You Talking to Me? A Corpus and Algorithm for Conversation Disentanglement

Micha Elsner and Eugene Charniak

Brown Laboratory for Linguistic Information Processing (BLLIP)

Life in a Multi-User Channel

Does anyone here shave their head?

I shave part of my head.

A tonsure?

Nope, I only shave the chin.

How do I limit the speed of my internet connection?

Use dialup!

Hahaha :P No I can't, I have a weird modem.

I never thought I'd hear ppl asking such insane questions...

Real Life in a Multi-User Channel

Does anyone here shave their head?

How do I limit the speed of my internet connection?

I shave part of my head.

A tonsure?

Use dialup!

Nope, I only shave the chin.

- A common situation:
 - Text chat
 - Push-to-talk
 - Cocktail party

Why Disentanglement?

- A natural discourse task.
 - Humans do it without any training.
- Preprocess for search, summary, QA.
 - Recover information buried in chat logs.
- Online help for users.
 - Highlight utterances of interest.
 - Already been tried manually: Smith et al '00.
 - And automatically: Aoki et al '03.

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

Dataset

- Recording of a Linux tech support chat room.
- 1:39 hour test section.
 - Six annotations.
 - College students, some Linux experience.
- Another 3 hours of annotated data for training and development.
 - Mostly only one annotation by experimenter.
 - A short pilot section with 3 more annotations.

Annotation

```
does anyone here shave their head
            Laurena:
            Felicia:
                         Chanel: though load balancing and such do have their rightful places
            Matha entered the room.
0
                         perspective makes the difference between a whistleblower and a snitch.
            lavmie
            Cory left the room (quit: Read error: 110 (Connection timed out)).
10
                         Laurena: i shave part of my head
8
            Caroll left the room (quit: Read error: 104 (Connection reset by peer)).
8
            Evita left the room.
5
                         Jeanice: a tonsure? ;)
            esse
                        Felicia: come on, please!
            Chanel:
            Rea entered the room.
                         a snitch is much worse than a whistleblower
            Gale:
            Felicia
                         Gale: i wonder if they give you some Cash back like the Utilities do when
your meter spins backwards, from your Solar panel PVs
            Lilliana:
                         PoNg
```

- Annotation program with simple click-and-drag interface.
- Conversations displayed as background colors.

One-to-One Metric

Two annotations of the same dataset.

One-to-One Metric

One-to-One Metric

Local Agreement Metric

Annotator 1

Annotator 2

Local Agreement Metric

Annotator 1 Annotator 2

Local Agreement Metric

Annotator 1 Annotator 2

Interannotator Agreement

	Min	Mean	Max	
One-to-One	36	53	64	_
Local Agreement	75	81	87	

- Local agreement is good.
- One-to-one not so good!

How Annotators Disagree

Conversations
Entropy

Min	Mean	Max
50	81	128
3	4.8	6.2

Some annotations are much finer-grained than others.

Schisms

- Sacks et al '74: Formation of a new conversation.
- Explored by Aoki et al '06:
 - A speaker may start a new conversation on purpose...
 - Or unintentionally, as listeners react in different ways.
- Causes a problem for annotators...

To Split...

I grew up in Romania till I was 10. Corruption everywhere.

And my parents are crazy.

Couldn't stand life so I dropped out of school.

You're at OSU?

Man, that was an experience.

You still speak Romanian?

Yeah.

Or Not to Split?

I grew up in Romania till I was 10. Corruption everywhere.

And my parents are crazy.

Couldn't stand life so I dropped out of school.

You're at OSU?

Man, that was an experience.

You still speak Romanian?

Yeah.

Accounting for Disagreements

One-to-One Many-to-One

Min	Mean	Max
36	53	64
76	87	94

Many-to-one mapping from high entropy to low:

First annotation is a strict refinement of the second.

One-to-one: only 75%

Many-to-one: 100%

Pauses Between Utterances

A classic feature for models of multiparty conversation.

Name Mentions

- Sara Is there an easy way to extract files from a patch?
- Carly Sara: No.
- Carly Sara: Patches are diff deltas.
- Sara Carly, duh, but this one is just adding entire files.
 - Very frequent: about 36% of utterances.
 - A coordination strategy used to make disentanglement easier.
 - O'Neill and Martin '03.
 - Usually part of an ongoing conversation.

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

Previous Work

- Aoki et al '03, '06
 - Conversational speech
 - System makes speakers in the same thread louder
 - Evaluated qualitatively (user judgments)
- Camtepe '05, Acar '05
 - Simulated chat data
 - System intended to detect social groups

Previous Work

- Based on pause features.
 - Acar '05: adds word repetition, but not robust.
- All assume one conversation per speaker.
 - Aoki '03: assumed in each 30-second window.

Conversations Per Speaker

Our Method: Classify and Cut

- Common NLP method: Roth and Yih '04.
- Links based on max-ent classifier.
- Greedy cut algorithm.
 - Found optimal too difficult to compute.

Classifier

 Pair of utterances: same conversation or different?

- Chat-based features (F 66%):
 - Time between utterances
 - Same speaker
 - Name mentions
- Most effective feature set.

Classifier

 Pair of utterances: same conversation or different?

- Chat-based features (F 66%)
- Discourse-based (F 58%):
 - Detect questions, answers, greetings &c
- Lexical (F 56%):
 - Repeated words
 - Technical terms

Classifier

 Pair of utterances: same conversation or different?

- Chat-based features (F 66%)
- Discourse-based (F 58%)
- Lexical (F 56%)
- Combined (F 71%)

Inference

Greedy algorithm: process utterances in sequence

Classifier marks each pair "same" or "different" (with confidence scores).

Pro: online inference

Con: not optimal

Inference

Pro: online inference

Con: not optimal

Inference

Greedy algorithm: Treat classifier decisions process utterances as votes. in sequence Color according to the winning vote. Pro: online inference If no vote is positive, Con: not optimal begin a new thread.

Baseline Annotations

- All in same conversation
- All in different conversations
- Speaker's utterances are a monologue
- Consecutive blocks of k
- Break at each pause of k
 - Upper-bound performance by optimizing k on the test data.

Results

	Humans	Model	Best Baseline	All Diff	All Same
Max 1-to-1	64	51	56 (Pause 65)	16	54
Mean 1-to-1	53	41	35 (Blocks 40)	10	21
Min 1-to-1	36	34	29 (Pause 25)	6	7

	Humans	Model	Best Baseline	All Diff	All Same
Max local	87	75	69 (Speaker)	62	57
Mean local	81	73	62 (Speaker)	53	47
Min local	75	70	54 (Speaker)	43	38

One-to-One Overlap Plot

Local Agreement Plot

All annotators agree first with other humans, then the system, then the baselines.

Mention Feature

- Name mention features are critical.
 - When they are removed, system performance drops to baseline.
- But not sufficient.
 - With only name mention and time gap features, performance is midway between baseline and full system.

Plenty of Work Left

- Annotation standards:
 - Better agreement
 - Hierarchical system?
- Speech data
 - Audio channel
 - Face to face
- Improve classifier accuracy
- Efficient inference
- More or less specific annotations on demand

Data and Software is Free

Available at:

www.cs.brown.edu/~melsner

- Dataset (text files)
- Annotation program (Java)
- Analysis and Model (Python)

Acknowledgements

- Suman Karumuri and Steve Sloman
 - Experimental design
- Matt Lease
 - Clustering procedure
- David McClosky
 - Clustering metrics (discussion and software)
- 7 test and 3 pilot annotators
- 3 anonymous reviewers
- NSF PIRE grant