Character-based Kernels for Novelistic Plot Structure

Micha Elsner

School of Informatics University of Edinburgh

April 27, 2012

We have good models for short articles... Less research on *storytelling*.

A *use of language* we don't understand... Lots of *data* our tools don't cover.

Challenges

Storytelling is typical language use...

- But still little formal understanding of what a story *is*!
- Potential applications:
 - Generating stories (games, education, etc.)
 - Summarizing, searching, recommendations
 - Sociolinguistics (fanfiction, NaNoWriMo)
 - >500k Harry Potter fan stories on fanfiction.net alone!

When good summarizers go bad...

...follows the main character Elizabeth Bennet as she deals with issues of manners, upbringing, morality, education and marriage... (Wikipedia)

The story turns on the marriage prospects of the five daughters of Mr. and Mrs. Bennet... (Amazon.com)

When good summarizers go bad...

...follows the main character Elizabeth Bennet as she deals with issues of manners, upbringing, morality, education and marriage... (Wikipedia)

The story turns on the marriage prospects of the five daughters of Mr. and Mrs. Bennet... (Amazon.com)

"Bingley." Elizabeth felt Jane's pleasure. "Miss Elizabeth Bennet." Elizabeth looked surprised. "FITZWILLIAM DARCY" Elizabeth was delighted. Elizabeth read on: Elizabeth smiled. "If! "Dearest Jane! (Jason Huff: Microsoft Word '08)

Two approaches

Start small...

Sophisticated representations, simple texts:

- Generation: (McIntyre+Lapata) and others
- Annotation: (Volkova+al), Scheherezade (Elson+al)
- Analysis: AESOP (Goyal+al)

Start simple...

Complex texts, simple systems:

- Social networks: (Elson+Dames+McKeown)
- No-spoiler summaries: (Kazantseva+Szpakowicz)
- This project

Building something simple

- Basic enough to be robust...
- But not trivial...
- Experimental framework for comparisons

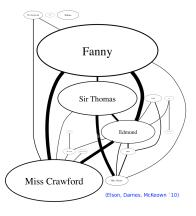
Similarity between novels

- Helpful for information retrieval:
 - Find another novel like "Pride and Prejudice".
- Clustering and organization:
 - Are there "plot type" clusters?
- Project knowledge about training novels to unknown:
 - This novel is *like* "Pride and Prejudice"; maybe it's a romance.

Overview

Motivation

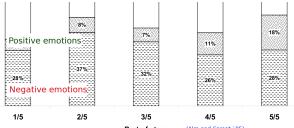
Our Representation Character, emotion and time


Implementation details Preprocessing and graph kernels

Experiments Telling real novels from surrogates

Analysis and conclusions

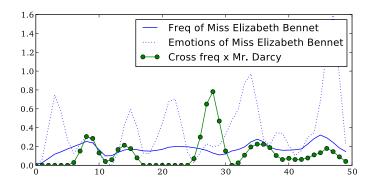
Plot is *high-level*...


Two basic insights:

Characters... forming a social network (Elson+al '10)

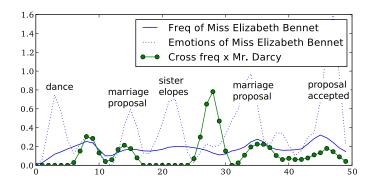
Plot is *high-level*...

Two basic insights:


Part of story

(Alm and Sproat `05)

Story has an *emotional trajectory* (Alm+Sproat '05)


Combine the two:

- Compute a trajectory for each character
- Observe social relationships through time

Combine the two:

- Compute a trajectory for each character
- Observe social relationships through time

Preprocessing

- Chop the novel into paragraphs
- Parse everything and retrieve proper NPs
- Simple coreference on the NPs to find characters
- Emotion: "strong sentiment" cues from (Wilson+al '05)

Coreference

Similar to cross-document coreference:

- Shared name elements
- Presence in same documents
- List of gendered names and titles

"Miss Elizabeth Bennet" (f)	Elizabeth Bennet Elizabeth Miss Elizabeth Bennet Miss Bennet
"Miss Eliza" (f)	Miss Eliza Eliza
"Miss Elizabeth" (f)	Miss Elizabeth
"Lizzy" (?)	Lizzy

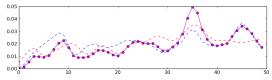
Use this representation to measure similarity...

Kernel function

k(x, y): similarity between x and y 0: no similarity; > 0: more similar basic ML building block Use this representation to measure similarity...

Kernel function

k(x, y): similarity between x and y 0: no similarity; > 0: more similar basic ML building block


Use *convolution theorem* (Haussler '99) to build a complex kernel out of simpler ones:

$$k(x, y) = \sum_{ch_1 \in X} \sum_{ch_2 \in Y} \underbrace{c(ch_1, ch_2)}_{\text{kernel over characters}}$$

Similarity between characters

 $e(ch_1, ch_2)$:

- Similarity for trajectory curves
- Normalized integral of the product
- Used for frequency and emotion

- $d(ch_1, ch_2)$
 - Nearby words
 - replied Elizabeth 17 Elizabeth felt 14
 - Elizabeth leaked 10
 - Elizabeth looked 10
 - Elizabeth's mind 7

First-order character kernel

 $c_1(\mathit{ch}_1,\mathit{ch}_2) = d(\mathit{ch}_1,\mathit{ch}_2) e(\mathit{ch}_1,\mathit{ch}_2)$

Adding social network features

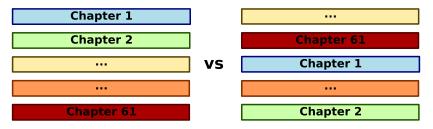
Characters are more similar if:

- They each have close friends...
 - (Measured by co-occurrence frequency)
- ...who are also similar

Second-order character kernel

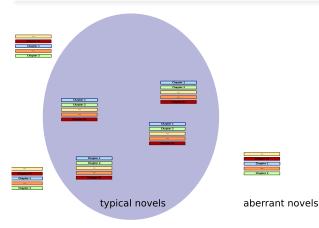
$$c_2(ch_1, ch_2) = c_1(ch_1, ch_2)$$
$$\sum_{u' \in X} \sum_{v' \in Y} \underbrace{e(\widehat{u, u'}, \widehat{v, v'})}_{\text{relationship strength}} c_1(u', v')$$

Testing similarity

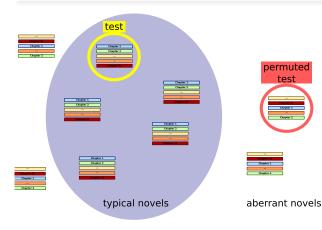

- First, simple proof of concept
- Independent of particular critical theory
- Difficult for very naive models

Testing similarity

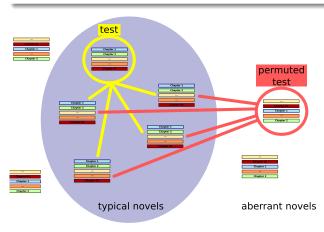
- First, simple proof of concept
- Independent of particular critical theory
- Difficult for very naive models


Order discrimination

(Karamanis+al '04) (Barzilay+Lapata '05)


Weighted nearest-neighbor For training set *T*, is:

 $\sum k(t, y) > \sum k(t, y_{perm})?$


Weighted nearest-neighbor For training set *T*, is:

 $\sum k(t, y) > \sum k(t, y_{perm})?$

Weighted nearest-neighbor For training set T, is:

$$\sum_{t \in T} k(t, y) > \sum_{t \in T} k(t, y_{perm})?$$

(30 19th.c novels from Project Gutenberg)

Binary classifications

Chance accuracy 50%

Significance via kernel-based non-parametric test (Gretton+al '07)

Random perm Reversed

(30 19th.c novels from Project Gutenberg)

Binary classifications

Chance accuracy 50%

Significance via kernel-based non-parametric test (Gretton+al '07)

	Random perm	Reversed
Whole-novel traj.	50	53

(30 19th.c novels from Project Gutenberg)

Binary classifications

Chance accuracy 50%

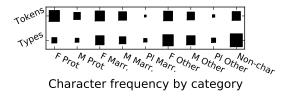
Significance via kernel-based non-parametric test (Gretton+al '07)

	Random perm	Reversed
Whole-novel traj.	50	53
First-order k ₁	77	63

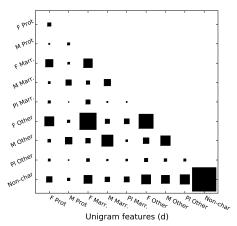
(30 19th.c novels from Project Gutenberg)

Binary classifications

Chance accuracy 50%

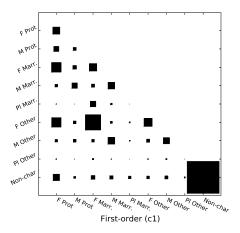

Significance via kernel-based non-parametric test (Gretton+al '07)

	Random perm	Reversed
Whole-novel traj.	50	53
First-order k ₁	77	63
Second-order k ₂	90	67

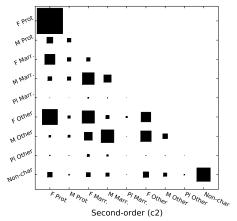

Character similarity

Hand-labeled characters from four Austen novels:

- Male, female, plural ("the Crawfords"), not a character ("London")
- Protagonist, marriageable, other
- Ad-hoc scheme, probably doesn't generalize much



Similarity, unigram features only


Similarity dependent mostly on non-characters!

Similarity, first-order kernel

Non-characters still matter... But similarity to real characters reduced.

Similarity, second-order kernel

Characters with relationships more significant

Conclusions

- Plot structure: based on *character* and *emotion* over *time*
- Simple ordering test as proof of concept

Future work

- Eventually: search and summarize stories
- Topic modeling: match emotions to lexical features
- Interface for writers to visualize their work

Thanks: Sharon Goldwater, Mirella Lapata, Victoria Adams, Kira Mourão, and all of you!