)=\pi^{\#\left(z_{i}=0\right)}(1-\pi)^{\#\left(z_{i}=1\right)} P(\pi \mid a, b)
$$

Dirichlet distribution (for a two-component vector)
Distribution over $0<\pi<1$ and $0<1-\pi<1$, such that:

$$
P(\pi \mid a, b) \propto \pi^{a-1}(1-\pi)^{b-1}
$$

There's a toolbox routine for sampling from $P(\pi \mid a, b)$ (Note: this special-case of the k-probability Dirichlet is also called the Beta distribution)

Conjugacy (2)

$$
P\left(z_{1} \ldots z_{n} \mid \pi\right) P(\pi \mid a, b)=\pi^{\#\left(z_{i}=0\right)}(1-\pi)^{\#\left(z_{i}=1\right)} P(\pi \mid a, b)
$$

If we pick $P(\pi \mid a, b)$ as Dirichlet, so $P(\pi \mid a, b) \propto \pi^{a-1}(1-\pi)^{b-1}$

$$
\begin{aligned}
& \pi^{\#\left(z_{i}=0\right)}(1-\pi)^{\#\left(z_{i}=1\right)} P(\pi \mid a, b)= \\
& \pi^{\#\left(z_{i}=0\right)}(1-\pi)^{\#\left(z_{i}=1\right)} \pi^{a-1}(1-\pi)^{b-1}= \\
& \pi^{\#\left(z_{i}=0\right)+a-1}(1-\pi)^{\#\left(z_{i}=1\right)+b-1}
\end{aligned}
$$

Thus, $P\left(\pi \mid z_{1} \ldots z_{n}, a, b\right) \sim \operatorname{Dirich}(\pi \mid u, v)$ for $u=\#\left(z_{i}=0\right)+a$ and $v=\#\left(z_{i}=1\right)+b$
And we use the toolbox routine!

Conjugacy (3)

Conjugate prior

A prior distribution on a parameter, which, multiplied by the probability of a set of data, yields a posterior distribution in the same family

- The Dirichlet is the conjugate prior for the Bernoulli (coin-flip) data likelihood
- A large family of useful distributions (the exponential family) all have conjugate priors
- For the Bernoulli (coin flip), categorial (die roll), multinomial (many die rolls): Dirichlet
- For the Gaussian: Gaussian mean, inv. Wishart covariance
- Others in any stats textbook

Integrating out parameters

Choosing a conjugate prior lets us do another trick: Instead of computing $P\left(\pi \mid z_{1} \ldots z_{n}, a, b\right) \ldots$
And then $P\left(z_{1} \mid \pi\right)$ etc...
We can compute directly:

$$
\begin{aligned}
P & \left(z_{1}=0 \mid z_{2} \ldots z_{n}, a, b\right)=\int_{\pi} P\left(z_{1}=0 \mid \pi\right) P\left(\pi \mid z_{2} \ldots z_{n}, a, b\right) \\
& =\int_{\pi} \pi \operatorname{Dirich}\left(\pi \mid \#\left(z_{2 \ldots n}=0\right)+a, \#\left(z_{2 \ldots n}=1\right)+b\right) \\
& =\operatorname{mean}\left(\operatorname{Dirich}\left(\pi \mid \#\left(z_{2 \ldots n}=0\right)+a, \#\left(z_{2 \ldots n}=1\right)+b\right)\right) \\
& =\frac{\#\left(z_{2 \ldots . n}=0\right)+a}{\#\left(z_{2 \ldots n}=0\right)+a+\#\left(z_{2 \ldots n}=1\right)+b}
\end{aligned}
$$

(Often people use notation like z_{-i} or $z_{/ i}$ for "all z excluding z_{i} ")

Dirichlet processes

The integration trick lets us deal with distributions with infinitely many parameters...
The two-dimensional Dirichlet

$$
\operatorname{Dirich}(\pi \mid a, b) \propto \pi^{a-1}(1-\pi)^{b-1}
$$

The k-dimensional Dirichlet

$$
\operatorname{Dirich}\left(\pi_{1}, \pi_{2} \ldots \pi_{k} \mid \alpha_{1} \ldots \alpha_{k}\right) \propto \pi_{1}^{\alpha_{1}-1} \pi_{2}^{\alpha_{2}-1} \ldots
$$

Suppose we let all the α_{i} be equal fractions of \boldsymbol{A} (ie $\alpha_{i}=\frac{A}{k}$)... and then $k \rightarrow \infty$
Dirichlet process
The limiting distribution is defined as $D P\left(\pi_{1} \ldots \mid A\right)$

Dirichlet processes (2)

We can't work directly with $D P(A)$, but...
Recall we used integration to get:

$$
P\left(z_{i}=0 \mid z_{-i}, a, b\right) \propto \#\left(z_{-i}=0\right)+a
$$

The equivalent still holds.
Since we set $\alpha_{1}=\frac{A}{k}$, the limit of α_{1} is $0 \ldots$ So under a DP, if group 1 is represented in $z_{-i} \ldots$

$$
P\left(z_{1}=0 \mid z_{-1}, A\right) \propto \#\left(z_{-1}=0\right)+\alpha_{1}(=0)
$$

The α_{i} of the (infinite) groups unrepresented in z_{-i} sum up to A, so:
$P\left(z_{i}\right.$ unrepresented $) \propto A$

Chinese restaurant process

Chinese restaurant process
This representation of the posterior $p\left(z_{i} \mid z_{-i}\right) D P(A)$ is called the Chinese Restaurant process $\operatorname{CRP}\left(z_{1} \ldots z_{n} \mid A\right)$
At any time, there are k occupied "tables" (groups such that some z_{i} "customers" are in that group)
And an infinite number of unoccupied "tables" with total probability $\propto A$

Conditioned on z_{-i} with k groups:

$$
\begin{aligned}
P\left(z_{i}=g\right) & \propto \#\left(z_{-i}=g\right) & g \leq k \\
P\left(z_{i}=k+1\right) & \propto A &
\end{aligned}
$$

Properties of CRP

- A controls the dispersion or diversity
- Larger A, more groups on average
- A priori average of $A \log (n)$ clusters for n observations
- Can be overridden by observed data
- "Rich-get-richer" dynamics
- Large groups attract new observations

The CRP is a principled way of comparing models with more versus fewer clusters...
Unlike max-likelihood

- Bayesian models offer control of overfitting
- And a way to specify prior beliefs
- Popular inference method is Gibbs sampling
- Randomized iterative algorithm
- Computes expected values of things
- Theoretically escapes local maxima, but not practically
- Choosing conjugate priors leads to efficient algorithms
- The Dirichlet process is a prior over category indicators that allows an unbounded number of categories
Code is online. Remember to send paper presentation preferences!

