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An Entity Grid
Barzilay and Lapata '05, Lapata and Barzilay '05.

The commercial pilot, sole occupant of the airplane, was not injured.
The airplane was owned and operated by a private owner.
Visual meteorological conditions prevailed for the personal cross country 
flight for which a VFR flight plan was filed.
The flight originated at Nuevo Laredo , Mexico , at approximately 1300.
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Local Coherence: Entity Grids

● Loosely based on Centering Theory.
– Coherent texts repeat important nouns.

● Grid shows most prominent role of each head 
noun in each sentence.
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(Here the history size is 1, 
but 2 works better.)



  

Computing with Entity Grids

● Generatively: Lapata and Barzilay.
– Assume independence between columns.
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● This independence assumption 
can cause problems for the 
generative approach.

– Barzilay and Lapata get 
better results with SVMs.
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Entity Grids Model Local Coherence
A coherent entity grid at very low zoom:
entities occur in long contiguous columns.

A grid for a randomly
permuted document 
tends to look like this.

But what if we flip it?
Or move around
paragraphs?
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Markov Model

the

received

minor

injuries

● Barzilay and Lee 
2004, “Catching the 
Drift”

● Hidden Markov 
Model for document 
structure.

● Each state generates 
sentences from 
another HMM.

pilot

q iq i=1



  

Global Coherence

● The HMM is good at learning overall document 
structure:
– Finding the start, end and boundaries.

● But all local information has to be stored in the 
state variable.
– Creates problems with sparsity.

A wombat escaped from the cargo bay.
Finally the wombat was captured.
The last major wombat incident was in 1987.

● Is there a state q-wombat?



  

Creating a Unified Model

● What we want: an HMM with entity-grid 
features.
– We need a quick estimator for transition 

probabilities in the entity grid.

– In the past, entity grids have worked better as 
conditional models...
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Relaxing the Entity Grid

● The most common transition is from – to –.
– The maximum likelihood document has no entities 

at all!

● Entities don't occur independently.
– There may not be room for them all.

– They 'compete' with one another.



  

Relaxed Entity Grid
● Assume we have already generated the set of 

roles we need to fill with known entities.
– New entities come from somewhere else.

The commercial pilot, sole occupant of the airplane, was not 
injured.

The ?

was owned and operated by a private ?

new noun: owner



  

Filling Roles with Known Entities
● P(entity e fills role j | j, histories of known entities)

– history: roles in previous sentences

– known entity: has occurred before in document

● Still hard to estimate because of sparsity.
– Too many combinations of histories.

● Normalize:
P(entity e fills role j | j, history of entity e)

● Much easier to estimate!
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Graphical Model
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Hidden Markov Model

● Need to lexicalize the entity grid.
– States describe common words, not simply 

transitions.

● Back off to the unlexicalized version.
● Also generate the other words of the sentence 

(unigram language models):
– Words that aren't entities.

– First occurrences of entities.



  

Learning the HMM

● We used Gibbs sampling to fit:
– Transition probabilities.

– Number of states.

● Number of states heavily dependent on the 
backoff constants.

● We aimed for about 40-50 states.
– As in Barzilay and Lee.



  

Has This Been Done Before?

● Soricut and Marcu '06:
– Mixture model with HMM, entity grid and 

word-to-word (IBM) components.

– Results are as good as ours.

● Didn't do joint learning, just fit mixture weights.
– Less explanatory power.

● Uses more information (ngrams and IBM).
– Might be improved by adding our model.
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Airplane (NTSB) Corpus

● Traditional for this task.
– 100 test, 100 train.

● Short (avg. 11.5 sents) press releases on 
airplane emergencies.

● A bit artificial:
– 40% begin: “This is preliminary information, subject 

to change, and may contain errors. Any errors in 
this report will be corrected when the final report 
has been completed.”



  

Discriminative Task

● 20 random permutations per document: 2000 
tests.
Sentence 2
Sentence 1
Sentence 4
Sentence 3

Sentence 1
Sentence 2
Sentence 3
Sentence 4

VS

● Binary judgement between 
random permutation and 
original document.

● Local models do well.



  

Results

Airplane Test Discriminative (%)
Barzilay and Lapata (SVM EGrid) 90
Barzilay and Lee (HMM) 74
Soricut and Marcu (Mixture) -
Unified (Relaxed EGrid/HMM) 94



  

Ordering Task

● Used simulated annealing to find optimal 
orderings.

● Score: similarity to original ordering.

Kendall's τ metric: 
-1 (worst) to 1 (best).
~ # of pairwise swaps.

τ = 1
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Results

Airplane Test Kendall's τ
Barzilay and Lapata (SVM EGrid) -
Barzilay and Lee (HMM) 0.44
Soricut and Marcu (Mixture) 0.50
Unified (Relaxed EGrid/HMM) 0.50



  

Relaxed Entity Grid

Airplane Development τ Discr. (%)
Generative EGrid 0.17 81
Relaxed EGrid 0.02 87
Unified (Generative EGrid/HMM) 0.39 85
Unified (Relaxed EGrid/HMM) 0.54 96
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What We Did

● Explained strengths of local and global models.
● Proposed a new generative entity grid model.
● Built a unified model with joint local and global 

features.
– Improves on purely local or global approaches.

– Comparable to state-of-the-art.



  

What To Do Next

● Escape from the airplane corpus!
– Too constrained and artificial.

– Real documents have more complex syntax and 
lexical choices.

● Longer documents pose challenges:
– Current algorithms aren't scalable.

– Neither are evaluation metrics.
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