Modeling language and vision

Micha Elsner
The Ohio State University
Let’s listen...

“How to find the Andromeda galaxy”
https://youtu.be/clfjPvaXGIs?t=63

Listen for 30 seconds: what is the speaker saying?
Is this what he said?

...and if you actually look at Cassiopeia and you look down below the W, do you see that little fuzzy thing right there? That is the Andromeda galaxy, which it actually says is 2.4 million light years away... A long way toward the back.
Or is it this?

...and if we actually look at Cassiopeia and you look down below the W, do you see that little fuzzy thing right there? That is... the Andromeda galaxy, which is actually saying that it is... does it give you distance? Doesn’t seem to be giving you distance, but it’s basically 2.4 million light years away... A long way toward the back.
Well, it’s both, right?

Computational language generation typically ignores words like “basically” and “um”

As engineers, we don’t need to produce these words (Siri doesn’t say “um”)
As psycholinguists...

Those “ums”, pauses and restarts serve important speech functions
All languages have them
All speakers use them
They have a lot to tell us about how language is created in the human mind
Psycholinguistics

Connects the study of language as an abstract structure (phonology, morphology, syntax)...
To language as concrete reality: how particular utterances are produced and interpreted in real time
This talk

How computer models of the mind can help us understand how it works

And where those pauses and disfluencies come from
Computational cognitive models

AI as a “model organism” for:

● Learning
 ○ How do babies learn language by listening?

● Perception
 ○ How do we recognize faces?
 ○ What acoustic cues help us recognize words?

● Decision-making
 ○ How do we assess risk and reward?
In the first part of the talk, we’ll see data primarily from the lab,
 as we try to understand what’s going on

In the second, we’ll build a model of the human speaker using AI,
 and use it to test our hypotheses
The team

Alasdair Clarke:
Psychology, University of Essex
Ph.D. in Mathematics
expert on the visual system

Hannah Rohde:
Linguistics and the English Language, University of Edinburgh
Ph.D. in Linguistics
expert on discourse pragmatics

Micha Elsner:
Linguistics, The Ohio State University
Ph.D. in Computer Science
expert on AI and computational models
What are pauses for?

You pause because you’re still thinking.

You **fill in** the pause with words like “um” (or “basically”, “like”, “well”, and others) because you still want to talk.
Where delays come from

Why does it take so long to figure out that distance is missing?

It’s hard to see!
Vision is hard

http://www.webexhibits.org/colorart/ag.html
curated: Michael Douma
So, you see the world like this

Demo by Geisler and Perry at UT
Your eye has to move

To create the illusion of detailed vision across the entire visual field, your eye moves around…

These movements are called **saccades**

They happen about every 200 milliseconds
Watch the moving eye

An eyetracker is a camera pointed at the pupil of your eye.
Using the tracker, we can see exactly where you’re looking:

https://youtu.be/0_KaItdTkEM?t=79
Visual search

In these images, find the odd one out:
Visual search

In these images, find the odd one out:

Pop-Out Effects With Simple Features

img: Univ. Melbourne
research by Anne Treisman
Visual search

Which of these images has a vertical red bar?

Conjunction Targets Do Not Pop Out

Target is vertical red bar

Reaction Time

Display Size

2:1 slope ratio

Absent

Present

img: Univ. Melbourne research by Anne Treisman
The Waldo studies

We found that:

- Visual processing determines how much you say
 - As well as syntax, choice of determiners
- These choices help listeners to find the target faster
Gatt’s experiments

(b) A *large red bell* among large (c) A *large bell* among smaller dis-
blue and small red distractors tractors

Gatt varied the number of bells in the scene...

Reference production as search:
The impact of domain size on the production of distinguishing descriptions, 2016
Albert Gatt, Emiel Krahmer, Kees van Deemter, Roger van Gompel
Time before speech onset
But some cases are easy

(a) A red bell among blue distractors

Gatt varied the number of bells in the scene...
Time before speech onset

![Graph showing mean speech onset time with distractor set size]
Why model?

At a high level, we can guess that these effects come from visual processing…

But outside of carefully controlled stimuli, it’s impossible to tell how strong these visual effects might be
AI to the rescue?

Perhaps we could use a *model* of a person?

In the rest of the talk, I’ll show a proof-of-concept:

A model capable of replicating Gatt’s result using machine learning

But that might later be applied in more realistic stimuli
Back to the basics

Before we start modeling anything complicated, let’s go over some building blocks

- **Machine learning**: use training data to discover a decision-making function which can make **predictions** about unseen data
Speech recognition: oversimplified

Three English vowels

Amplitude

Frequency

i u a

Harmonics are formants. Lowest two formants identify the vowel.
Training data

data: Hillenbrand, Getty, Clark and Wheeler 1995
Training data

data: Hillenbrand, Getty, Clark and Wheeler 1995

A new point x
A linear model

We can write down what we know about the speech dataset as a **linear equation** with unknown coefficients:

$$y = w_1 x_1 + w_2 x_2 + b$$

- The **score** (which class is this point in)
- Some numbers we don’t know (**parameters**)
- The coordinates of unknown point x
A linear model

\[P(y|x) = \frac{1}{1 + \exp(w \cdot x + b)} \]

- \(x \): input features
- \(y \): predicted category
- \(w, b \): parameters of the learned classifier

Direction of \(w \):
Probability of an \(i \) vowel falls off exponentially
Obviously, we need the right parameters

We don’t know how any given equation will actually work on x

But we can figure out how well it works on the training data!
Optimization

- Write down an approximate function for the training error
- Take the derivative
 - Actually, the computer does this
- Find a minimum by hill-climbing (gradient ascent)
But real life is highly non-linear
We could add these terms as features

\[P(y|x) = \frac{1}{1 + \exp(w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_1x_2 + w_5x_2^2 + w_6x_3 + \ldots + b)} \]

But estimating these parameters requires tons of data

And increases our ability to learn spurious correlations which don’t generalize beyond the training data
Limit the number of interactions

\[H(x) = F(w_1 \cdot x + b_1) \]
\[I(x) = F(w_2 \cdot x + b_2) \]
\[P(y|x) = F(w_3 \cdot [H(x), I(x)] + b_3) \]

Model is allowed only two intermediate variables…

But these can summarize any combination of features 1, 2 and 3

Final decision Y is non-linear
Multilayer network

More complicated network topologies are common...

Take advantage of structure in the data:
 Temporal (speech ms. by ms.)
 Spatial (nearby pixels in image)
 Source of data (my voice vs. yours)
 Confounding factors (lighting, orientation)
Networks for vision

Low-level receptors

Hierarchical structure
Choi and Savarese 2012

Objects
img: miru3192 on twitter
Convolutional neural nets

Basic idea 1: apply the **same learned feature extractor** to each patch in an image
(Animation by Erik Reppel:

Basic idea 2: repeat to create a “deep” architecture with layers of abstraction

https://blogs.technet.microsoft.com/machinelearning/
Neural nets and the brain

The visual cortex processes input in layers...

Lower layers detect “low-level” features; higher layers are more abstract
Receptive Field Inference with Localized Priors
Mijung Park and Jonathan Pillow

Adaptation and Neuronal Network in Visual Cortex
Lyes Bachatene, Vishal Bharmuria and Stéphane Molotchnikoff
Captioning with CNNs

1. Input Image
2. Convolutional Feature Extraction
3. RNN with attention over the image
4. Word by word generation
Learning to look

Captioning systems see the whole image at once…
But we’re trying to model a human speaker

So, we need to give it a steerable focal point and let it learn where to look
We use reinforcement learning

As recently used to play video games… and beat the world champion of Go:

https://www.youtube.com/watch?v=V1eYniJ0Rnk
Brief overview of the model

The model has focal and peripheral vision
At every step, it moves the focus point…
And then decides whether to utter a word…
And then which word to say

We’ll see the details in a minute...
Some results!

Current version is trained on artificial scenes, with captions generated by a simple rule-based strategy:

Say whether the target is **unique** or **non-unique**
Model setup

The actual scene

Simulated peripheral vision

Initial focus on the target
Gaze track

Where does the model want to look first?

What will it do next?
The outcome

Caption: unique blue diamond
What if the image is multicolor?

The system has learned to look at the other blue shape first…

But only sometimes, and it hasn’t learned to ignore the green one.
Onset times

Model onset times (saccades)

Gatt’s onset times (milliseconds)
Architecture

The model’s “memory” represents visual space

Using a convolutional architecture
Memory of focal glimpses

Focal point at time 0
Focal point at time 1

Small CNN

Coarse representation of the image

Peripheral vision

Multi-channel memory

Network outputs

previous words
Issues in network design

How many intermediate layers?

Currently, using two intermediate convolutional layers with 128 filters

Intermediate pooling layer allows global information to affect local decisions
Q-learning: quick review

To decide what to do,

\[Q(a_t | s_t) = r_t + \text{argmax } Q(a_{t+1}, s_{t+1}) \]

Quality of the current action in current state depends on local reward plus expected future reward.

We don’t know the future reward, but we can approximate it:
 If our estimate of the quality of the state we end up in is correct,
 Then we can use that to recursively estimate the current reward
Deep Learning in a Nutshell: Reinforcement Learning
By Tim Dettmers
https://devblogs.nvidia.com/deep-learning-nutshell-reinforcement-learning/
Hybrid Q/supervised architecture

Q-learning introduces opportunities for error, and doesn’t work as well as supervised learning

How to hybridize?

- Supervised learning as initial policy
- Mixed supervised / reinforcement objective throughout training
- **Supervised components in reinforcement architecture**
Division of labor

Supervised word prediction

Unsupervised saccades and decision about when to speak
Reward function

Pretty simple:

● -.1 for every blank
● 1 for every correct word
● -3 for the first wrong word (and that state is final)
 ○ I’ve also implemented versions with error recovery to study speech disfluencies
Q-learning setup

Huge issues with bias in standard Q-learning recurrence:

\[Q(a_t | s_t) = r_t + \text{argmax} \ Q(a_{t+1}, s_{t+1}) \]

Why can this go wrong when \(Q \) is a neural function approximator?

What happens?
Deep Reinforcement Learning with Double Q-learning:
Hado van Hasselt, Arthur Guez, David Silver
Q-learning setup

Replaced learning rule with double-Q-learning-esque:

$$Q(s_t) = r_t + V(s_{t+1})$$

Where V is a separate network

Still had issues, so switched to training V to predict the empirical rewards:

$$V(s_t) = \sum_{i=t} r_i$$

This estimate has too high variance for Go games, but it’s unbiased...
Concrete results

In these simple images, the model’s captions are 95% correct.

And, as shown above, it replicates Gatt’s onset timing predictions.

In another experiment, I show that the model can produce some human-like disfluencies (“red big square”) as a byproduct of learning to recover from errors.
Future work

Photorealistic images will require a better “visual system” with deeper CNNs

I’d also like to study more complex captioning strategies
Conclusions

Pauses, fillers and mistakes can teach us about how language works in the mind.

To understand visual language, you have to think about the visual system.

Computer models can help us test theories about complex behavior.
Disfluency

So far, we’ve looked at silent pauses…

What about filled pauses ("um")?
And outright rephrasing:
 ("the galaxy is… saying it’s…")
Is this a “small horse” or a “horse”? When would you expect one vs the other?

Watching the eyes when talking about size: An investigation of message formulation and utterance planning
Sarah Brown-Schmidt, Michael Tanenhaus
Speakers use the adj. adaptively

“small” used 72% of the time when there was a different-sized horse
 ● Of these, 62% had normal modifier order:
 ○ “The small horse”
 ● 37% had speech repairs:
 ○ “The horse… OH, the small one”
Eye track: first look at large horse

“the small horse”

“the… uh… small horse”

“the horse… uh… small one”
Can we relate this to our data?

At a high level, we can guess that these errors come from visual processing…

But without carefully controlled stimuli like Brown-Schmidt’s, understanding individual errors is way too expensive and time-consuming
Pause length

How long is the typical pause?
How long can you pause before another person will start talking?
Back in grad school, I did this for IMs

Online, people sometimes wait a very long time...

Elsner and Charniak 2008
In real conversations...

How long is the typical pause?

Sacks and Schlegoff ‘78 find that no perceptible gap is the most common!

How long can you pause before another person will start talking?

Denny ‘85: if you make eye contact, around 1-1.5 seconds
One particular effect

What would you call this?

from studies by Judith Degen: images from talk at OSU, 2017
One particular effect

How about this?
Adjectives mark contrasts

People don’t usually say “yellow banana” unless there’s another colored banana around

But to figure out the contrast, you need to do some searching...