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Pronunciations vary

Variation
“Canonical” /want/ ends up as [wan] or [w�aP]

Causes of variation
I Coarticulation (want D@ vs w�aP w2n)
I Prosody and stress (Di vs D@)
I Speech rate
I Dialect
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Learning sounds, learning words

How do infants learn that [j@] is really /ju/?

Pipeline model
I Infant learns English phonetics/phonology first...
I “Unstressed vowels reduce to [@]!”
I ...then learns the words

Joint model
(Feldman+al ‘09), (Martin+al forthcoming)

I Hypotheses about words support hypotheses about
sounds...

I And vice versa
I “If [j@] is the same as [ju], perhaps vowels reduce!”
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Developmental evidence supports joint model

Key developments at roughly the same time
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This paper

Learn about phonetics and lexicon
Given low-level transcription with word
boundaries:

[j@ w�aP w2n]
Infer an intended form for each surface form:

/ju want w2n/
Inducing a language model over intended forms:

p(/want/ | /ju/)
And an explicit model of phonetic variation:

p(/u/ → [@])
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Previous work
Learn about the lexicon
Segment words from intended forms (no phonetics):

/juwantw2n/→ /ju want w2n/
(Brent ‘99, Venkataraman ‘01, Goldwater ‘09, many others)

Segment words from phones (no explicit phonetics or lexicon):
(Fleck ‘08, Rytting ‘07, Daland+al ‘10)

Word-like units from acoustics (no phonetic learning or LM):

→ want
(Park+al ‘08, Aimetti ‘09, Jansen+al ‘10)

Learn about phonetics

Learn both

Us
No acoustics, but...
Explicit phonetics and language model...
Large dataset

7



Previous work

Learn about the lexicon

Learn about phonetics
Discover phone-like units from acoustics (no lexicon):

→ [u]
(Vallabha+al ‘07, Varadarajan+al ‘08, Dupoux+al ‘11, Lee+Glass here!)
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Previous work

Learn about the lexicon

Learn about phonetics

Learn both
Supervised: (speech recognition)
Tiny datasets: (Driesen+al ‘09, Rasanen ‘11)

Only unigrams/vowels: (Feldman+al ‘09)

Us
No acoustics, but...
Explicit phonetics and language model...
Large dataset
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Overview

Motivation

Generative model
Bayesian language model + noisy channel
Channel model: transducer with articulatory features

Inference
Bootstrapping
Greedy scheme

Experiments
Data with (semi)-realistic variations
Performance with gold word boundaries
Performance with induced word boundaries

Conclusion
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Noisy channel setup
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Graphical model

Presented as Bayesian model to emphasize
similarities with (Goldwater+al ‘09)

I Our inference method approximate
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Graphical model
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Transducers

Weighted Finite-State Transducer
Reads an input string
Stochastically produces an output string
Distribution p(out |in) is a hidden Markov model
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Our transducer

Produces any output given its input
Allows insertions/deletions

Reads Di, writes anything
(Likely outputs depend on parameters)
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Probability of an arc

How probable is an arc?

Log-linear model
Extract features f from state/arc pair...

I Score of arc ∝ exp(w · f )
following (Dreyer+Eisner ‘08)

Articulatory features
I Represent sounds by how produced
I Similar sounds, similar features

I D: voiced dental fricative
I d: voiced alveolar stop

see comp. optimality theory systems (Hayes+Wilson ‘08)
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Feature templates for state (prev, curr, next)→ output

Templates for voice, place and manner
Ex. template instantiations:
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Learned probabilities

• D i→
D .7
n .13
T .04
d .02
z .02
s .01
ε .01
. . . . . .
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Inference

Bootstrapping
Initialize: surface type→ itself ([di]→ [di])
Alternate:

I Greedily merge pairs of word types
I ex. intended form for all [di]→ [Di]

I Reestimate transducer

Greedy merging step
Relies on a score ∆ for each pair:

I ∆(u, v): approximate change in model
posterior probability from merging u → v

I Merge pairs in approximate order of ∆
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Computing ∆

∆(u, v): approximate change in model posterior
probability from merging u → v

I Terms from language model
I Encourage merging frequent words
I Discourage merging if contexts differ
I See the paper

I Terms from transducer
I Compute with standard algorithms
I (Dynamic programming)
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Review

Bootstrapping
Alternate:

I Greedily merge pairs of word types
I Based on ∆

I Reestimate transducer
I Using Viterbi intended forms from merge phase
I Standard max-ent model estimation
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Dataset
We want: child-directed speech,

close phonetic transcription

Use: Bernstein-Ratner (child-directed)
(Bernstein-Ratner ‘87)

Buckeye (closely transcribed) (Pitt+al ‘07)

Sample pronunciation for each BR word from
Buckeye:

I No coarticulation between words

“about”
ahbawt:15, bawt:9, ihbawt:4, ahbawd:4, ihbawd:4, ahbaat:2,
baw:1, ahbaht:1, erbawd:1, bawd:1, ahbaad:1, ahpaat:1, bah:1,
baht:1
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Evaluation

Map system’s proposed intended forms to truth
I {Di, di, D@} cluster can be identified by any of these

Score by tokens and types (lexicon).
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With gold segment boundaries

Scores (correct forms)
Token F Lexicon (Type) F

Baseline (init) 65 67
Unigrams only 75 76
Full system 79 87
Upper bound 91 97
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Learning

Initialized with weights on same-sound,
same-voice, same-place, same-manner

0 1 2 3 4 5
Iteration

75
76
77
78
79
80
81
82

Token F
Lexicon F
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Induced word boundaries

Induce word boundaries with (Goldwater+al ‘09)
Cluster with our system

Scores (correct boundaries and forms)
Token F Lexicon (Type) F

Baseline (init) 44 43
Full system 49 46

After clustering, remove boundaries and
resegment: sadly, no improvement
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Conclusions
I Models of lexical acquisition must deal with

phonetic variability
I First to learn phonetics and LM from

naturalistic corpus
I Joint learning of lexicon and phonetics helps

Future Work
I Better inference

I Token level MCMC/joint segmentation (in progress!)
I Real acoustics

I Removes need for synthetic data
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