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Trivia

Suggestions of papers to present: by tonight!
I I’ll send out papers tomorrow
I First paper will be McMurray, Aslin and Toscano on

Tuesday
I Begin discussion on Carmen (at least one comment by

Monday night)
Auditors: still encouraged to make it official

2



Classical methods

Last lecture, described simple mixture model...
and max-likelihood estimation with EM

I Two problems with this approach:
I Local maxima (EM converges to bad solution)
I Overfitting (likelihood always higher for more complex

models)

This lecture: Bayesian methods/sampling
Proposed as solutions to both these problems...
Plus a way to impose biases on the model
Warning: not always actual solutions!
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Recall from last time
Our standard model of the /a/-/i/ data as a
mixture of 2 gaussians

Let X : x0 . . . xN be the list of
vowels, with N = 90.
Let Z : z0 . . . zN ∈ {0,1} be
class indicators

zi ∼ Bernoulli(π)

xi ∼ N(µzi ,Σzi )

I Bernoulli: coin flip with pr
of heads=π I Recall: circles (z and x)

are random variables
I No circle (µ and Σ) are

parameters
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Bayesian models: priors
Replace parameters with random variables

Let X : x0 . . . xN be the list of
vowels, with N = 90.
Let Z : z0 . . . zN ∈ {0,1} be
class indicators

π ∼ Dirichlet(a,b)

µ,Σ ∼ NIW (µ0, k ,Λ, ν)

zi ∼ Bernoulli(π)

xi ∼ N(µzi ,Σzi )

I Will discuss specific prior
distributions (Dirichlet,
NIW ) later

x
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I Recall: circles (z,x , µ, Σ)
are random variables

I No circle (a,b etc) are
parameters
(hyperparameters)
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Why priors?

Why do priors help?
I Control overfitting (by penalizing more complex models)
I Express explicit biases (“soft” universals, markedness)
I Smooth out estimates based on insufficient data

I If only one datapoint, frequentist π̂ either 0 or 1
I Advanced: structured model– allow different clusters to

share some information

“Fake data” interpretation
Can think of prior as supplying “fake observations” a priori
For instance, Dirichlet(1, 1) means:

I Pretend, in addition to our data, we have one extra /i/
I ...and one extra /a/
I So π̂ can never be 0!
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Parameters vs hyperparameters

Is choosing hyperparameters any less arbitrary
than choosing parameters? Does it introduce
bias?

I Choice of hyperparameters generally less important than
choice of parameters

I Priors grow less influential as data increases
I So maybe the same hyperparameters work across

languages
I Even if the same parameter values wouldn’t

I Can try to avoid accusations of bias by:
I Using “uninformative” priors to avoid bias
I Or “empirical Bayes”: priors near data averages

If you want to introduce (theoretically justified)
biases, can ignore all this!
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Replacing the likelihood

Old model: marginalizing over the latent variables
Probability of data as function of parameters:

P(x ; µ̂, Σ̂, π̂) =
∑

z

P(x |z; µ̂, Σ̂)P(z|π̂)

Goal is to maximize likelihood by choosing parameters...

New model: marginalizing over the latent variables
Probability of data given hyperparameters:
The posterior probability :

P(x |a,b, µ0,Λ, k , ν) =

∫
µ,Σ,π

∑
z

P(x |z, µ,Σ)P(z|π)

P(µ,Σ|µ0,Λ, k , ν)P(π|a,b)
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How we use the posterior
Maximum a posteriori (MAP) inference
Replace integral with maximization (“max-likelihood with priors”)

µ̂, Σ̂, π̂ = argmaxµ,Σ,π
∑

z

P(x |z;µ,Σ)P(z|π)

P(µ|µ0,Λ, k , ν)P(π|a,b)

Use entire posterior distr.
For instance, what is expected mean of /i/ category given our
data?

E [µ/i/|x ,a, . . .] =∫
µ,Σ,π

µ/i/

∑
z

P(x |z, µ,Σ)P(µ| . . .

Requires us to approximate (complicated) integral
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Why look at the posterior instead of MAP?

Statisticians will give you reasons:
I Look only at what we really care about

I What is the average mean (over all variances)...
I vs the mean at a particular variance

I Sometimes MAP solution is an outlier (requires very
specific parameter setting; typical solution more robust)

I Or posterior could be multimodal (different good
clusterings)

I (Difficult to represent this: mean won’t do)

Honestly I think statisticians care more than we do...
But the sampling technique we will see is very popular
...and can also be used for MAP estimates.
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Approximating an integral by sampling

Want to know the mean of /i/ category:

E [µ/i/|x ,a, . . .] =∫
µ,Σ,π

µ/i/

∑
z

P(x |z, µ,Σ)P(µ| . . .

Can’t evaluate analytically, so:
I Take many (M) samples from P(µ|x ,a . . .)
I Use mean over samples

I 1
M

∑M
m=1 µ

m
/i/

I As M grows, this approaches true expectation
I Expectation also usually close to MAP (not always!)
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Pause for deep breath

I Bayesian model has prior distributions on parameters
I Deal with overfitting, express prior beliefs

I Integrate over all possible parameters to get expected
values

I Can take integral by sampling from posterior given data

New goal: take samples from model posterior
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How do we sample?

Basic distributions
Easy to sample from most textbook distributions:
Library functions in your favorite language:

x = random.normalvariate(mu, sigma)

(Typically by inverting cumulative distr. fn)

To sample from more complex distribution, build on these basic
functions
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Gibbs sampling
Gibbs sampling
To sample from joint distribution over many RVs:

P(z1 . . . zn, µ,Σ, π|x1 . . . xn,a,b . . .)

I Initialize at random
I Do forever:

I For each RV in turn, compute distribution conditioned on
other RVs:

P(z1|z2 . . . zn, µ,Σ, π, x1 . . .)

I Sample new value from that distribution:

z1 ← P(z1|z2 . . .)

I Entire state (z1 . . . zn, µ,Σ, π) is sample from P
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Gibbs vs EM

I Like EM, Gibbs spends most of time computing
P(zi = 0|xi , µ,Σ, π)

I Unlike EM, Gibbs also needs conditionals on the
parameters, eg: P(π|z,a,b)

I Unlike EM, Gibbs samples instead of maximizing or taking
expectations

I Posterior usually increases on avg. (similar to likelihood)
I But can decrease slightly due to random chance...

I No explicit test for convergence
I Gibbs can escape local maxima

I But this happens with very low probability
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Choosing a prior

Besides the model-specific question of which
prior to choose, there are mathematical issues

I Choosing the right kind of prior distribution makes
programs more efficient...

I And easier to code
Consider π in our model (π is prior p(z = 0))
Standard Gibbs sweep requires:

π ∼ P(π|z1 . . . zn,a,b)

If this is a toolbox function (eg random.beta) we are done...
Otherwise, can be very difficult
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Conjugacy
What is P(π|z1 . . . zn)? Use Bayes’ rule....

P(π|z1 . . . zn,a,b) ∝ P(z1 . . . zn|π)P(π|a,b)

(∝: read “proportional to”.)
Since π is p(zi = 0)...

P(z1 . . . zn|π)P(π|a,b) = π#(zi =0)(1− π)#(zi =1)P(π|a,b)

Dirichlet distribution (for a two-component vector)
Distribution over 0 < π < 1 and 0 < 1− π < 1, such that:

P(π|a,b) ∝ πa−1(1− π)b−1

There’s a toolbox routine for sampling from P(π|a,b)
(Note: this special-case of the k -probability Dirichlet is also
called the Beta distribution)
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Conjugacy (2)

P(z1 . . . zn|π)P(π|a,b) = π#(zi =0)(1− π)#(zi =1)P(π|a,b)

If we pick P(π|a,b) as Dirichlet, so P(π|a,b) ∝ πa−1(1− π)b−1

π#(zi =0)(1− π)#(zi =1)P(π|a,b) =

π#(zi =0)(1− π)#(zi =1)πa−1(1− π)b−1 =

π#(zi =0)+a−1(1− π)#(zi =1)+b−1

Thus, P(π|z1 . . . zn,a,b) ∼ Dirich(π|u, v) for u = #(zi = 0) + a
and v = #(zi = 1) + b
And we use the toolbox routine!
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Conjugacy (3)

Conjugate prior
A prior distribution on a parameter, which, multiplied by the
probability of a set of data, yields a posterior distribution in the
same family

I The Dirichlet is the conjugate prior for the Bernoulli
(coin-flip) data likelihood

I A large family of useful distributions (the exponential
family) all have conjugate priors

I For the Bernoulli (coin flip), categorial (die roll), multinomial
(many die rolls): Dirichlet

I For the Gaussian: Gaussian mean, inv. Wishart covariance
I Others in any stats textbook
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Integrating out parameters

Choosing a conjugate prior lets us do another trick:
Instead of computing P(π|z1 . . . zn,a,b)...
And then P(z1|π) etc...
We can compute directly:

P(z1 = 0|z2 . . . zn,a,b) =

∫
π

P(z1 = 0|π)P(π|z2 . . . zn,a,b)

=

∫
π
πDirich(π|#(z2...n = 0) + a,#(z2...n = 1) + b)

= mean(Dirich(π|#(z2...n = 0) + a,#(z2...n = 1) + b))

=
#(z2...n = 0) + a

#(z2...n = 0) + a + #(z2...n = 1) + b

(Often people use notation like z−i or z/i for “all z excluding zi ”)
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Dirichlet processes

The integration trick lets us deal with distributions with infinitely
many parameters...
The two-dimensional Dirichlet

Dirich(π|a,b) ∝ πa−1(1− π)b−1

The k -dimensional Dirichlet

Dirich(π1, π2 . . . πk |α1 . . . αk ) ∝ πα1−1
1 πα2−1

2 . . .

Suppose we let all the αi be equal fractions of A (ie αi = A
k )...

and then k →∞

Dirichlet process
The limiting distribution is defined as DP(π1 . . . |A)
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Dirichlet processes (2)

We can’t work directly with DP(A), but...
Recall we used integration to get:

P(zi = 0|z−i ,a,b) ∝ #(z−i = 0) + a

The equivalent still holds.
Since we set α1 = A

k , the limit of α1 is 0...
So under a DP, if group 1 is represented in z−i ...

P(z1 = 0|z−1,A) ∝ #(z−1 = 0) + α1(= 0)

The αi of the (infinite) groups unrepresented in z−i sum up to A,
so:

P(zi unrepresented) ∝ A
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Chinese restaurant process

Chinese restaurant process
This representation of the posterior p(zi |z−i)DP(A) is called the
Chinese Restaurant process CRP(z1 . . . zn|A)
At any time, there are k occupied “tables” (groups such that
some zi “customers” are in that group)
And an infinite number of unoccupied “tables” with total
probability ∝ A

Conditioned on z−i with k groups:

P(zi = g) ∝ #(z−i = g) g ≤ k
P(zi = k + 1) ∝ A
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Properties of CRP

I A controls the dispersion or diversity
I Larger A, more groups on average

I A priori average of A log(n) clusters for n observations
I Can be overridden by observed data

I “Rich-get-richer” dynamics
I Large groups attract new observations

The CRP is a principled way of comparing models with more
versus fewer clusters...
Unlike max-likelihood
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So...

I Bayesian models offer control of overfitting
I And a way to specify prior beliefs

I Popular inference method is Gibbs sampling
I Randomized iterative algorithm
I Computes expected values of things
I Theoretically escapes local maxima, but not practically

I Choosing conjugate priors leads to efficient algorithms
I The Dirichlet process is a prior over category indicators

that allows an unbounded number of categories

Code is online. Remember to send paper
presentation preferences!
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