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Building models

The next two lectures: overview of some
statistical methods

I A review for people who know this stuff
I A basic survival guide for people who don’t

This lecture
Standard frequentist techniques for building models with
hidden variables
Classical techniques from the ‘70s (popular since the ‘90s)

Next lecture
Bayesian methods
Popular since the mid ‘00s
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Fully observed data
A simple toy example: a baby observes the F1
and F2 of 45 tokens of the vowel /i/ (spoken by
men, at “steady state”)

from Hillenbrand, Getty, Clark and Wheeler 99

3



High-level modeling assumption
/i/ sounds are distributed in an ellipse-shaped
region surrounding a common mean
(Why? Mathematical convenience, mostly. Just go with it...)
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Mathematically...

Treat the vowel tokens as samples from a
normal (Gaussian) distribution with unknown
mean µ and covariance Σ

Generative model
A probability distribution over the observed data:

I Different use of generative from Chomsky
I Contrast with models that fit part of the data (outcome)

from other parts (predictors)— like regressions
I Usually has some unknown parameters
I Possible to sample a synthetic dataset from the model
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Sampled data
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Notation

Let X : x0 . . . xN be the
list of vowels, with
N = 45.

xi ∼ N(µ,Σ)

I ∼: sampled from,
distributed according to

I N: normal distribution

Graphical model
notation

I Circle = random variable
I Gray background:

observed value
I Box = many variables
I No circle = parameter
I Arrow: conditioned on
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Learning

Our hypothetical baby assumes the data must
be generated from a model of this family... but
what are µ and Σ?

Principle of maximum likelihood
Choose values for the parameters that
maximize the probability of the data

I Likelihood : data probability as function of the parameters
I Actually, often the log-likelihood

I Mathematically convenient and doesn’t underflow as much
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The likelihood

Log-probability of our dataset as a function of µ1
with other parameters at optimal values
(The graph for µ1 and µ2 is 3d; the whole graph is 6d)

(Blue points: observations in F1 space; red x: sample mean)

9



The maximum-likelihood estimator

Choose µ̂1 (the baby’s estimate of the value of
µ1) according to principle of maximum likelihood

I In this case, can just choose the sample mean!
I More general principle: methods of moments

I In a second, will see more complex models for which this
doesn’t work

10



Gradient ascent: generic MLE
Maximize function by moving uphill from point to point

I Pick initial point
I Compute derivative
I Step uphill and repeat
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A little more complicated
Now, the baby observes 90 vowel tokens...

I Given the language has two vowels, /i/ and /a/
I Each with unknown mean and covariance

12



Mathematics
Introduce some auxiliary indicator variables z: is
this token /i/ or /a/?

I * /i/ and /a/ are labels for our analysis... actually cluster 1
or cluster 2

I zi will be 0 if xi is an /i/ and 1 if it’s an /a/
I Prior probability of an /i/ determined by a new parameter π

(ie, π = .5 means about half /i/ sounds)

Latent variables
Random variables in our model whose values we don’t observe

Mixture model
Models whose latent variables indicate which cluster an
observation comes from are mixtures...
Since the individual vowels here are Gaussian, this is a mixture
of Gaussians
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Writing it down

Let X : x0 . . . xN be the list of
vowels, with N = 90.
Let Z : z0 . . . zN ∈ {0,1} be
class indicators

zi ∼ Bernoulli(π)

xi ∼ N(µzi ,Σzi )

I Bernoulli: coin flip with pr
of heads=π I Now there are two µ and Σ

I One for /i/ and one for /a/
I z has white background:

latent
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Learning with latent variables

Conceptually, two approaches:

Marginalizing over the latent variables

µ̂, Σ̂, π̂ = argmaxµ,Σ,π
∑

z

P(x |z;µ,Σ)P(z|π)

(The actual likelihood function)

Maximizing the latent variables

µ̂, Σ̂, π̂ = argmaxµ,Σ,π,zP(x |z;µ,Σ)P(z|π)

(Often fairly close to the likelihood)
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The likelihood: intuition

Likelihoods as function of µ/i/1 and µ/a/1 under
different assignments of z for four points
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Difficulties

Since the likelihood doesn’t have a fixed number
of maxima, we can’t solve for µ in closed form...

I Use iterative approaches (like gradient)

Expectation/Maximization (EM) algorithm
Most common iterative approach (Dempster+al ‘77)

(Approximately) a type of gradient method
Alternates between two phases:

I Improve z
I Improve µ,Σ, π
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Insight 1: classification is easy

Given µ,Σ, π, it’s easy to find the class
probabilities for any sound x

P(x ∈ /i/) =
πN(x |µ/i/,Σ/i/)

πN(x |µ/i/,Σ/i/) + (1− π)N(x |µ/a/,Σ/a/)

I π: probability z for this x is 0
I N(x |µ/i/,Σ/i/): probability of the sound fitting in the /i/

class
I Denominator: sound has to be either /i/ or /a/ (model

assumption)
I So p(x ∈ /i/) + p(x ∈ /a/) = 1
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Insight 2: learning from labeled data is easy

As we saw at the beginning, computing µ,Σ is
easy when there is only one vowel:

I So if we knew z, split data into /i/ and /a/,
estimate each separately

I (Also trivial to estimate π, the probability of /i/
vs /a/: π̂ = #(/i/)

n )
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Basic (hard) EM

EM algorithm:
Set zi at random
Alternate:

M-step (estimate)
Split data into /i/ and /a/ according to current z
Estimate µ/i/,Σ/i/ from /i/, µ/a/,Σ/a/ from /a/, π from ratio of /i/
and /a/

E-step (classify)
Using current parameters, compute p(x ∈ /i/) for each x
For x : p(x ∈ /i/) > .5, set z = 0 (label as /i/)...
Otherwise label as /a/

Guarantee: each step improves likelihood until
maximum reached
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Random initialization
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Parameter estimates
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E-step 1 (new zs)
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M-step 1 (new params)

200 300 400 500 600 700 800 900 1000
F1

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

F2

Iteration 1: parameters

24



M-step 4
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M-step 5
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Other things you might see in the wild

Soft (standard) EM
E-step: compute p(x ∈ /i/)... but don’t assign to either class
M-step: compute expected value of parameters using
distribution from E-step
(The standard EM algorithm)
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Explicit gradient-based methods

I Require you to compute derivatives of the likelihood
I Simplest algorithm: add η times gradient to params

I This can be very slow, though...
I Better algorithms exist (L-BFGS, OWL-QN, etc)

I Often use approximations to 2nd derivative to decide step
size

I A variety of off-the-shelf packages for doing this
I Incl. builtins in Matlab, R, etc
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Batch vs. incremental
As presented here, each E-step (or computation of the
gradient) iterates over all the data

I This is slow and cognitively implausible...
I Incremental variants exist which read a few datapoints at a

time
I These few datapoints can be used to compute an

approximate parameter update or gradient
I Stochastic gradient descent is one variant

Stochastic gradient
The value of the gradient itself at a point is a random variable

I Can be estimated from one or a small number of training
exes

I Leads to fast online algorithms
I Similar to perceptron

I Can be unstable though... must tune learning rate
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EM and related methods

I Learn parameters for generative models with
hidden variables

I Start with a (bad) initial model and gradually
improve it

I Generally easy to implement
I Can be somewhat slow to run, but generally

practical for real data
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Problems: local maxima
Local maxima of the likelihood
As shown, the likelihood may have multiple maxima...

I EM/gradient always improve likelihood until convergence
I Find a maximum (or saddle point)

I ...this doesn’t mean they find the global maximum

Especially annoying when a model allows conflicting analyses...

I EM solution often internally consistent, but bad
I Eventual solution depends on initialization
I Hand-designed initialization scheme...
I Or random, but repeat many times

yuwanttu
yu • want • tu

y • u • w • a • n • t • t • u
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Problems: model selection and overfitting

Model selection
Comparing two models which make different assumptions

I For instance, perhaps vowels are not perfect ellipses?
I Or perhaps there are really three vowels here?

Which model is better?

Maximum likelihood on its own is bad for model selection...
I Max likelihood: make training data as likely as possible
I Generalization: assigning probability outside the training

set
I Models that generalize less have higher likelihood...
I More parameters: more specific model, less generalization
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Model selection

Max likelihood chooses less general models (bad!)

I Means we can’t use EM to learn models with varying levels
of complexity

I (Like different numbers of vowels...)

For instance, learn lexicon from:

juwant, jukæn, Dejwant

Actual solution (lexicon is ju, want, kæn, Dej) generalizes to
Dejkæn

Max-likelihood lexicon is: juwant, jukæn, Dejwant
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Model selection techniques

Frequentist hypothesis testing
For each (more or less complex) model, run max-likelihood
Use hypothesis test to evaluate simpler vs more complex model
(ie, fit mixture of gaussians with 1, 2, 3. . . vowel classes)

Bayesian information criterion
Penalizes likelihood by number of parameters
Also generally used by running max-likelihood many times

Bayesian models
Don’t require rerunning max-likelihood
Make explicit assumptions about what kind of complexity is
likely
Next lecture!
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Examples

Examples (python) online at:
http://www.ling.ohio-
state.edu/ melsner/course/stat-acq/em.tgz
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