You talking to me? A Corpus and Algorithm for Conversation
Disentanglement

Micha Elsner and Eugene Charniak
Brown Laboratory for Linguistic Information Processing (BIP)
Brown University
Providence, R1 02912
{nel sner, ec}@®s. br own. edu

Abstract (Chanel) Felicia: google works :)
(Gale) Arlie: you guys have never worked
When multiple conversations occur simultane- in a factory before have you
ously, a listener must decide which conversa- (Gale) Arlie: there’s some real unethical
tion each utterance is part of in order to inter- stuff that goes on

pret and respond to it appropriately. We refer
to this task as disentanglement. We present a
corpus of Internet Relay Chat (IRC) dialogue

(Regine)hands Chanel a trophy
(Arlie) Gale, of course ... thats how they

in which the various conversations have been make money _ _
manually disentangled, and evaluate annota- (Gale)and people lose limbs or get killed
tor reliability. This is, to our knowledge, the (Felicia) excellent

first such corpus for internet chat. We pro-

pose a graph-theoretic model for disentangle-
ment, using discourse-based features which
have not been previously applied to this task.
The model's predicted disentanglements are
highly correlated with manual annotations.

Figure 1: Some (abridged) conversation from our corpus.

lent” is intended for Chanel and Regine. A straight-
forward reading of the transcript, however, mightin-
o terpret it as a response to Gale’s statement immedi-
1 Motivation ately preceding.

Simultaneous conversations seem to arise naturallyHumans are adept at disentanglement, even in
in both informal social interactions and multi-partycomplicated environments like crowded cocktail
typed chat. Aoki et al. (2006)’s study of voice con-parties or chgt rooms; in order to perform this ta;k,
versations among 8-10 people found an average ey must maintain a complex mental representation
1.76 conversations (floors) active at a time, and & the ongoing discourse. Moreover, they adapt their
maximum of four. In our chat corpus, the average jgtterances to some degree to make the task easier
even higher, at 2.75. The typical conversation, theré©'Neill and Martin, 2003), which suggests that dis-
fore, is one which is interrupted— frequently. entanglement is in some sense a “difficult” discourse
Disentanglement is the clustering task of dividing@Sk-

a transcript into a set of distinct conversations. It is Disentanglement has two practical applications.
an essential prerequisite for any kind of higher-levéPne is the analysis of pre-recorded transcripts in
dialogue analysis: for instance, consider the multiorder to extract some kind of information, such as
party exchange in figure 1. guestion-answer pairs or summaries. These tasks

Contextually, it is clear that this corresponds tshould probably take as as input each separate con-
two Conversations’ and Fe|icié’$esponse “axcel- Versation, rather than the entire transcript. Another

!Real user nicknames are replaced with randomly selectédentifiers for ethical reasons.



application is as part of a user-interface system facript; real speakers, by contrast, often participate
active participants in the chat, in which users targetia many conversations, sequentially or sometimes
conversation of interest which is then highlighted foeven simultaneously. Aoki et al. (2003) analyze each
them. Aoki et al. (2003) created such a system fahirty-second segment of the transcript separately.
speech, which users generally preferred to a convemihis makes the single-conversation restriction some-
tional system— when the disentanglement worked! what less severe, but has the disadvantage of ignor-
Previous attempts to solve the problem (Aoki etng all events which occur outside the segment.
al., 2006; Aoki et al., 2003; Camtepe et al., 2005; Acar et al. (2005) attempt to deal with this prob-
Acar et al., 2005) have several flaws. They clusem by using a fuzzy algorithm to cluster speakers;
ter speakers, not utterances, and so fail when spedRis assigns each speaker a distribution over conver-
ers move from one conversation to another. TheBations rather than a hard assignment. However, the
features are mostly time gaps between one utteranatgorithm still deals with speakers rather than utter-
and another, without effective use of utterance corg&nces, and cannot determine which conversation any
tent. Moreover, there is no framework for a prin-particular utterance is part of.
cipled comparison of results: there are no reliable Another problem with these approaches is the in-
annotation schemes, no standard corpora, and feymation used for clustering. Aoki et al. (2003) and
agreed-upon metrics. Camtepe et al. (2005) detect the arrival times of mes-
We attempt to remedy these problems. We presep@ges, and use them to construct an affinity graph be-
a new corpus of manually annotated chat room dat@een participants by detecting turn-taking behavior
and evaluate annotator reliability. We give a set okmong pairs of speakers. (Turn-taking is typified by
metrics describing structural similarity both locallyshort pauses between utterances; speakers aim nei-
and globally. We propose a model which uses digher to interrupt nor leave long gaps.) Aoki et al.
course structure and utterance contents in additidd006) find that turn-taking on its own is inadequate.
to time gaps. It partitions a chat transcript into disThey motivate a richer feature set, which, however,
tinct conversations, and its output is highly corredoes not yet appear to be implemented. Acar et

lated with human annotations. al. (2005) adds word repetition to their feature set.
However, their approach deals with all word repe-
2 Related Work titions on an equal basis, and so degrades quickly

in the presence afoise wordgtheir term for words

Two threads of research are direct attempts to solwghich shared across conversations) to almost com-
the disentanglement problem: Aoki et al. (2006)plete failure when onlyt /2 of the words are shared.
Aoki et al. (2003) for speech and Camtepe et al. To motivate our own approach, we examine some
(2005), Acar et al. (2005) for chat. We discussinguistic studies of discourse, especially analysis of
their approaches below. However, we should enmulti-party conversation. O’Neill and Martin (2003)
phasize that we cannot compare our results directpoint out several ways in which multi-party text chat
with theirs, because none of these studies publish reiffers from typical two-party conversation. One key
sults on human-annotated data. Although Aoki et allifference is the frequency with which participants
(2006) construct an annotated speech corpus, theention each others’ names. They hypothesize that
give no results for model performance, only user sainentioning is a strategy which participants use to
isfaction with their conversational system. Camtepmake disentanglement easier, compensating for the
et al. (2005) and Acar et al. (2005) do give perfortack of cues normally present in face-to-face dia-
mance results, but only on synthetic data. logue. Mentions (such as Gale’s comments to Ar-

All of the previous approaches treat the problentie in figure 1) are very common in our corpus, oc-
as one of clustering speakers, rather than utterancesrring in 36% of comments, and provide a useful
That is, they assume that during the window oveteature.
which the system operates, a particular speaker isAnother key difference is that participants may
engaging in only one conversation. Camtepe et atreate a new conversation (floor) at any time, a pro-
(2005) assume this is true throughout the entire tramess which Sacks et al. (1974) caltshisming Dur-



ing a schism, a new conversation is formed, ngbeople, and that, “We mean conversation in the typ-
necessarily because of a shift in the topic, but baeal sense: a discussion in which the participants are
cause certain participants have refocused their attesi} reacting and paying attention to one another.. . it
tion onto each other, and away from whoever heldhould be clear that the comments inside a conver-
the floor in the parent conversation. sation fit together.” The annotation system itself is a
Despite these differences, there are still strongimple Java program with a graphical interface, in-
similarities between chat and other conversatiortended to appear somewhat similar to a typical chat
such as meetings. Our feature set incorporates infatlient. Each speaker’'s name is displayed in a differ-
mation which has proven useful in meeting segmerent color, and the system displays the elapsed time
tation (Galley et al., 2003) and the task of detectbetween comments, marking especially long pauses
ing addressees of a specific utterance in a meetimg red. Annotators group sentences into conversa-
(Jovanovic et al., 2006). These include word reptons by clicking and dragging them onto each other.
etitions, utterance topic, antlie wordswhich can
indicate the bounds of a segment.

3 Dataset

. 3.2 Metrics
Our dataset is recorded from the IRC (Internet Re-

lay Chat) channel ##NUX at freenode.netusing

the freely-availablgaimclient. ##INUX is an un- fore di _ h _ h |
official tech support line for the Linux operating sys—Be ore discussing the annotations themselves, we

tem, selected because it is one of the most active cH’éﬁlI descrlb(_a the metrics we use to compare differ-

rooms on freenode, leading to many simultaneo &Nt @nnotations; thgse measure both how much our
conversations, and because its content is typicalf'wno'{ators agree with eat_:h other, and how well our
inoffensive. Although it is notionally intended only M°de! and various baselines perform. Comparing

for tech support, it includes large amounts of socia‘fIUSte”ngS with different numbers of clusters is a

chat as well, such as the conversation about factoﬂpn'_mv'al taslf,' an_d metrics for agrger_nent on su-
work in the example above (figure 1) pervised classification, such as thetatistic, are not

The entire dataset contains 52:18 hours of Chaz?’ppllcable.
but we devote most of our attention to three anno- L
L . ~.nn TO Measure global similarity between annota-
tated sections: development (706 utterances; Z'Qi%ns we usene-to-one aceuracyThis measure de
hr) and test (800 utts.; 1:39 hr) plus a short pilot sec-"".""

. , . §cribes how well we can extract whole conversations
tion on which we tested our annotation system (35 . . i .
utts.: 0:58 hr). Intact, as required for summarization or information

extraction. To compute it, we pair up conversations
3.1 Annotation from the two annotations to maximize the total over-

. . Jlap?, then report the percentage of overlap found.
Our annotators were seven university students wnhp3 P P 9 P

at Ieast. some familiarity W't_h the Linux _OS’ al- If we intend to monitor or participate in the con-
though in SOME cases very slight. Annotation of th@ersation as it occurs, we will care more about lo-
test dataset typically took them about two hours. I'Eal judgements. Thiacal agreemenimetric counts

all, we produced six annotations of the tesset agreements and disagreements within a contiext

Our annotation scheme marks each utterance 9g, consider a particular utterance: the previous
part of a single conversation. ANNOtators are iny. worar oo oo aach in either thameor a dif-

structed to create as many, or as few conversations@s. n« conversation. Théo ¢ score between two
they need to describe the data. Our instructions stale notators is their average agreement on these
that a conversation can be between any number of o gifferent judgements, averaged over all utter-

2One additional annotation was discarded because the anrR0C€S. For exampléoc; counts pairs of adjacent
tator misunderstood the task. utterances for which two annotations agree.



Mean Max Min
Conversations 81.33 128 50
Avg. Conv. Length 10.6 16.0 6.2
Avg. Conv. Density 2.75 292 253
Entropy 483 6.18 3.00
1-to-1 52.98 63.50 35.63
loc s 81.09 86.53 74.75

M-to-1 (by entropy) 86.70 94.13 75.50

Table 1: Statistics on 6 annotations of 800 lines of chat
transcript. Inter-annotator agreement metrics (below the
line) are calculated between distinct pairs of annotations

3.3 Discussion
A statistical examination of our data (table 1) shows

(Lai) need money

(Astrid) suggest a paypal fund or similar
(Lai) Azzie [sic; typo for Astrid?]: my
shack guy here said paypal too but i have
no local bank acct

(Felicia) second’s Azzie’s suggestion
(Gale) we should charge the noobs $1 per
question to [Lai’s] paypal

(Felicia) bingo!

(Gale)we’d have the money in 2 days max
(Azzie) Lai: hrm, Have you tried to set
one up?

(Arlie) the federal reserve system conspir-
acy is keeping you down man

(Felicia) Gale: all ubuntu users .. pay up!

(Gale) and susers pay double

(Azzie) | certainly would make suse users
pay.

(Hildegard) triple.

(Lai) Azzie: not since being offline
(Felicia) it doesn’t need to be “in state”
either

that that it is eminently suitable for disentanglement:
the average number of conversations active at a time
is 2.75. Our annotators have high agreement on
the local metric (average of 81.1%). On the 1-to-
1 metric, they disagree more, with a mean overlap
of 53.0% and a maximum of only 63.5%. This level
of overlap does indicate a useful degree of reliabil-
ity, which cannot be achieved with naive heuristics
(see section 5). Thus measuring 1-to-1 overlap withigure 2: A schism occurring in our corpus (abridged):
our annotations is a reasonable evaluation for connot all annotators agree on where the thread about charg-
putational models. However, we feel that the majoilng for answers to techical questions dive_rges from the
source of disagreement is one that can be remedi88€ about setting up Paypal accounts.  Either Gale's or
. . ) . Azzie’s first comment seems to be the schism-inducing
in future annotation schemes: the specificity of the
o . utterance.
individual annotations.

To measure the level of detail in an annotation, we
use the information-theoretic entropy of the randorifersation in thetarget with which it has the great-
variable which indicates which conversation an utest overlap, then counts the total percentage of over-
terance is in. This quantity is non-negative, increadap. This is not a statistic to be optimized (indeed,
ing as the number of conversations grow and theqptimization is trivial: Slmply make each utterance
size becomes more balanced. It reaches its ma the source into its own conversation), but it can
mum,9.64 bits for this dataset, when each utterancgive Us some intuition about specificity. In partic-
is placed in a separate conversation. In our annglar, if one subdivides a coarse-grained annotation
tations, it ranges from 3.0 to 6.2. This large variio make a more specific variant, the many-to-one
ation shows that some annotators are more specifi€curacy from fine to coarse remains 1. When we
than others, but does not indicate how much thefpap high-entropy annotations (fine) to lower ones
agree on the general structure. To measure this, Weoarse), we find high many-to-one accuracy, with a
introduce the many-to-one accuracy. This measurg2ean of 86%, which implies that the more specific
ment is asymmetrical, and maps each of the converinotations have mostly the same large-scale bound-
sations of thesourceannotation to the single con- aries as the coarser ones.
— _ o ) By examining the local metric, we can see even

This is an example of max-weight bipartite matching, ancFrl

. ) . ore: local correlations are good, at an average of
can be computed optimally using, eg, max-flow. The widely o . . .
used greedy algorithm is a two-approximation, although w&1.1%. This means that, in the three-sentence win-

have not found large differences in practice. dow preceding each sentence, the annotators are of-



ten in agreement. If they recognize subdivisions ¢
a large conversation, these subdivisions tend to |
contiguous, not mingled together, which is why they
have little impact on the local measure.

=
[=]

We find reasons for the annotators’ disagreeme
about appropriate levels of detail in the linguistic
literature. As mentioned, new conversations of
ten break off from old ones in schisms. Aoki et ° o 20 30 40 50 60
al. (2006) discuss conversational features associated
with schisming and the related processififliation, ~Figure 3: Utterances versus conversations participated in
by which speakers attach themselves to a converd2gr speaker on development data.
tion. Schisms often branch off from asides or even
normal commentg@ss-outywithin an existingcon- 4 Model
versation. This means that there is no clear begin-
ning to the new conversation— at the time when iour model for disentanglement fits into the general
begins, it is not clear that there are two separa@ass of graph partitioning algorithms (Roth and Yih,
floors, and this will not become clear until distinct2004) which have been used for a variety of tasks in
sets of speakers and patterns of turn-taking are €§L-P: including the related task of meeting segmen-
tablished. Speakers, meanwhile, take time to orfation (Malioutov and Barzilay, 2006). These algo-

ent themselves to the new conversation. An exampl8hms operate in two stages: first, a binary classifier
schism is shown in Figure 2. marks each pair of items as alike or different, and

_ , second, a consistent partition is extracted.
Our annotation scheme requires annotators to

mark each utterance as part of a single conversation,] Classification
and distinct conversations are not related in any way, . <o 4 maximum-entropy classifier (Daauil
If a schism occurs, the annotator is faced with tw%004) to decide whether a pair of utterantx%néj
options: if it seems short, they may view it as a mere

di ; d label it ¢ of th ; are insameor differentconversations. The most
|g_reSS|o_n and labet it as part ot tne pa_ren conve ikely class isdifferent which occurss7% of the
sation. If it seems to deserve a place of its own, th

; : N NYme in development data. We describe the classi-
will have to separate it from the parent, but this Sevi

C ) ler’'s performance in terms of raw accuracy (cor-
ers the initial comment (an otherwise unremarkabl

fect decisions/ total), precision and recall of the
aside) from its context. One or two of the annota- y ) P

. sameclass, and F-score, the harmonic mean of pre-
tors_ actually remarked that this madg the“t as|-< co ision and recall. Our classifier uses several types
fus:‘lng. Our”apnotators seem to be either “Splittersy oy reg (table 2). The chat-specific features yield
or Igmpers -n qther words, each a_mnotator S€€Mpe highest accuracy and precision. Discourse and
to aim f_or a cqnsustent level .Of detail, but each ON%ontent-based features have poor accuracy on their
has their own idea of what this level should be. own (worse than the baseline), since they work best
As a final observation about the dataset, we tesh nearby pairs of utterances, and tend to fail on
the appropriateness of the assumption (used in prerore distant pairs. Paired with the time gap fea-
vious work) that each speaker takes part in only ongire, however, they boost accuracy somewhat and
conversation. In our data, the average speaker takg®duce substantial gains in recall, encouraging the
part in about 3.3 conversations (the actual numbe¥iodel to group related utterances together.
varies for each annotator). The more talkative a The time gap, as discussed above, is the most
speaker is, the more conversations they participaigidely used feature in previous work. We exam-
in, as shown by a plot of conversations versus utte

ances (Figure 3). The assumption is not very aCC:Lrln'odel. However, we could not define a sharp enough posterior

rate, especially for speakers with more than 10 uttefyer new sentences, which made the model unstable and overly
ances. sensitive to its prior.

Threads
O = N W hHh Ut 0 N 0O
L
L]
$
L]

4Our first attempt at this task used a Bayesian generative



Chat-specific (Acc 73: Prec: 73 Rec: 61 F: 66)

Time The time betweexandy in sec-

onds, bucketed logarithmically.
Speaker x andy have the same speaker.
Mention X mentionsy (or vice versa),

both mention the same name, ei-
ther mentions any name.
Discourse (Acc 52: Prec: 47 Rec: 77 F: 58)
Cue words Eitherx or y uses a greeting
(“hello” &c), an answer (“yes”,
“no” &c), or thanks.

Question Either asks a question (explicitly
marked with “?").
Long Either is long £ 10 words).

Content (Acc 50: Prec: 45 Rec: 74 F: 56)

Repeat{) @ The number of words shared
betweenx and y which have
unigram probabilityi, bucketed
logarithmically.

Tech Whether botlx andy use tech-

nical jargon, neither do, or only
one does.
Combined (Acc 75: Prec: 73 Rec: 68 F: 71)

Table 2: Feature functions with performance on develo

ment data.

ine the distribution of pauses between utterances
the same conversation. Our choice of a logarithm
bucketing scheme is intended to capture two ch
acteristics of the distribution (figure 4). The curve
has its maximum at 1-3 seconds, and pauses shor&eer]c
than a second are less common. This reflects turp-
taking behavior among participants; participants i
the same conversation prefer to wait for each other
responses before speaking again. On the other han
the curve is quite heavy-tailed to the right, leadin

us to bucket long pauses fairly coarsely.

p_

n

wise relationships: questions followed by answers,
short comments reacting to longer ones, greetings at
the beginning and thanks at the end.

Word repetition is a key feature in nearly every
model for segmentation or coherence, so itis no sur-
prise that it is useful here. We bucket repeated words
by their unigram probabiliy(measured over the en-
tire 52 hours of transcript). The bucketing scheme
allows us to deal with “noise words” which are re-
peated coincidentally.

The point of the repetition feature is of course to
detect sentences with similar topics. We also find
that sentences with technical content are more likely
to be related than non-technical sentences. We label
an utterance as technical if it contains a web address,
a long string of digits, or a term present in a guide
for novice Linux user$ but not in a large news cor-
pus (Graff, 1995). This is a light-weight way to
capture one “semantic dimension” or cluster of re-
lated words, in a corpus which is not amenable to
full LSA or similar techniques. LSA in text corpora
yields a better relatedness measure than simple rep-
etition (Foltz et al., 1998), but is ineffective in our
corpus because of its wide variety of topics and lack
of distinct document boundaries.

Pairs of utterances which are widely separated

}H the discourse are unlikely to be directly related—

ieven if they are part of the same conversation, the

a

fink between them is probably a long chain of in-
{érvening utterances. Thus, if we run our classifier
on a pair of very distant utterances, we expect it to
ault to the majority class, which in this case will
Be different and this will damage our performance
in case the two are really part of the same conver-
ggtion. To deal with this, we run our classifier only

ON' utterances separated by 129 seconds or less. This

% the last of our logarithmic buckets in which the

classifier has a significant advantage over the major-

Our discourse-based features model some P baseline. For 99.9% of utterances in an ongoing

N
o

Frequency
N
o

%ﬂm |
0 10 100
seconds

o

1000

conversation, the previous utterance in that conver-
sation is within this gap, and so the system has a

*We discard the 50 most frequent words entirely.

8“Introduction to Linux: A Hands-on Guide”. Machtelt
Garrels. Edition 1.25 from http:/tldp.org/LDP/intro-
linux/html/intro-linux.html .

"Our data came from the LA times, 94-97— helpfully, it pre-

Figure 4: Distribution of pause length (log-scaled) bedates the current wide coverage of Linux in the mainstream

tween utterances in the same conversation.

press.



chance of correctly linking the two. lutions, which implies we have already reached the
On test data, the classifier has a mean accuracy lohits of what our classifier can tell us.

68.2 (averaged over annotations). The mean preci- _

sion of same conversatios 53.3 and the recall is © EXPeriments

71.3, with mean F-score 0f0. This error rate is \ve annotate the 800 line test transcript using our
high, but the partitioning procedure allows us t0 résystem. The annotation obtained has 63 conversa-
cover from some of the errors, since if nearby uttefions, with mean length2.70. The average density
ances are grouped correctly, the bad decisions Wi conversations i8.9, and the entropy i8.79. This

be outvoted by good ones. places it within the bounds of our human annota-
tions (see table 1), toward the more general end of
the spectrum.

The next step in the process is to cluster the utter- As a standard of comparison for our system, we
ances. We wish to find a set of clusters for which thgrovide results for several baselines— trivial systems
weighted accuracy of the classifier would be maxwhich any useful annotation should outperform.
imal; this is an example oforrelation clustering _ _

(Bansal et al., 2004), which is NP-compft&ind- All different Each utterance is a separate conversa-

ing an exact solution proves to be difficult; the prob- 10N

lem has a quadratic number of variables (one ok, same The whole transcript is a single conversa-
each pair of utterances) and a cubic number of tri- tion.

angle inequality constraints (three for each triplet).

With 800 utterances in our test set, even solving thBlocks of £ Each consecutive group éfutterances
linear program with CPLEX (llog, Inc., 2003) is too is a conversation.

expensive to be practical.

Although there are a variety of approximationsPause ofk Each pause Ok seconds or more sepa-
and local searches, we do not wish to investigate rates two conversations.
partitioning methods in this paper, so we simplyspeaker Each speaker’s utterances are treated as a
use a greedy search. In this algorithm, we as-  monologue.
sign utterancej by examining all previous utter-
ancesi within the classifiers window, and treat- For each particular metric, we calculate the best
ing the classifier's judgement ; — .5 as a vote for baseline result among all of these. To find the best

cluster(i). If the maximum vote is greater than 0,block size or pause length, we search over multiples
we setcluster(j) = argmaz. vote,. Otherwisej of 5 between 5 and 300. This makes these baselines
is put in a new cluster. Greedy clustering makes @ppear better than they really are, since their perfor-
least a reasonable starting point for further effortgnance is optimized with respect to the test data.
since it is a natural online algorithm— it assigns each Our results, in table 3, are encouraging. On aver-
utterance as it arrives, without reference to the fuage, annotators agree more with each other than with
ture. any artificial annotation, and more with our model
At any rate, we should not take our objective functhan with the baselines. For the 1-to-1 accuracy met-
tion too seriously. Although it is roughly correlatedric, we cannot claim much beyond these general re-
with performance, the high error rate of the classifiepults. The range of human variation is quite wide,
makes it unlikely that small changes in objective will@nd there are annotators who are closer to baselines
mean much. In fact, the objective value of our outpuian to any other human annotator. As explained
solutions are generally higher than those for true s&2arlier, this is because some human annotations are
- much more specific than others. For very specific
“We set up the problem by taking the weight of edgeas  gnnotations, the best baselines are short blocks or

the classifier's decisiop; ; — .5. Roth and Yih (2004) use log .
probabilities as weights. Bansal et al. (2004) propose the | auses. For the most general, marking all utterances

odds ratiolog(p/(1 — p)). We are unsure of the relative merit tn€ same does very well (although for all other an-
of these approaches. notations, it is extremely poor).

4.2 Partitioning



Other Annotatorg Model Best Baseline All Diff  All Same
Mean 1-to-1 52.98 40.62 | 34.73 (Blocks of 40)  10.16 20.93
Max 1-to-1 63.50 51.12 | 56.00 (Pause of 65) 16.00 53.50
Min 1-to-1 35.63 33.63 | 28.62 (Pause of 25) 6.25 7.13
Meanloc 3 81.09 72.75 62.16 (Speaker) 52.93 47.07
Max loc 3 86.53 75.16 69.05 (Speaker) 62.15 57.47
Min loc 3 74.75 70.47 54.37 (Speaker) 42.53 37.85

Table 3: Metric values between proposed annotations andahwannotations. Model scores typically fall between
inter-annotator agreement and baseline performance.

For the local metric, the results are much clearesuch as prosody. Turn-taking behavior is also more
There is no overlap in the ranges; for every test amistinct, which makes the task easier, but according
notation, agreement is highest with other annotae (Aoki et al., 2006), it is certainly not sufficient.
tor, then our model and finally the baselines. The Improving the current model will definitely re-
most competitive baseline is one conversation pejuire better features for the classifier. However, we
speaker, which makes sense, since if a speakalso left the issue of partitioning nearly completely
makes two comments in a four-utterance windowynexplored. If the classifier can indeed be improved,
they are very likely to be related. we expect the impact of search errors to increase.

The name mention features are critical for ouAnother issue is that human users may prefer more
model’s performance. Without this feature, the claser less specific annotations than our model provides.
sifier's development F-score drops from 71 to 56We have observed that we can produce lower or
The disentanglement system’s test performance deigher-entropy annotations by changing the classi-
creases proportionally; mean 1-to-1 falls to 36.08jer’s bias to label more edges same or different. But
and meanioc 3 to 63.00, essentially baseline per-we do not yet know whether this corresponds with
formance. On the other hand, mentions are ndtuman judgements, or merely introduces errors.
sufficient; with only name mention and time gap
features, mean 1-to-1 is 38.54 ahd: 5 is 67.14. 7 Conclusion
F_or some utterances, of course, name mentions pr.‘PF]is work provides a corpus of annotated data for
vide the only reasonable clue to the correct deci- . . :

chat disentanglement, which, along with our pro-

sion, which is why humans mention names in the .
posed metrics, should allow future researchers to

first place. But our system is probably overly depen aluate and compare their results quantitatizely

i . e
dent on them, since they are very reliable compareg/ ) . .

ur annotations are consistent with one another, es-
to our other features.

pecially with respect to local agreement. We show
6 Future Work that features based on discourse patterns and the

content of utterances are helpful in disentanglement.

Although our annotators are reasonably reliable, o model we present can outperform a variety of
seems clear that they think of conversations as a hizselines.

erarchy, with digressions and schisms. We are in-

terested to see an annotation protocol which morgcknowledgements

closely follows human intuition and explicitly in-

cludes these kinds of relationships. Our thanks to Suman Karumuri, Steve Sloman, Matt
We are also interested to see how well this featureease, David McClosky, 7 test annotators, 3 pilot

set performs on speech data, as in (Aoki et al., 200Fnnotators, 3 anonymous reviewers and the NSF

Spoken conversation is more natural than text chdt/RE grant.

but when participants are not face-to-face, disentan-

glement remains a problem. On the other hand, Spo- 5code and data for this project will be available at

ken dialogue contains new sources of informatiorttp://cs.brown.edu/people/melsner.
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