A Unified Local and Global Model for Discourse Coherence

Micha Elsner, Joseph Austerweil, Eugene Charniak

Brown Laboratory for Linguistic Information Processing (BLLIP)

Coherence Ranking

Sentence 4

Sentence 3

Sentence 1

Sentence 2

Sentence 2

Sentence 1

Sentence 4

Sentence 3

Sentence 1

Sentence 2

Sentence 3

Sentence 4

Proposed Orderings

Sentence 1

Sentence 2

Sentence 3

Sentence 4

Sentence 2

Sentence 1

Sentence 4

Sentence 3

Sentence 4

Sentence 3

Sentence 1

Sentence 2

A+!

R

Ranked Orderings

Sentence Ordering

Overview

- Previous Work: Entity Grids
- Previous Work: Hidden Markov Model
- Relaxed Entity Grid
- Unified Hidden Markov Model
- Corpus and Experiments
- Conclusions and Future Work

An Entity Grid

Barzilay and Lapata '05, Lapata and Barzilay '05.

The commercial **pilot**, sole **occupant** of the **airplane**, was not injured.

The **airplane** was owned and operated by a private **owner**.

Visual meteorological **conditions** prevailed for the personal cross country **flight** for which a VFR flight **plan** was filed.

The **flight** originated at Nuevo **Laredo**, Mexico, at approximately 1300.

`	D	Airola.	Condition	الله المرادة	Chr C	lare de la	On On	Occupa	3/1/
Syntactic Role in Sentence	0	_	X	-	-	0	_	_	X
	1	_	0	-	-	_	_	X	_
	2	0	-	S	X	_	_	_	-
	3	_	_	-	S	_	X	_	-

Local Coherence: Entity Grids

- Loosely based on Centering Theory.
 - Coherent texts repeat important nouns.
- Grid shows most prominent role of each head noun in each sentence.

Computing with Entity Grids

- Generatively: Lapata and Barzilay.
 - Assume independence between columns.

- This independence assumption can cause problems for the generative approach.
 - Barzilay and Lapata get better results with SVMs.

 \prod

Computing with Entity Grids

- Generatively: Lapata and Barzilay.
 - Assume independence between columns.

- This independence assumption can cause problems for the generative approach.
 - Barzilay and Lapata get better results with SVMs.

 \prod

Computing with Entity Grids

- Generatively: Lapata and Barzilay.
 - Assume independence between columns.

- This independence assumption can cause problems for the generative approach.
 - Barzilay and Lapata get better results with SVMs.

 \prod

Entity Grids Model Local Coherence

A coherent entity grid at very low zoom: entities occur in long contiguous columns.

But what if we flip it? Or move around paragraphs?

Overview

- Previous Work: Entity Grids
- Previous Work: Hidden Markov Model
- Relaxed Entity Grid
- Unified Hidden Markov Model
- Corpus and Experiments
- Conclusions and Future Work

Markov Model

- Barzilay and Lee 2004, "Catching the Drift"
- Hidden Markov Model for document structure.
- Each state generates sentences from another HMM.

Global Coherence

- The HMM is good at learning overall document structure:
 - Finding the start, end and boundaries.
- But all local information has to be stored in the state variable.
 - Creates problems with sparsity.
 - A wombat escaped from the cargo bay.
 - Finally the wombat was captured.
 - The last major **wombat** incident was in 1987.
- Is there a state q-wombat?

Creating a Unified Model

- What we want: an HMM with entity-grid features.
 - We need a quick estimator for transition probabilities in the entity grid.
 - In the past, entity grids have worked better as conditional models...

Overview

- Previous Work: Entity Grids
- Previous Work: Hidden Markov Model
- Relaxed Entity Grid
- Unified Hidden Markov Model
- Corpus and Experiments
- Conclusions and Future Work

Relaxing the Entity Grid

- The most common transition is from to –.
 - The maximum likelihood document has no entities at all!
- Entities don't occur independently.
 - There may not be room for them all.
 - They 'compete' with one another.

Relaxed Entity Grid

- Assume we have already generated the set of roles we need to fill with known entities.
 - New entities come from somewhere else.

The commercial pilot sole occupant of the airplane was not injured.

The ?

was owned and operated by a private

new noun: owner

Filling Roles with Known Entities

- P(entity e fills role j | j, histories of known entities)
 - history: roles in previous sentences
 - known entity: has occurred before in document
- Still hard to estimate because of sparsity.
 - Too many combinations of histories.
- Normalize:
 - P(entity e fills role $j \mid j$, history of entity e)
- Much easier to estimate!

Overview

- Previous Work: Entity Grids
- Previous Work: Hidden Markov Model
- Relaxed Entity Grid
- Unified Hidden Markov Model
- Corpus and Experiments
- Conclusions and Future Work

Graphical Model

Hidden Markov Model

- Need to lexicalize the entity grid.
 - States describe common words, not simply transitions.
- Back off to the unlexicalized version.
- Also generate the other words of the sentence (unigram language models):
 - Words that aren't entities.
 - First occurrences of entities.

Learning the HMM

- We used Gibbs sampling to fit:
 - Transition probabilities.
 - Number of states.
- Number of states heavily dependent on the backoff constants.
- We aimed for about 40-50 states.
 - As in Barzilay and Lee.

Has This Been Done Before?

- Soricut and Marcu '06:
 - Mixture model with HMM, entity grid and word-to-word (IBM) components.
 - Results are as good as ours.
- Didn't do joint learning, just fit mixture weights.
 - Less explanatory power.
- Uses more information (ngrams and IBM).
 - Might be improved by adding our model.

Overview

- Previous Work: Entity Grids
- Previous Work: Hidden Markov Model
- Relaxed Entity Grid
- Unified Hidden Markov Model
- Corpus and Experiments
- Conclusions and Future Work

Airplane (NTSB) Corpus

- Traditional for this task.
 - 100 test, 100 train.
- Short (avg. 11.5 sents) press releases on airplane emergencies.
- A bit artificial:
 - 40% begin: "This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed."

Discriminative Task

20 random permutations per document: 2000 tests.

Sentence 2

Sentence 1

Sentence 4

Sentence 3

VS

Sentence 1

Sentence 2

Sentence 3

Sentence 4

- Binary judgement between random permutation and original document.
- Local models do well.

Results

Airplane Test	Discriminative (%)
Barzilay and Lapata (SVM EGrid)	90
Barzilay and Lee (HMM)	74
Soricut and Marcu (Mixture)	_
Unified (Relaxed EGrid/HMM)	94

Ordering Task

- Used simulated annealing to find optimal orderings.
- Score: similarity to original ordering.

Results

Airplane Test	Kendall's т
Barzilay and Lapata (SVM EGrid)	-
Barzilay and Lee (HMM)	0.44
Soricut and Marcu (Mixture)	0.50
Unified (Relaxed EGrid/HMM)	0.50

Relaxed Entity Grid

Airplane Development	т Discr. (%)		
Generative EGrid	0.17	81	
Relaxed EGrid	0.02	87	
Unified (Generative EGrid/HMM)	0.39	85	
Unified (Relaxed EGrid/HMM)	0.54	96	

Overview

- Previous Work: Entity Grids
- Previous Work: Hidden Markov Model
- Relaxed Entity Grid
- Unified Hidden Markov Model
- Corpus and Experiments
- Conclusions and Future Work

What We Did

- Explained strengths of local and global models.
- Proposed a new generative entity grid model.
- Built a unified model with joint local and global features.
 - Improves on purely local or global approaches.
 - Comparable to state-of-the-art.

What To Do Next

- Escape from the airplane corpus!
 - Too constrained and artificial.
 - Real documents have more complex syntax and lexical choices.
- Longer documents pose challenges:
 - Current algorithms aren't scalable.
 - Neither are evaluation metrics.

Acknowledgements

Couldn't have done it without:

- Regina Barzilay (code, data, advice & support)
- Mirella Lapata (code, advice)
- BLLIP (comments & criticism)
- Tom Griffiths & Sharon Goldwater (Bayes)
- DARPA GALE (\$\$)
- Karen T. Romer Foundation (\$\$)