Bootstrapping a Unified Model of Lexical and Phonetic Acquisition

Micha Elsner Sharon Goldwater Jacob Eisenstein

School of Informatics University of Edinburgh

School of Interactive Technology Georgia Institute of Technology

July 9, 2012

Early language learning

"you want a cookie?"

Early language learning

Low-level Phonetics: [jəwanəkʊki]

> Phonetics: /juwantekoki/

Segmentation: /ju want e kʊki/

Lexical entries: "you want a cookie?"

Interpretation:

Early language learning

Pronunciations vary

Variation

"Canonical" /want/ ends up as $[{\rm wan}]$ or $[{\rm w\tilde{a}}?]$

Causes of variation

- ▶ Coarticulation (want ðə vs wã? wʌn)
- ▶ Prosody and stress (ði vs ðə)
- Speech rate
- Dialect

Learning sounds, learning words

How do infants learn that $\rm [jə]$ is really $\rm /ju/?$

Pipeline model

- Infant learns English phonetics/phonology first...
- "Unstressed vowels reduce to [a]!"
- ...then learns the words

Joint model

(Feldman+al '09), (Martin+al forthcoming)

- Hypotheses about words support hypotheses about sounds...
- And vice versa
- "If [jə] is the same as [ju], perhaps vowels reduce!"

Developmental evidence supports joint model

Phonetics

native consonant contrasts (Werker+Tees 84)

frequent words (Jusczyk+al 95, 99)

names (Bortfeld+al 05) function words (Shady 96)

Lexicon birth 6 months 1 year

following presentations by Feldman 09, Dupoux 09

Key developments at roughly the same time

This paper

Learn about phonetics and lexicon

Given low-level transcription with word boundaries:

[jə wã? wʌn]

Infer an *intended* form for each surface form:

/ju want wAn/

Inducing a language model over intended forms:

p(/want/|/ju/)And an explicit model of phonetic variation: $p(/u/ \rightarrow [a])$

Learn about the lexicon

Segment words from intended forms (no phonetics):

 $/juwantwn/ \rightarrow /ju wantwn/$

(Brent '99, Venkataraman '01, Goldwater '09, many others)

Segment words from phones (no explicit phonetics or lexicon):

(Fleck '08, Rytting '07, Daland+al '10)

Word-like units from acoustics (no phonetic learning or LM):

 \rightarrow want

(Park+al '08, Aimetti '09, Jansen+al '10)

Learn about the lexicon

Learn about phonetics

Learn both

Supervised: (speech recognition) Tiny datasets: (Driesen+al '09, Rasanen '11) Only unigrams/vowels: (Feldman+al '09)

Learn about the lexicon

Learn about phonetics

Learn both

Us

No acoustics, but... Explicit phonetics and language model... Large dataset

Overview

Motivation

Generative model

Bayesian language model + noisy channel Channel model: transducer with articulatory features

Inference

Bootstrapping Greedy scheme

Experiments

Data with (semi)-realistic variations Performance with gold word boundaries Performance with induced word boundaries

Conclusion

Overview

Motivation

Generative model

Bayesian language model + noisy channel Channel model: transducer with articulatory features

Inference

Bootstrapping Greedy scheme

Experiments

Data with (semi)-realistic variations Performance with gold word boundaries Performance with induced word boundaries

Conclusion

Noisy channel setup

Presented as Bayesian model to emphasize similarities with (Goldwater+al '09)

Our inference method approximate

Transducers

Weighted Finite-State Transducer

Reads an input string Stochastically produces an output string Distribution p(out|in) is a hidden Markov model

Identity FST given õi (reads õi "the" and writes õi)

(reads ð, writes ð)

Our transducer

Produces any output given its input Allows insertions/deletions

> Reads ði, writes anything (Likely outputs depend on parameters)

Probability of an arc

How probable is an arc?

Log-linear model

Extract features f from state/arc pair...

Score of arc $\propto exp(w \cdot f)$

following (Dreyer+Eisner '08)

Articulatory features

- Represent sounds by how produced
- Similar sounds, similar features
 - ð: voiced dental fricative
 - d: voiced alveolar stop

see comp. optimality theory systems (Hayes+Wilson '08)

Feature templates for state (prev, curr, next) \rightarrow output

Templates for voice, place and manner Ex. template instantiations:

Learned probabilities

ð	$i \rightarrow$
ð	.7
n	.13
θ	.04
d	.02
Z	.02
S	.01
ϵ	.01

.

. .

Overview

Motivation

Generative model

Bayesian language model + noisy channel Channel model: transducer with articulatory features

Inference

Bootstrapping Greedy scheme

Experiments

Data with (semi)-realistic variations Performance with gold word boundaries Performance with induced word boundaries

Conclusion

Inference

Bootstrapping

Initialize: surface type \rightarrow itself ([di] \rightarrow [di]) Alternate:

- Greedily merge pairs of word types
 - \blacktriangleright ex. intended form for all [di] \rightarrow [ði]

Reestimate transducer

Inference

Bootstrapping

Initialize: surface type \rightarrow itself ([di] \rightarrow [di]) Alternate:

- Greedily merge pairs of word types
 - \blacktriangleright ex. intended form for all [di] \rightarrow [ði]

Reestimate transducer

Greedy merging step

Relies on a **score** Δ for each pair:

- $\Delta(u, v)$: approximate change in model posterior probability from merging $u \rightarrow v$
- Merge pairs in approximate order of Δ

Computing Δ

$\Delta(u, v)$: approximate change in model posterior probability from merging $u \rightarrow v$

- Terms from language model
 - Encourage merging frequent words
 - Discourage merging if contexts differ
 - See the paper

Terms from transducer

- Compute with standard algorithms
- (Dynamic programming)

	random lexicon want, ju word-to-word transition probabilities p(wantiju), p(tojwant)
(intended utterances ju want wan want e koki
	noisy channel character sequence rewrite probabilities $p(u \rightarrow \partial : j_{s})$
	surface (observed) jə wa? wʌn wan ə kʊki

Review

Bootstrapping

Alternate:

- Greedily merge pairs of word types
 - ► Based on ∆
- Reestimate transducer
 - Using Viterbi intended forms from merge phase
 - Standard max-ent model estimation

Overview

Motivation

Generative model

Bayesian language model + noisy channel Channel model: transducer with articulatory features

Inference

Bootstrapping Greedy scheme

Experiments

Data with (semi)-realistic variations Performance with gold word boundaries Performance with induced word boundaries

Conclusion

Dataset

We want: child-directed speech, close phonetic transcription

Use: Bernstein-Ratner (child-directed)

(Bernstein-Ratner '87)

Buckeye (closely transcribed) (Pitt+al '07)

Sample pronunciation for each BR word from Buckeye:

No coarticulation between words

"about"

ahbawt:15, bawt:9, ihbawt:4, ahbawd:4, ihbawd:4, ahbaat:2, baw:1, ahbaht:1, erbawd:1, bawd:1, ahbaad:1, ahpaat:1, bah:1, baht:1

Evaluation

Map system's proposed intended forms to truth

{ði, di, ðə} cluster can be identified by any of these
Score by tokens and types (lexicon).

With gold segment boundaries

Scores (correct forms)

	Token F	Lexicon (Type) F
Baseline (init)	65	67
Unigrams only	75	76
Full system	79	87
Upper bound	91	97

Learning

Initialized with weights on *same-sound*, *same-voice*, *same-place*, *same-manner*

Induced word boundaries

Induce word boundaries with (Goldwater+al '09) Cluster with our system

Scores (correct boundaries and forms)

	Token F	Lexicon (Type) F
Baseline (init)	44	43
Full system	49	46

After clustering, remove boundaries and resegment: sadly, no improvement

Conclusions

- Models of lexical acquisition must deal with phonetic variability
- First to learn phonetics and LM from naturalistic corpus
- Joint learning of lexicon and phonetics helps

Future Work

- Better inference
 - Token level MCMC/joint segmentation (in progress!)
- Real acoustics
 - Removes need for synthetic data