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Motivation

The White Queen looked timidly at Alice, who felt she ought to
say something kind, but really couldn’t think of anything at the
moment.

◮ Pronouns are potentially ambiguous.
◮ Does she mean Alice, or the White Queen?
◮ Technically could be either, but strong intuitions.
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Starting point: machine translation

IBM model 2
Generate German from English:

◮ Align: pick a random English word to translate.
◮ Translate: pick an appropriate German word.

English: He can sing well

German: Er kann gut singen
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Our generative setting

◮ “Translate” the context into a pronoun...
◮ Via a hidden alignment.

Source text: The White Queen looked at Alice who felt

Target text: she
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The “translation” model (Charniak+Elsner ‘09)

Pronouns uniquely identified by:
◮ Person (I/you/it)
◮ Number (it/they)
◮ Gender of singular pronouns (he/she/it)

◮ English plural pronouns (“they”) unmarked for gender.

P(pro|ante) modeled as:

P(pers(pro)|pers(ante))×

P(num(pro)|num(ante))×
∑

possible gen(pro)

P(gen(pro)|gen(ante))

5



Modeling alignment: issues

The White Queen and Alice: both feminine singular, so
translation model doesn’t help us.
Need alignment function based on the syntax.
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Features
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◮ syntactic role: subject
◮ position: beginning of

sentence
◮ proximity: same sentence
◮ within-sentence proximity:

6 words away
◮ phrase type: proper noun

phrase
◮ determiner: “the”
◮ head word: “Queen”
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The alignment function

Each pronoun i has set of possible antecedents Ai .
A noun phrase a has some features S(a, i).

Alignment function:

P(ante(i) = a ∈ Ai | S(a, i), {S(Ai , i)})
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The ugly method (Charniak+Elsner ‘09)

P(ante(i) = a | S(a, i), {S(Ai )}) =

P(ante(i) = a | S(a, i)) ∼

Bernoulli(•; θS(a,i))

For every possible antecedent, flip a coin to decide if it’s the
true antecedent. Just assume one, and only one, coin will
come up heads.
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The ugly method (Charniak+Elsner ‘09)

P(ante(i) = a | S(a, i), {S(Ai )}) =

P(ante(i) = a | S(a, i)) ∼

Bernoulli(•; θS(a,i))

For every possible antecedent, flip a coin to decide if it’s the
true antecedent. Just assume one, and only one, coin will
come up heads.

◮ Not probabilistically legitimate
◮ One parameter θ for each possible feature vector S(a, i):

can’t be too sparse
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Using log-linear models

A more standard approach:

P(ante(i) = a | S(a, i), {S(Ai )}) =
exp(w • S(a, i))

Z
Z =

∑

x∈Ai

exp(w • S(x , i))

Like softmax multilabel classification, but the set of ‘labels’ is
different for every datapoint.
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Using EM

Log-linear form specifies a conditional distribution...
Part of overall generative model.

Simple EM algorithm
◮ E-step: compute probabilities P(ante(i) = a)

and sum to compute E [S(ante(i), i), {S(Ai , i)}]

...the expected number of times we pick an antecedent
with features S from a set of available phrases with
features {S}

◮ M-step: estimate w by gradient descent on the likelihood
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Faster inference?

Problem: there are a lot of sufficient statistics:

E [S(ante(i), i), {S(Ai , i)}]

...and feature vector S is probably sparse.

Possibility: online perceptron-style updates:
Stepwise EM ((Sato+Ishii ‘00) and (Liang+Klein ‘09)):

◮ Compute expectations for a batch of examples
◮ Estimate the gradient w ′ and update w = ηw + (1 − η)w ′

Getting the batch size and learning rate right is tricky...
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Preliminary results

Initialized the max-ent alignment to the distribution learned by
the previous system.

system performance # of alignment params
(Charniak+Elsner ‘09) 67.2 2592
my reimplementation 65.4 2592
max-ent 65.7 61

◮ There is a compact representation of the alignment
function

◮ It occurs near a local max of the (legitimate) likelihood
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Why no improvement?

◮ Max-ent alignment could be similar to the “ugly”
distribution...

◮ if partition function Z for each example approximately equal

Would imply:
Most syntactic environments have approximately same amount
of important noun phrases.

Haven’t tested this!
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Same-head coreference

Most NPs with the same head word are coreferent:

Alice thought to herself... Alice said...

But some are not:

the White Queen ... the Red Queen...

one day at a time ... the day before...

it sighed and the consequence was...
it wouldn’t come out and the consequence was...
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Modeling idea

Generate the NPs from left to right...

Alignment
◮ Max-ent produces coreferent NPs
◮ Uniform distribution produces others

P(ante(i) = a | S(a, i), {S(Ai )}) ∝ λ ∗ exp(w • S(a, i)) +

(1 − λ) ∗ 1
|S|

Translation model
Input: antecedent NP
Output: similar NP with different modifiers
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Really, really preliminary results

Pronoun model plus model for NPs with same heads:

link all our model
cluster overlap 69 74
link precision 54 65
link recall 50 35
f-score 52 45

Better cluster overlap, but trades recall for precision.
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Future directions

Current goals:
◮ Better tuning for perceptron-style updates
◮ Analysis of different roles of translation/alignment
◮ Link NPs with different heads

Thanks for listening!
Please ask questions, or contact me:

melsner@cs.brown.edu
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