Structured Generative Models for Unsupervised Named Entity Clustering

Micha Elsner, Prof. Eugene Charniak, Prof. Mark E. Johnson

Brown Lab for Linguistic and Information Processing Brown University

Named Entities

People

Micha Elsner Prof. Eugene Charniak Prof. Mark E. Johnson

Organizations

Brown Lab for Linguistic and Information Processing Brown University

Places

Providence, RI

Named Entity Structure

People		
Micha Prof. Eugene Prof. Mark	E.	Elsner Charniak Johnson

Organizations

Brown Lab for Linguistic and Information Processing Brown University

Places

Providence RI

Motivation

Isn't this old news?

Cotraining: (Collins+Singer '99, Riloff+Jones '99)

Motivation

Isn't this old news?

Cotraining: (Collins+Singer '99, Riloff+Jones '99)

Generative models

New direction in coreference resolution: (Haghighi+Klein '07) (Ng '08) and others Integrated models for subtasks (including Named Entity)

- (H+K) cluster named entities using...
 - Head word
 - Coreferent pronouns
- Results are promising.
- Can we make them state-of-the-art?

Goal

- Unsupervised, generative model
- Cluster named entities by type

People Micha Elsner Prof. Eugene Charniak

Goal

- Unsupervised, generative model
- Cluster named entities by type

People Micha Elsner Prof. Eugene Charniak

Discover word classes

Micha Elsner Prof. Eugene Charniak

Goal

- Unsupervised, generative model
- Cluster named entities by type

People Micha Elsner Prof. Eugene Charniak

Discover word classes

Micha Elsner Prof. Eugene Charniak

Cluster possibly-coreferent phrases?

People

Micha Elsner Prof. Eugene Charniak Charniak

Overview

Introduction

Clustering as parsing

Consistency: finding possible entities

Experiments: pronouns are key!

Future directions

Overview

Introduction

Clustering as parsing

Consistency: finding possible entities

Experiments: pronouns are key!

Future directions

Clustering as parsing

Grammar: NF $NE \rightarrow pers$ org $NE \rightarrow org$ $NF \rightarrow loc$ org term org term $org \rightarrow org_term^+$ Brown University *org_term* → Brown NE org term \rightarrow University pers pers \rightarrow pers term⁺ pers term \rightarrow Moses pers term pers term *pers term* → Brown

Moses

Brown

Internal structure

Grammar:

 $\begin{array}{l} \textit{NE} \rightarrow \textit{org} \\ \textit{org} \rightarrow \textit{org}^1 \textit{org}^2 \end{array}$

 $org^1 \rightarrow Brown$ $org^2 \rightarrow University$

Internal structure

Grammar:

 $\begin{array}{l} \textit{NE} \rightarrow \textit{org} \\ \textit{org} \rightarrow \textit{org}^{1} \textit{org}^{2} \\ \textit{org} \rightarrow (\textit{org}^{1})(\textit{org}^{2})(\textit{org}^{3})(\textit{org}^{4})(\textit{org}^{5}) \\ \textit{org}^{1} \rightarrow \textit{Brown} \\ \textit{org}^{2} \rightarrow \textit{University} \end{array}$

Multiword expansions

Grammar: $NE \rightarrow loc$ $place \rightarrow loc^{1} loc^{2}$ $loc^{1} \rightarrow Providence$ $loc^{2} \rightarrow Rhode Island$

Gathering features

- Nominal modifiers (Collins+Singer '99)
 - Appositive: "Hillary Clinton, the Secretary of State
 - Prenominal: "candidate Hillary Clinton"
- Prepositional governor (C+S '99)
 - "a spokesman for Hillary Clinton"
- Personal pronouns
 - "… Hillary Clinton. She said …"
 - Unsupervised model of (Charniak+Elsner '09)
- Relative pronouns
 - "Hillary Clinton, who said..."

Add features to input strings:

Hillary Clinton # Secretary candidate # spokesman-for # she who

Adding features

Grammar:		
NE	\rightarrow	org pronouns _{org}
org	\rightarrow	org ¹ org ²
pronouns _{org}	\rightarrow	# pronoun _{org} *
pronoun _{org}	\rightarrow	which
pronoun _{org}	\rightarrow	they
pronoun _{org}	\rightarrow	he

. . .

Learning the grammar

How to learn rule probabilities?

- Many, many rules:
 - With multiword strings, infinite!
- Most of them useless.

Bayesian model

Sparse prior over rules. Only useful rules get non-zero probability.

Adaptor grammars (Johnson+al '07)

Prior over grammars

- Form of hierarchical Dirichlet process
- Black-box inference, downloadable software
 - Development is just writing the grammar
- But standard inference isn't always good enough

Tuesday, 11:30

"Improving nonparameteric Bayesian inference experiments on unsupervised word segmentation with adaptor grammars", Mark Johnson and Sharon Goldwater.

Overview

Introduction

Clustering as parsing

Consistency: finding possible entities

Experiments: pronouns are key!

Future directions

Consistent phrases

Definition: Consistent

Phrases that could refer to the same entity. Weaker than coreference.

Non-trivial for named entities. Inconsistent, same heads:

- Ford Motor Co.
- Lockheed Martin Co.

Consistent, different heads:

- Professor Johnson
- Mark

Model's concept of consistency follows (Charniak '01):

Model's concept of consistency follows (Charniak '01):

Ordered template	pers1	pers ²	pers ³	pers ⁴
	Prof.	Mark	Ε.	Johnson
realizations		Mark		Johnson

Model's concept of consistency follows (Charniak '01):

	pers ¹	pers ²	pers ³	pers ⁴
Ordered template	Prof.	Mark	Ε.	Johnson
realizations	Prof.	Mark		Johnson Johnson

Model's concept of consistency follows (Charniak '01):

	pers1	pers ²	pers ³	pers ⁴
Ordered template	Prof.	Mark	E.	Johnson
realizations	Prof.	Mark		Johnson Johnson
		Mark		Jeee

Model's concept of consistency follows (Charniak '01):

Ordered template	pers ¹	pers ²	pers ³	pers ⁴
	Prof.	Mark	Ε.	Johnson
realizations	Prof.	Mark		Johnson Johnson
		Mark		
inconsistent		- Mark		- Steedman-

Overview

Introduction

Clustering as parsing

Consistency: finding possible entities

Experiments: pronouns are key!

Future directions

Experimental setup

Datasets:

- Labeled data: MUC-7
 - Three entity classes: PERS, ORG, LOC
- Unlabeled data: NANC

Combine features for multiple examples:

Hillary Clinton #	#	#	who
Hillary Clinton #	Secretary #	#	she
Hillary Clinton #	#	spokesman-for #	her
Hillary Clinton #	Secretary #	spokesman-for #	she her who

More data in equal time...

but no per-document features.

Basic results

Our model: Baseline (all ORG): 46% Our best model: **86%**

.

Confusion matrix: loc org per

LOC	1187	97	37
ORG	223	1517	122
PER	36	20	820

Essentially unjustified comparisons

(Haghighi+Klein '07)

- ACE corpus: 61%
- (Collins+Singer '99)
 - Easier dataset
 - Only examples with features
 - Proportionally more people
 - Generative baseline: 83%
 - Cotraining: 91%

Supervised MUC-7:

- Best system (LTG): 94%
- Human: 97%

Breakdown by features

Model	Dev accuracy
Baseline (All ORG)	42.5
Core NPs (no consistency)	45.5
Core NPs (consistency)	48.5
Context features (nominal/prep)	83.3
All features (context + pronouns)	87.1

Named entity structure

pers ⁰	pers ¹	pers ²	pers ³	pers ⁴
rep.	john	minister	brown	jr.
sen.	robert	j.	smith	а
washington	david	john	b	smith
dr.	michael	I.	johnson	iii

loc ⁰	<i>loc</i> ¹	loc ²	loc ³	loc ⁴
washington	the	texas	county	monday
los angeles	st.	new york	city	thursday
south	new	washington	beach	river
north	national	united states	valley	tuesday

Judging consistency

Sometimes right:

- Dr. Seuss
- Dr. Quinn

... correctly judged inconsistent.

Judging consistency

Sometimes right:

- Dr. Seuss
- Dr. Quinn

... correctly judged inconsistent.

Sometimes wrong:

- Dr. William F. Gibson
- Dr. William Gibson
- ... judged inconsistent.
 - Bruce Jarvis
 - Ellen Jarvis

... judged consistent.

Inference is a problem

Gibbs sampling

- Converges in the limit....
- Not in real life!
- Clustering problems are often NP-hard:
 - There's no guaranteed method.

For this model:

- Used heuristic inference
- Still only partial convergence!

Conclusion

Introduction

Clustering as parsing

Consistency: finding possible entities

Experiments: pronouns are key!

Future directions

Overview

Introduction

Clustering as parsing

Consistency: finding possible entities

Experiments: pronouns are key!

Future directions

What's next

Add named-entity to unsupervised coreference

- Document-level features might help NE...
- If the combined model could scale.
- Improve inference for Bayesian models
 - Gibbs sampling isn't good enough...
 - Better sampling?
 - Or something completely different?
- Adaptor grammars: what else are they good for?

Thanks!

- Three reviewers
- NSF
- ► All of you!

Adaptor grammars: framework for Bayesian grammar learning

Implementing Consistency

Inference: a general problem for this approach

- A prior over grammars
- Some nonterms are *Dirichlet processes* over subtrees
 - Previously used expansions gain probability
- Black-box inference, downloadable software
 - Development is just writing the grammar
- But standard inference isn't always good enough
 - More on this later...

Tuesday, 11:30

"Improving nonparameteric Bayesian inference experiments on unsupervised word segmentation with adaptor grammars", Mark Johnson and Sharon Goldwater.

Data:

Prior grammar: count rule 1 words \rightarrow word words 1 words \rightarrow word word \rightarrow Rhode 1 Providence Rhode Island word \rightarrow Island 1 1 word \rightarrow Colorado . . . $loc^2 \rightarrow$ 1 words Boulder Colorado

Posterior grammar:

Data:

Newport Rhode Island

Newport Rhode Island

words word

Newport

Rhode Island

Adaptor grammars: framework for Bayesian grammar learning

Implementing Consistency

Inference: a general problem for this approach

Implementing consistency

Underlined nonterminals are Dirichlet processes. org_{Brown}^{1} and org_{Brown}^{2} get only one expansion.

Yet another infinity

How many entities (like org_{Brown}) are there?

- Grows with the data size...
- Again, use Bayesian methods.

Allow an infinite number...

and constrain with a sparse prior.

Simple in principle (special case of "Infinite PCFG", Liang+al '07) Requires some code changes.

Adaptor grammars: framework for Bayesian grammar learning

Implementing Consistency

Inference: a general problem for this approach

Gibbs sampling:

- Repeat forever
 - Erase a random tree
 - Sample a tree from the current grammar
 - Update the grammar given the new tree

- 1 <u>loc²</u> \rightarrow words
- 1 $loc^2 \rightarrow$ Colorado

2
$$loc^2 \rightarrow$$
 Rhode Island

Gibbs sampling:

- Start with arbitrary trees
- Repeat forever
 - Erase a random tree
 - Sample a tree from the current grammar
 - Update the grammar given the new tree

- 1 $loc^2 \rightarrow words$
- 1 $loc^2 \rightarrow$ Colorado
- 1 $loc^2 \rightarrow$ Rhode Island

Gibbs sampling:

- Start with arbitrary trees
- Repeat forever
 - Erase a random tree
 - Sample a tree from the current grammar
 - Update the grammar given the new tree

- 1 <u>loc²</u> \rightarrow words
- 1 $loc^2 \rightarrow$ Colorado
- 1 $loc^2 \rightarrow$ Rhode Island

Gibbs sampling:

- Start with arbitrary trees
- Repeat forever
 - Erase a random tree
 - Sample a tree from the current grammar
 - Update the grammar given the new tree

- 1 $loc^2 \rightarrow words$
- 1 $loc^2 \rightarrow$ Colorado
- 1 $loc^2 \rightarrow$ Rhode Island
- 1 $\underline{loc^2} \rightarrow$ Rhode

Gibbs sampling:

- Start with arbitrary trees
- Repeat forever
 - Erase a random tree
 - Sample a tree from the current grammar
 - Update the grammar given the new tree

Rules for *loc*²:

- 1 <u>loc²</u> \rightarrow words
- 1 $\underline{\textit{loc}^2} \rightarrow$ Colorado
- 1 $loc^2 \rightarrow$ Rhode Island
- 1 $\underline{\textit{loc}^2} \rightarrow \text{Rhode}$

Newport Rhode Island

Gibbs sampling:

- Start with arbitrary trees
- Repeat forever
 - Erase a random tree
 - Sample a tree from the current grammar
 - Update the grammar given the new tree

- 1 $loc^2 \rightarrow words$
- 1 $\underline{loc^2} \rightarrow$ Colorado

1
$$loc^2 \rightarrow$$
 Rhode

Gibbs sampling:

- Start with arbitrary trees
- Repeat forever
 - Erase a random tree
 - Sample a tree from the current grammar
 - Update the grammar given the new tree

- $1 \quad \underline{loc^2} \rightarrow words$
- 1 $\underline{loc^2} \rightarrow$ Colorado

1
$$loc^2 \rightarrow$$
 Rhode

Issue 1: efficiency

Sampling a new parse

- Via CKY algorithm: O(n³)
 - ... times a grammar constant!
- One set of nonterminals for each entity
- Scales poorly

Can be dealt with (Metropolis-Hastings algorithm):

- Proposal distribution:
 - Easy-to-calculate approximation to the grammar
- Worse approximations, slower runtimes.

Issue 2: mobility

Local maxima are still a problem

- Gibbs sampling converges in the limit...
- Not in real life!
- What you'd expect clustering is often NP-hard
- Resampling one tree at a time means lots of local maxima
- Better moves:
 - Split and merge entities
 - Reparse multiple strings at once
- Tricky to implement...
- Correct algorithms can be very slow in practice

Compromise: heuristic inference

What we actually do:

- Propose only a subset of entities for each string:
 - Must have at least one word in common
 - Less likely if shared word is frequent
- Ignore the Hastings correction term!

Not theoretically valid, but faster.

- Even so, inference remains a problem.
 - Too many clusters for the same entity