Abstract Representations of Plot Structure

Micha Elsner

Department of Linguistics
The Ohio State University

November 1, 2013
We have good models for short articles... Less research on *storytelling*.

A *use of language* we don’t understand... Lots of *data* our tools don’t cover.
Challenges

Storytelling is **typical** language use...
- But still little formal understanding of what a story *is!*

McKeown NAACL plenary: an emerging challenge for CL
- Linguistic: what are good representations?
- Applied: classic NLP tools for stories
- Digital humanities: corpus insight on literary problems
- Sociology: writing as cultural behavior
 - >500k Harry Potter fan stories on fanfiction.net alone!
Applications

Applied reasons to study stories:

- Generating stories (games, education, etc.)
- Searching and recommendations
- Summarization
Story generation: games and training
Zook, Lee-Urban, Riedl et al 2012
When good summarizers go bad...

...follows the main character Elizabeth Bennet as she deals with issues of manners, upbringing, morality, education and marriage... (Wikipedia)

The story turns on the marriage prospects of the five daughters of Mr. and Mrs. Bennet... (Amazon.com)
When good summarizers go bad...

...follows the main character Elizabeth Bennet as she deals with issues of manners, upbringing, morality, education and marriage... (Wikipedia)

The story turns on the marriage prospects of the five daughters of Mr. and Mrs. Bennet... (Amazon.com)

What doesn’t work: sentences

Why doesn’t the Microsoft summarizer work?

(cf Kazantseva+Szpakowicz)

- Extractive sentence selection
- Works ok in news: topic sentences cover the main idea
- Not so good for novels
What might work: event networks

- Schank scripts and (somewhat) Propp functions lead to:
- Chambers+Jurafsky event schemas
- Which lead to a variety of narrative representations
 - (Finlayson, recent Riedl, McIntyre+Lapata)

(McIntyre+Lapata)
Event networks are still pretty low-level

The emperor rules the kingdom: a fable

The emperor rules the kingdom. The kingdom holds on to the emperor. The emperor rides out of the kingdom. The kingdom speaks out against the emperor. The emperor lies.

—McIntyre and Lapata, ACL 10

- Does the story have a moral?
- Is there a hero? A villain?
- Is there a plot?
- What *is* a plot anyway?
Literary theory

- Propp: characters have *functions*
 - Hero, villain, mentor...

- Crane and subsq.: plot creates moral and emotional involvement with the characters

for some of the characters we wish good, for others ill, and depending on our inferences as to the events, we feel hope or fear, pity or satisfaction...

—R. S. Crane
Plot is *high-level*...

Two basic insights:

Characters... forming a social network

(Elson et al. '10)
Plot is *high-level*...

Two basic insights:

Story has an *emotional trajectory*
(Alm+Sproat ‘05)
Combine the two:

- Compute a trajectory for each character
- Observe social relationships through time
Combine the two:

- Compute a trajectory for each character
- Observe social relationships through time
Preprocessing

- Chop the novel into paragraphs
- Parse everything and retrieve proper NPs
- Simple coreference on the NPs to find characters
- Emotion: “strong sentiment” cues from (Wilson+al ‘05)
Coreference

Similar to cross-document coreference:

- Shared name elements
- Presence in same documents
- List of gendered names and titles

<table>
<thead>
<tr>
<th>Character (longest name)</th>
<th>gender</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrs. George Osborne</td>
<td>F</td>
<td>662</td>
</tr>
<tr>
<td>Georgy Osborne</td>
<td>N</td>
<td>344</td>
</tr>
<tr>
<td>Capt. George Osborne</td>
<td>M</td>
<td>153</td>
</tr>
<tr>
<td>Mr. Osborne</td>
<td>M</td>
<td>146</td>
</tr>
<tr>
<td>Miss Jane Osborne</td>
<td>F</td>
<td>75</td>
</tr>
<tr>
<td>Master George</td>
<td>M</td>
<td>8</td>
</tr>
<tr>
<td>Mr. George</td>
<td>M</td>
<td>7</td>
</tr>
<tr>
<td>Lt. Osborne</td>
<td>M</td>
<td>7</td>
</tr>
</tbody>
</table>
Use this representation to measure similarity...

Kernel function

$k(x, y)$: similarity between x and y

0: no similarity; > 0: more similar

basic ML building block
Use this representation to measure similarity...

Kernel function

\(k(x, y) \): similarity between \(x \) and \(y \)

0: no similarity; > 0: more similar

basic ML building block

Use *convolution theorem* (Haussler ‘99) to build a complex kernel out of simpler ones:

\[
k(x, y) = \sum_{ch_1 \in X} \sum_{ch_2 \in Y} c(ch_1, ch_2)
\]

kernel over characters
Similarity between characters

\[e(ch_1, ch_2) : \]

- Similarity for trajectory curves
- Normalized integral of the product
- Used for frequency and emotion

\[d(ch_1, ch_2) : \]

- Nearby words
 - replied Elizabeth 17
 - Elizabeth felt 14
 - Elizabeth looked 10
 - Elizabeth’s mind 7
 - ...

First-order character kernel

\[c_1(ch_1, ch_2) = d(ch_1, ch_2)e(ch_1, ch_2) \]
Adding social network features

Characters are more similar if:
 ▶ They each have close friends...
 ▶ (Measured by co-occurrence frequency)
 ▶ ...who are also similar

Second-order character kernel

$$c_2(ch_1, ch_2) = c_1(ch_1, ch_2)$$

$$\sum_{u' \in x} \sum_{v' \in Y} e(\hat{u}, \hat{u}', \hat{v}, \hat{v}') \cdot c_1(u', v')$$ relationship strength
Testing similarity

- First, simple proof of concept
- Independent of particular critical theory
- Difficult for very naive models
Testing similarity

- First, simple proof of concept
- Independent of particular critical theory
- Difficult for very naive models

Order discrimination

(Karamanis+al '04) (Barzilay+Lapata '05)
Results

Random perm Reversed
Results

<table>
<thead>
<tr>
<th></th>
<th>Random perm</th>
<th>Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-novel traj.</td>
<td>46</td>
<td>52</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Random perm</th>
<th>Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-novel traj.</td>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>First-order k_1</td>
<td>60</td>
<td>51</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Random perm</th>
<th>Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-novel traj.</td>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>First-order k_1</td>
<td>60</td>
<td>51</td>
</tr>
<tr>
<td>Second-order k_2</td>
<td>62</td>
<td>52</td>
</tr>
</tbody>
</table>
Weighted nearest-neighbor
For training set T, is:

$$\sum_{t \in T} k(t, y) > \sum_{t \in T} k(t, y_{perm})?$$
Weighted nearest-neighbor
For training set T, is:

$$\sum_{t \in T} k(t, y) > \sum_{t \in T} k(t, y_{\text{perm}})?$$
Weighted nearest-neighbor

For training set T, is:

$$\sum_{t \in T} k(t, y) > \sum_{t \in T} k(t, y_{perm})?$$
Results

(30 19th.c novels from Project Gutenberg)

Binary classifications

Chance accuracy 50%
Significance via kernel-based non-parametric test *(Gretton+al ‘07)*

<table>
<thead>
<tr>
<th>Random perm</th>
<th>Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>77</td>
<td>63</td>
</tr>
<tr>
<td>90</td>
<td>67</td>
</tr>
</tbody>
</table>
Results

(30 19th.c novels from Project Gutenberg)

Binary classifications

<table>
<thead>
<tr>
<th></th>
<th>Random perm</th>
<th>Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-novel traj.</td>
<td>50</td>
<td>53</td>
</tr>
</tbody>
</table>

Chance accuracy 50%
Significance via kernel-based non-parametric test (Gretton+al ‘07)
Results

(30 19th.c novels from Project Gutenberg)

Binary classifications

Chance accuracy 50%
Significance via kernel-based non-parametric test \((\text{Gretton+al '07}) \)

<table>
<thead>
<tr>
<th></th>
<th>Random perm</th>
<th>Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-novel traj.</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>First-order (k_1)</td>
<td>77</td>
<td>63</td>
</tr>
</tbody>
</table>
Results

(30 19th.c novels from Project Gutenberg)

Binary classifications

Chance accuracy 50%
Significance via kernel-based non-parametric test (Gretton+al ‘07)

<table>
<thead>
<tr>
<th></th>
<th>Random perm</th>
<th>Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-novel traj.</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>First-order k_1</td>
<td>77</td>
<td>63</td>
</tr>
<tr>
<td>Second-order k_2</td>
<td>90</td>
<td>67</td>
</tr>
</tbody>
</table>
Improvements

Previous model was a little thrown-together...

In this section:

- More systematic investigation of features
- Some *attempts* at parameter tuning
- Results improve...
- ...but some frustrating issues remain
Better sentiment

- Earlier system used Wilson+al sentiment: negative vs positive
- Try Mohammad sentiment: 10 emotional classes:
 - Anger, Anticipation, Disgust, Fear, Joy, Positive, Negative, Sadness, Surprise, Trust
- (Mohammad ‘12)
A slight digression...

Investigated whether this would be useful as a writers’ aid:

- MSc thesis: Robert Ang
- Cosponsored with U Edinburgh writer-in-residence Viccy Adams
- Writers found tool inspiring, but wanted sentence-level sentiment

Try it out! http://www.ling.ohio-state.edu/ melsner/sentivis/emotiongraph.html
Learning

Rank learning approach (Feng+Hirst ‘12)

- Generate randomly
- Order by edit distance
- Objective for ranking SVM

Chapter 1
Chapter 2
...
Chapter 61

Chapter 1
Chapter 2
...
Chapter 61

Chapter 1
Chapter 2
...
Chapter 61
Single-trajectory models

- Compute a single trajectory for the whole novel
- From above: this performed at chance!
- We’ll see that this was due partly to feature issues
Results are equivocal: single-traj model

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anger</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>Anticipation</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Disgust</td>
<td>62</td>
<td>53</td>
</tr>
<tr>
<td>Fear</td>
<td>71</td>
<td>65</td>
</tr>
<tr>
<td>Joy</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Negative</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Positive</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Sadness</td>
<td>61</td>
<td>64</td>
</tr>
<tr>
<td>Surprise</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Trust</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>Sentiment</td>
<td>57</td>
<td>65</td>
</tr>
</tbody>
</table>

Suggests dataset is very variable

Sentiment is useful— but dev parameters fit test poorly
Alternative approach: LDA topics

- Standard digital humanities way to do this...
- Also a variety of fancy models used on scientific journals

(Kim+Sudderth ‘11)
Our approach: vanilla LDA

- Fast, probably good enough as proof-of-concept
- 10 topics for comparison with Mohammad sentiment

0 man reply lady gentleman boy head
1 love life heart world thought soul
2 mother father woman make year day
3 return person time receive give place
4 character world men feeling opinion mind
5 hand eye face voice speak word
6 form light woman air pass beauty
7 thing make letter time write read
8 room house door night time day
9 men foot man round horse time
Results

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment single-traj</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>LDA single-traj</td>
<td>67</td>
<td>89</td>
</tr>
</tbody>
</table>

Order and reverse are very different

- Order benefits from character features
- Reverse works better with single trajectory!
- Beginning and end vs overall coherence
Results

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment single-traj</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>LDA single-traj</td>
<td>67</td>
<td>89</td>
</tr>
<tr>
<td>Sentiment characters</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>LDA characters</td>
<td>57</td>
<td>59</td>
</tr>
</tbody>
</table>

Order and reverse are very different

- Order benefits from character features
- Reverse works better with single trajectory!
- Beginning and end vs overall coherence
Results

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment single-traj</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>LDA single-traj</td>
<td>67</td>
<td>89</td>
</tr>
<tr>
<td>Sentiment characters</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>LDA characters</td>
<td>57</td>
<td>59</td>
</tr>
<tr>
<td>Sentiment 2nd-ord</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>LDA 2nd-ord</td>
<td>60</td>
<td>58</td>
</tr>
</tbody>
</table>

Order and reverse are very different

- Order benefits from character features
- Reverse works better with single trajectory!
- Beginning and end vs overall coherence
Symmetrization by matching

- Kernel involves an *all-to-all* alignment
- In machine translation, often helps to have a symmetric alignment
 - IBM-1: If we learn to translate *Hund* as *dog*...
 - ...shouldn’t we also learn *dog* is *Hund*?
- Various ways to enforce this
- (Matusov+al ‘04) compute a bipartite matching
- We’ll do the same...
- Compute character-to-character scores
 - *Pride and Prejudice*: Elizabeth vs *Vanity Fair*: Amelia
- Use the best matching as the overall score
Results with matching

<table>
<thead>
<tr>
<th>Method</th>
<th>Order</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment single-traj</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>LDA single-traj</td>
<td>67</td>
<td>89</td>
</tr>
<tr>
<td>Sentiment characters</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>LDA characters</td>
<td>57</td>
<td>59</td>
</tr>
<tr>
<td>Sentiment 2nd-ord</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>LDA 2nd-ord</td>
<td>60</td>
<td>58</td>
</tr>
</tbody>
</table>
Results with matching

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment single-traj</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>LDA single-traj</td>
<td>67</td>
<td>89</td>
</tr>
<tr>
<td>Sentiment characters</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>LDA characters</td>
<td>57</td>
<td>59</td>
</tr>
<tr>
<td>Sentiment 2nd-ord</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>LDA 2nd-ord</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>Sentiment matching</td>
<td>81</td>
<td>54</td>
</tr>
<tr>
<td>LDA matching</td>
<td>72</td>
<td>56</td>
</tr>
<tr>
<td>Sentiment (2-ord), matching</td>
<td>77</td>
<td>54</td>
</tr>
<tr>
<td>LDA (2-ord), matching</td>
<td>69</td>
<td>56</td>
</tr>
</tbody>
</table>
Matching helps!

- But second-order is no longer helpful...
- Maybe we need to apply the matching principle to relationships too?

WNN results:

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous result (2-ord)</td>
<td>90</td>
<td>67</td>
</tr>
<tr>
<td>LDA single-traj</td>
<td>80</td>
<td>93</td>
</tr>
<tr>
<td>Sentiment matching</td>
<td>93</td>
<td>70</td>
</tr>
</tbody>
</table>
Textual similarity

What sorts of similarities is the system pulling out?

Nearest-neighbor clustering

- Convert distances to ranks
- Nearest-neighbor graph
- Spectral clustering (von Luxburg ‘06)
Single-traj (sentiment)
Characters (sentiment matching)
Character similarity

Main characters

![Graph showing character similarity](image-url)
Character similarity

Characters important to the climax of the novel
Related work

Recent paper:

Learning latent personas of film characters
Bamman, O’Connor and Smith

- Using summaries and IMDB metadata
- Bayesian model of character roles
Future work: from similarity to summarization

Insight from language and vision: (Mason+Charniak ‘13, Kuznetsova+al ‘12)

Resource projection approach:

- Assumes resources (captions/summaries) for training
- Nearest-neighbor search for similar images in training set
- Extract captions from neighbors
- Use image features to edit caption

Original: Go all-out glam in the shimmering Dyeables Roxie sandals. Metallic faux leather upper in a dress thong sandal style with a round open toe. ...

Extracted: Shimmering snake-embossed leather upper in a slingback evening dress sandal style with a round open toe.

System: Shimmering upper in a slingback evening dress sandal style with a round open toe.

(Mason+Charniak ‘13)
Conclusions

- Plot structure is complicated!
- Characters, emotions and events over time
 - Transfer from dev to test is complicated
- Simple ordering test as proof of concept
 - Reversals behave differently than randomized
- Analysis of clustered “roles”

Thanks: Robert Ang, Sharon Goldwater, Mirella Lapata, Victoria Adams, Rebecca Mason, Kira Mourão, Jon Oberlander

- Paper EACL 2012, followup in submission