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Early language learning

Audio Interpretable
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Early language learning

Language
model

(words : sentence)

you want
you like

...

you
want

a
cookie

Segmented
details Feldman et al 09, http://www.contrib.andrew.cmu.edu/, http://blogs.oucs.ox.ac.uk/ 

Audio

Phonetic
categories

(audio : phoneme)

jəwanəkuki

Phonetic
transcript

ju, jə, jɪyou

want wan, want

Pronunciation
dictionary

(phonemes : word)

...

Interpretable
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Synergy

I Are /u/ and /i/ different vowels?
I Pronunciation: yes, because /ju/ is common and /ji/ is

rare

I Is /ju/ a word?
I Phonetics: yes, because /j/ predicts /u/-like vowel tokens
I Language model: yes, because it helps predict subsequent

/want/

I Is /ju/ /want/ different from /DEj/ /want/?
I Pronunciation: yes, because they contain dissimilar

segments

Components interact to solve the problem...
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Evidence from development

Phonetics

Lexicon
birth 1 year6 months

names (Bortfeld+al 05)

frequent words (Jusczyk+al 95, 99)

function words (Shady 96)

native consonant contrasts (Werker+Tees 84)

native vowel contrasts (Polka+Werker 94)

following presentations by Feldman 09, Dupoux 09

8 months

frequent words (Bergelson+Swingley 12)

Key developments at roughly the same time
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Want to show: these synergies are real!

Cognitive/Linguistic
I Establish role of synergy in early acquisition
I Propose mechanisms: predict

developmental stages
I Universals vs. generic learning

Applied
I Unsupervised speech recognition
I Learn new lexical items/accents
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Related work
I (Martin, Peperkamp, Dupoux ‘12) Clusters symbolic phones into

phonemes by learning a proto-lexicon
I (Feldman, Griffiths, Morgan ‘09) Clusters acoustic tokens into

phonemes based on a known lexicon
I (Plaut, Kello ‘98) Neural network model of phonetic

articulations from known lexicon, uncertain semantics
I (Neubig et al ‘12), (Rytting, Brew 2008) Learn words given uncertain

representation of input
I (Vallabha+al ‘07, Varadarajan+al ‘08, Dupoux+al ‘11, Lee+Glass ‘12)

Discover phone-like units from acoustics (no lexicon)

This work
Large, semi-realistic corpus of symbolic input
Learns explicit lexicon and phonetic rules
Future work could integrate some other models!
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In this talk

Motivation

Word segmentation: previous work on the lexicon
Goldwater’s Bayesian model of lexical acquisition

Modeling phonetic variation (ACL ‘12)
Our Bayesian model
Channel model: transducer with articulatory features
Bootstrapping the model
Greedy inference
Performance

Jointly segmenting and modeling variation
Inference with beam sampling

Conclusions
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Word segmentation
(Setup follows (Brent ‘99))

Language
model

(words : sentence)

you want
you like

...

you
want

a
cookie

Segmented

details Feldman et al 09, http://www.contrib.andrew.cmu.edu/, http://blogs.oucs.ox.ac.uk/ 

juwantəkuki

Normalized
phonetic
transcript

Deterministic
dictionary

(phonemes : word)

juyou

want want
...

Audio

juyou

want want

Deterministic
dictionary

(word : phonemes)

...

Human
transcriber

(audio : sentence)

you want a
 cookie

Orthographic

ju want instead of
jə wan
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The input

Input from phonetic dictionary: why?
I Pipeline model?

I Learn phonetics first
I Use learned phonetics to normalize input

I Little theoretical justification for this...
I Real phonetic transcription is expensive!

I Usually requires linguists
I Very time-consuming
I Some for adult speech, no child-directed corpora to my

knowledge

Mostly a matter of convenience!
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Segmenting words: previous work
Previous models use two kinds of evidence:

Boundary-based
/pEtkIti/ : *tk so /pEt/ /kIti/

I Learn about phonotactics
I Place boundaries to break infrequent sound sequences
I Words defined implicitly by boundary position

(Fleck ‘08, Rytting ‘07, Daland+al ‘10, others)

Lexical
/pEtkIti/ : kIti probably a word, so /pEt/ /kIti/

I Learn probable lexical items
I Propose word sequence to cover observed corpus
I Boundaries defined implicitly by word sequence

(Brent ‘99, Venkataraman ‘01, Goldwater ‘09, others)
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Goldwater et al ‘09

A lexical model of word segmentation:
I Generative Bayesian model
I Two parts: probability of lexicon

I Dirichlet process: allows infinite, favors small
I Probability of corpus

I Rewards predictability

I Basis for other work in this talk

12



Generative story

α

θ
0

a, b, ..., ju, ... want, ... juwant, ...
Infinite list of possible words

Probabilities for each word
(sparse)

p(ði) = .1, p(a) = .05, p(want) = .01...

∞ contexts

Conditional probabilities
for each word after each word

p(ði | want) = .3, p(a | want) = .1,
 p(want | want) = .0001...

θ

θ
i

α
1

n utterances

x
1

x
2

...
Observed corpus

ju want ə kuki
ju want ɪt
...
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What’s going on?

Memorizing the data
Lexicon: juwant@kuki, juwantIt
Likelihood of corpus is high...
But lexicon is huge: sparse prior says not very likely

Character by character
Lexicon: j, u, w...
Lexicon is very sparse: prior is high
Likelihood of corpus is poor

True lexicon
Lexicon: ju, want...
A “happy medium”
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Goldwater suffers under variation

Goldwater run on Buckeye corpus (Fleck ‘08)

I Must represent each pronunciation separately
I No var. (dictionary) versus phonetic transcript

Break F Token F Lexicon (type) F
no var. 84 68 27
transcribed 65 35 13

Break F declines: huge decrease in precision
I Undersegmentation
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Overview
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Word segmentation: previous work on the lexicon
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(Simple) phonetic variation

Language
model

(words : sentence)

you want
you like

...

you
want

a
cookie

Segmented
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Audio

ju, jə, jɪyou

want wan, want

Pronunciation
dictionary

(word : phonemes)

...

Human
transcriber

(audio : sentence)

you want a
 cookie

Orthographic

jə
wan

ə
kuki

Segmented
phonetics

ju, jə, jɪyou

want wan, want

Pronunciation
dictionary

(phonemes : word)

...
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Noisy channel setup
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Graphical model

Presented as Bayesian model to emphasize
similarities with (Goldwater+al ‘09)

I Our inference method approximate
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Graphical model
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Graphical model
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Graphical model

x

Ts

ði

di

θα

l r
want kʊki

d
θRθL

Pitman-Yor process

p(kʊki | ði)
p(bɔl | ði)
p(dɔgi | ði)
...
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Factorization

Minor point: here we factor:

p(l , x , y) = p(x)p(l |x)p(r |x)

This generates words twice if we look at the
whole corpus...
In this section we only look at subsets of words.
Later we switch to:

p(l , x , y) = p(l)p(x |l)p(r |x)
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Transducers

Weighted Finite-State Transducer
Reads an input string
Stochastically produces an output string
Distribution p(out |in) is a hidden Markov model

•ð i[ ]
ð/ð i/i

State
(tracks char trigram)

Arc
(reads ð, writes ð) 

Final state

Identity FST given ði
(reads ði "the" and writes ði)

•ð i[ ]
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Our transducer

Produces any output given its input
Allows insertions/deletions

Reads Di, writes anything
(Likely outputs depend on parameters)

ϵ/h
ϵ/w...

...
ð/ð
ð/d

ϵ/h
ϵ/w...

...
i/i
i/e

ϵ/h
ϵ/w...ϵ/ϵ ϵ/ϵ

ϵ/ϵ

•ð i[ ] •ð i[ ]

• ð[ ]ϵ ið[ ]ϵ •i[ ]ϵ
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Probability of an arc

How probable is an arc? ð/d•ð i[ ]

Log-linear model
Extract features f from state/arc pair...

I Score of arc ∝ exp(w · f )
following (Dreyer+Eisner ‘08)

Articulatory features
I Represent sounds by how produced
I Similar sounds, similar features

I D: voiced dental fricative
I d: voiced alveolar stop

see comp. optimality theory systems (Hayes+Wilson ‘08)
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Feature templates for state (prev, curr, next)→ output

Templates for voice, place and manner
Ex. template instantiations:
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Learned probabilities

• D i→
D .7
n .13
T .04
d .02
z .02
s .01
ε .01
. . . . . .
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Inference

Bootstrapping
Initialize: surface type→ itself ([di]→ [di])
Alternate:

I Greedily merge pairs of word types
I ex. intended form for all [di]→ [Di]

I Reestimate transducer

Greedy merging step
Relies on a score ∆ for each pair:

I ∆(u, v): approximate change in model
posterior probability from merging u → v

I Merge pairs in approximate order of ∆
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Computing ∆

∆(u, v): approximate change in model posterior
probability from merging u → v

I Terms from language model
I Encourage merging frequent words
I Discourage merging if contexts differ
I See the paper

I Terms from transducer
I Compute with standard algorithms
I (Dynamic programming)
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Dataset
We want: child-directed speech,

close phonetic transcription

Use: Bernstein-Ratner (child-directed)
(Bernstein-Ratner ‘87)

Buckeye (closely transcribed) (Pitt+al ‘07)

Sample pronunciation for each BR word from
Buckeye:

I No coarticulation between words

“about”
ahbawt:15, bawt:9, ihbawt:4, ahbawd:4, ihbawd:4, ahbaat:2,
baw:1, ahbaht:1, erbawd:1, bawd:1, ahbaad:1, ahpaat:1, bah:1,
baht:1
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Evaluation

Map system’s proposed intended forms to truth
I {Di, di, D@} cluster can be identified by any of these
I System doesn’t do “phonology”— at this stage, neither

may infant?

I Score by tokens; emphasis on frequent words
I ...and types (lexicon); all lexemes counted equally
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With gold segment boundaries

Scores (correct forms)
Token F Lexicon (Type) F

Baseline (ident) 65 67
Initializer 75 78
No context 75 76
Full system 79 87
Upper bound 91 97
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Learning

Initialized with weights on same-sound,
same-voice, same-place, same-manner

0 1 2 3 4 5
Iteration

75
76
77
78
79
80
81
82

Token F
Lexicon F
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Induced word boundaries

Induce word boundaries with (Goldwater+al ‘09)
Cluster with our system

Scores (correct boundaries and forms)
Token F Lexicon (Type) F

Baseline (ident) 44 43
Full system 49 46

After clustering, remove boundaries and
resegment: no improvement
Suggests joint segmentation/clustering
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Joint segmentation and word forms

Language
model

(words : sentence)

you want
you like

...

you
want

a
cookie

Segmented
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Audio
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Pronunciation
dictionary

(word : phonemes)

...

Human
transcriber

(audio : sentence)

you want a
 cookie

Orthographic

ju, jə, jɪyou

want wan, want

Pronunciation
dictionary
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...
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transcript

34



Challenges

Model from previous section fine for joint
segmentation/clustering

I (Factor p(l)p(x |l)p(r |x) but this is trivial fix)

Issue is inference:

I Standard segmentation: sample locations of boundaries
I Only two steps to slice out want

I juwanttu, ju•wanttu, ju•want•tu

I With clustering, have farther to travel
I j@wantu, j@•wantu, j@•wan•tu, ju•wan•tu, ju•want•tu
I Need moves that alter multiple letters/boundaries at once
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Markov-style sampling methods

Can write a Goldwater model as a big FSM:

j u w a n

word ju

[s]

word j

u
word u

w

p(j|[s])

p(u|j)

p(w|ju)

p(w|u)

p(ju|[s])

word w

(first in (Mochihashi+al ‘09))
Only need states that generate the original string

Use forward-backward (plus MH) for inference
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Composing with transducer

ə
word jə

p(jə|[s])
w

p(w|jə)

...
j/j

j/hUnigram
    transducer

(read any, write any)

Acceptor for
original string

j u w a n[s]

d ...

j u w a n

word ju

[s]

word j

u
word u

w

p(j|[s])

p(u|j)

p(w|ju)

p(w|u)

p(ju|[s])

word w
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Result is a REALLY BIG transducer

ə
word jə

p(jə|[s])d
...

j u

word ju

[s]

word j

u
word u

p(j|[s])

p(u|j)

p(ju|[s])
j/j

j/d

ə/u

u/u

u/u
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Sampling from huge transducers (beam sampling)

ə
word jə

p(jə|[s])d
...

j u[s]
j/j

j/d

ə/u

u/u

k

j/k

(van Gael+al ‘08), (Huggins+Wood ‘12)
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Sampling from huge transducers (beam sampling)

 ~ [0, p(u/u)]

 ~ [0, p(j/j)]

ə
word jə

p(jə|[s])d
...

j u[s]
j/j

j/d

ə/u

u/u

k

j/k

(van Gael+al ‘08), (Huggins+Wood ‘12)
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Making this work in practice

Different cutoffs
I Separate cutoffs for letter and word transitions
I Letter cutoffs critical in discarding bad hypotheses
I Can’t be too different: introduces bias!

The infinite prior
I Prior over words is infinite: so is FST!
I Original paper uses sampling to deal with this: not efficient

enough
I Treat prior as another FST...

I But this introduces bias as well!
I Need to use Metropolis-Hastings rejection step (but usually

accept)
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Search strategies

Changing one utterance at a time does not
collapse common variants:

w2t, w2d
ju, j@

Too many steps needed to convert all tokens...

Phase of maximizing word sequence probabilities
I Using two different annealing rates
I Rates >> 1 for word sequence maximize LM probs
I Overgeneralizes lexical items...
I Bad mergers usually unmerge when phase ends
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Developmental speculation

System temporarily overgeneralizes words
I Group Dis, Dat, Dey

I Or hypothesize inserted/deleted segments: En and Enij

I Short, vowel-heavy words particularly vulnerable

Evidence from development?
I Don’t know any proposals of this theory
I (Merriman+Schuster ‘99): 2-4 year olds think “japple” might

mean “apple” under some circumstances
I Tomasello and others: children learn multiword “chunks”
I Can these be reinterpreted as evidence for phonetic

overgeneralization?

Perhaps can test via new experiments...
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Preliminary experiment

1000 line dataset
Tokens (boundaries only) P R F
No channel 56 69 62
Joint 64 69 66

Tokens (bounds and forms) P R F
No channel 40 50 45
Joint 50 54 52

Initial finding
Model with channel is better segmenter

I Better precision, fewer breaks overall
Much better at predicting intended forms

I Reassuring but not really surprising
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Conclusions

I Data with variations is problematic for
models of early lexical acquisition

I Possible to learn phonetics jointly with LM
I Learning synergy improves performance
I Seems possible to do everything jointly...

I But requires some constraints in learning
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Implications and future work
Getting the rest of the way to acoustics will be tricky

I Perhaps fully joint model like (Feldman+al ‘09)?
I Or pre-clustering like (Varadarajan+al ‘08)?

Probably some hidden surprises... results here show variation
can be very problematic!

Mechanisms for inference require some constraints
I The number of hypotheses our learner considers is vast...
I Keeping it manageable requires multiple interacting

random filters

More study needed to find what infants are doing

Thanks

Mary Beckman, Laura Wagner and Lacqueys; Eric Fosler-Lussier, William
Schuler and Clippers; funded by EPSRC; thanks for listening!
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