Correlation Clustering Bounding and Comparing Methods Beyond ILP

Micha Elsner and Warren Schudy

Department of Computer Science Brown University

May 26, 2009

Document clustering

rec.motorcycles

Document clustering: pairwise decisions

rec.motorcycles

Document clustering: partitioning

rec.motorcycles

How good is this?

rec.motorcycles

Correlation clustering

Given green edges w^+ and red edges w^- ... Partition to minimize disagreement.

$$\min_{x} x_{ij} w_{ij}^{-} + (1 - x_{ij}) w_{ij}^{+}$$
s.t.
$$\begin{array}{l} x_{ij} \text{ form a consistent clustering} \\ \text{relation must be transitive: } x_{ij} \text{ and } x_{jk} \rightarrow x_{ik} \end{array}$$

Minimization is NP-hard (Bansal *et al.* '04). How do we solve it?

ILP scalability

ILP:

- $O(n^2)$ variables (each pair of points).
- $O(n^3)$ constraints (triangle inequality).
- Solvable for about 200 items.

Good enough for single-document coreference or generation. Beyond this, need something else.

Previous applications

- Coreference resolution (Soon *et al.* '01), (Ng+Cardie '02), (McCallum+Wellner '04), (Finkel+Manning '08).
- Grouping named entities (Cohen+Richman '02).
- Content aggregation (Barzilay+Lapata '06).
- ► Topic segmentation (Malioutov+Barzilay '06).
- Chat disentanglement (Elsner+Charniak '08).

Solutions: heuristic, ILP, approximate, special-case,

- When you can't use ILP, what should you do?
- How well can you do in practice?
- Does the objective predict real performance?

- When you can't use ILP, what should you do?
 - Greedy voting scheme, then local search.
- How well can you do in practice?
- Does the objective predict real performance?

- When you can't use ILP, what should you do?
 - Greedy voting scheme, then local search.
- How well can you do in practice?
 - Reasonably close to optimal.
- Does the objective predict real performance?

- When you can't use ILP, what should you do?
 - Greedy voting scheme, then local search.
- How well can you do in practice?
 - Reasonably close to optimal.
- Does the objective predict real performance?
 - Often, but not always.

Overview

Motivation

Algorithms

Bounding

Task 1: Twenty Newsgroups

Task 2: Chat Disentanglement

Algorithms

Some fast, simple algorithms from the literature.

Greedy algorithms

- First link
- Best link
- Voted link
- Pivot

Local search

- Best one-element move (BOEM)
- Simulated annealing

Greedy algorithms

Step through the nodes in random order. Use a linking rule to place each unlabeled node.

First link (Soon '01)

Best link (Ng+Cardie '02)

Voted link

Pivot (Ailon+al '08)

Create each whole cluster at once. Take the first node as the pivot.

pivot node

Pivot

Choose the next unlabeled node as the pivot.

Local searches

One-element moves change the label of a single node.

Local searches

One-element moves change the label of a single node.

- Greedily: best one-element move (BOEM)
- Stochastically (annealing)

Overview

Motivation

Algorithms

Bounding

Task 1: Twenty Newsgroups

Task 2: Chat Disentanglement

Trivial bound from previous work

Semidefinite programming bound (Charikar et al.'05)

Represent each item by an *n*-dimensional basis vector:

For an item in cluster *c*, vector *r* is: $\underbrace{(\underbrace{0,0,\ldots,0}_{c-1},1,\underbrace{0,\ldots,0}_{n-c})}_{n-c}$

For two items clustered together, $r_i \bullet r_j = 1$. Otherwise $r_i \bullet r_j = 0$.

Semidefinite programming bound (Charikar et al.'05)

Represent each item by an *n*-dimensional basis vector:

For an item in cluster *c*, vector *r* is: $\underbrace{(\underbrace{0,0,\ldots,0}_{c-1},1,\underbrace{0,\ldots,0}_{n-c})}_{n-c}$

For two items clustered together, $r_i \bullet r_j = 1$. Otherwise $r_i \bullet r_j = 0$.

Relaxation

Allow r_i to be any real-valued vectors with:

- Unit length.
- ► All products $r_i \bullet r_j$ non-negative.

Semidefinite programming bound (2)

Semidefinite program (SDP)

$$\min_{r} \sum (r_{i} \bullet r_{j}) w_{ij}^{-} + (1 - r_{j} \bullet r_{j}) w_{ij}^{+}$$
$$r_{i} \bullet r_{i} = 1 \qquad \forall i$$
s.t. $r_{i} \bullet r_{j} \ge 0 \qquad \forall i \neq j$

Objective and constraints are linear in the dot products of the r_i .

Semidefinite programming bound (2)

Semidefinite program (SDP)

$$\begin{aligned} \min_{x} \sum x_{ij} w_{ij}^{-} + (1 - x_{ij}) w_{ij}^{+} \\ x_{ij} = 1 \qquad \forall i \\ \text{s.t.} \quad x_{ij} \geq 0 \qquad \forall i \neq j \end{aligned}$$

Objective and constraints are linear in the dot products of the r_i .

Replace dot products with variables x_{ij} . New constraint: x_{ii} must be dot products of some vectors r! Semidefinite programming bound (2)

Semidefinite program (SDP)

$$\min_{x} \sum x_{ij} w_{ij}^{-} + (1 - x_{ij}) w_{ij}^{+}$$
$$x_{ij} = 1 \qquad \forall i$$
s.t. $x_{ij} \ge 0 \qquad \forall i \ne j$ matrix X PSD

Objective and constraints are linear in the dot products of the r_i .

Replace dot products with variables x_{ij} .

New constraint: x_{ij} must be dot products of some vectors r!Equivalent: matrix X is *positive semi-definite*.

Solving the SDP

- SDP bound previously studied in theory.
- We actually solve it!
- Conic Bundle method (Helmberg '00).
 - Scales to several thousand points.
- Iteratively improves bounds.
 - Run for 60 hrs.

Bounds

Overview

Motivation

Algorithms

Bounding

Task 1: Twenty Newsgroups

Task 2: Chat Disentanglement

Twenty Newsgroups

A standard clustering dataset. Subsample of 2000 posts.

Hold out four newsgroups to train a pairwise classifier:

Twenty Newsgroups

A standard clustering dataset. Subsample of 2000 posts.

Hold out four newsgroups to train a pairwise classifier:

Is this message pair from the same newsgroup?

- Word overlap (bucketed by IDF).
- Cosine in LSA space.
- Overlap in subject lines (by IDF).

Max-ent model with F-score of 29%.

Affinity matrix

		Objective	F-score	One-to-one
Bounds	Trivial bound	0%		
	SDP bound	51.1%		

		Objective	F-score	One-to-one
Davus da	Trivial bound	0%		
Dounus	SDP bound	51.1%		
	Vote/BOEM	55.8%		
	Sim Anneal	56.3%		
Local	Pivot/BOEM	56.6%		
search	Best/BOEM	57.6%		
	First/BOEM	57.9%		
	BOEM	60.1%		

		Objective	F-score	One-to-one
Davada	Trivial bound	0%		
Dounus	SDP bound	51.1%		
	Vote/BOEM	55.8%		
	Sim Anneal	56.3%		
Local	Pivot/BOEM	56.6%		
search	Best/BOEM	57.6%		
	First/BOEM	57.9%		
	BOEM	60.1%		
Greedy	Vote	59.0%		
	Pivot	100%		
	Best	138%		
	First	619%		

		Objective	F-score	One-to-one
Daviada	Trivial bound	0%		
Dounus	SDP bound	51.1%		
	Vote/BOEM	55.8%	33	41
	Sim Anneal	56.3%	31	36
Local	Pivot/BOEM	56.6%	32	39
search	Best/BOEM	57.6%	31	38
	First/BOEM	57.9%	30	36
	BOEM	60.1%	30	35
Greedy	Vote	59.0%	29	35
	Pivot	100%	17	27
	Best	138%	20	29
	First	619%	11	8

Objective vs. metrics

Objective vs. metrics

Overview

Motivation

Algorithms

Bounding

Task 1: Twenty Newsgroups

Task 2: Chat Disentanglement

Chat disentanglement

Separate IRC chat log into threads of conversation. 800 utterance dataset and max-ent classifier from (Elsner+Charniak '08).

Classifier is run on pairs less than 129 seconds apart.

Ruthequestion: what could cause linux not to
find a dhcp server?ChristianaArlie: I dont eat bananas.RenateRuthe, the fact that there isn't one?ArlieChristiana, you should, they have lots of
potassium goodnessRutheRenate, xp computer finds it
eh? dunno thenChristianaArlie: I eat cardboard boxes because of the fibers.

Affinity matrix

		Objective	Local	One-to-one
Bounds	Trivial bound	0%		
	SDP bound	13.0%		

		Objective	Local	One-to-one
Davus da	Trivial bound	0%		
Dounds	SDP bound	13.0%		
	First/BOEM	19.3%		
	Vote/BOEM	20.0%		
Local	Sim Anneal	20.3%		
search	Best/BOEM	21.3%		
	BOEM	21.5%		
	Pivot/BOEM	22.0%		

		Objective	Local	One-to-one
Doundo	Trivial bound	0%		
Dounus	SDP bound	13.0%		
	First/BOEM	19.3%		
	Vote/BOEM	20.0%		
Local	Sim Anneal	20.3%		
search	Best/BOEM	21.3%		
	BOEM	21.5%		
	Pivot/BOEM	22.0%		
Greedy	Vote	26.3%		
	Best	37.1%		
	Pivot	44.4%		
	First	58.3%		

		Objective	Local	One-to-one
Davada	Trivial bound	0%		
Dounus	SDP bound	13.0%		
	First/BOEM	19.3%	74	41
	Vote/BOEM	20.0%	73	46
Local	Sim Anneal	20.3%	73	42
search	Best/BOEM	21.3%	73	43
	BOEM	21.5%	72	22
	Pivot/BOEM	22.0%	72	45
Greedy	Vote	26.3%	72	44
	Best	37.1%	67	40
	Pivot	44.4%	66	39
	First	58.3%	62	39

Objective doesn't always predict performance

Most edges have weight .5:

- Some systems link too much.
- Doesn't affect local metric much...
- But global metric suffers.

In this situation, useful to have an external measure of quality.

Better inference is still useful:

- Vote/BOEM 12% better than (Elsner+Charniak '08).
- Exact same classifier!

Overview

Motivation

Algorithms

Bounding

Task 1: Twenty Newsgroups

Task 2: Chat Disentanglement

- Always use local search!
- Best greedy algorithm is voting.

- Always use local search!
- Best greedy algorithm is voting.
- SDP provides a tighter bound than previous work.
- Best heuristics are not too far from optimal.

- Always use local search!
- Best greedy algorithm is voting.
- SDP provides a tighter bound than previous work.
- Best heuristics are not too far from optimal.
- Better inference usually provides better solutions.
- But not always!
 - Especially for the top few solutions.
 - Useful to check statistics like number of clusters.

- Always use local search!
- Best greedy algorithm is voting.
- SDP provides a tighter bound than previous work.
- Best heuristics are not too far from optimal.
- Better inference usually provides better solutions.
- But not always!
 - Especially for the top few solutions.
 - Useful to check statistics like number of clusters.
- More experiments and discussion in the paper.

Acknowledgements

Software is available:

http://cs.brown.edu/~melsner

Thanks:

- Christoph Helmberg
- Claire Matheiu
- Lidan Wang and Doug Oard
- Three reviewers