The Dangling Conversation: A Corpus and Algorithm for Conversation Disentanglement

Micha Elsner and Eugene Charniak

Brown Laboratory for Linguistic Information Processing (BLLIP)

21 Jan 2009, University of Maryland

Life in a Multi-User Channel

Does anyone here shave their head?

I shave part of my head.

A tonsure?

Nope, I only shave the chin.

How do I limit the speed of my internet connection?

Use dialup!

Hahaha :P No I can't, I have a weird modem.

I never thought I'd hear ppl asking such insane questions...

Real Life in a Multi-User Channel

Does anyone here shave their head?

How do I limit the speed of my internet connection?

I shave part of my head.

A tonsure?

Use dialup!

Nope, I only shave the chin.

- A common situation:
 - Text chat
 - Push-to-talk
 - Cocktail party

Why Disentanglement?

- A natural discourse task.
 - Humans do it without any training.
- Preprocess for search, summary, QA.
 - Recover information buried in chat logs.
- Online help for users.
 - Highlight utterances of interest.
 - Already been tried manually: Smith et al '00.
 - And automatically: Aoki et al '03.

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - ConversationStart Detection

Questions are welcome!

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - ConversationStart Detection

Questions are welcome!

Dataset

- Recording of a Linux tech support chat room.
- 1:39 hour test section.
 - Six annotations.
 - College students, some Linux experience.
- Another 3 hours of annotated data for training and development.
 - Mostly only one annotation by experimenter.
 - A short pilot section with 3 more annotations.

Annotation

```
does anyone here shave their head
            Laurena
            Felicia:
                         Chanel: though load balancing and such do have their rightful places
            Matha entered the room.
0
                         perspective makes the difference between a whistleblower and a snitch.
            lavmie
            Cory left the room (quit: Read error: 110 (Connection timed out)).
10
                         Laurena: i shave part of my head
8
            Caroll left the room (quit: Read error: 104 (Connection reset by peer)).
8
            Evita left the room.
5
                         Jeanice: a tonsure? ;)
            esse
                         Felicia: come on, please!
            Chanel:
            Rea entered the room.
                         a snitch is much worse than a whistleblower
            Gale:
            Felicia
                         Gale: i wonder if they give you some Cash back like the Utilities do when
your meter spins backwards, from your Solar panel PVs
            Lilliana:
                         PoNg
```

- Annotation program with simple click-and-drag interface.
- Conversations displayed as background colors.

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - ConversationStart Detection

Questions are welcome!

One-to-One Metric

Two annotations of the same dataset.

One-to-One Metric

One-to-One Metric

Local Agreement Metric

Annotator 1 Annotator 2

Local Agreement Metric

Annotator 1 Annotator 2

Local Agreement Metric

Annotator 1 Annotator 2

F-Score Metric

Define retrieval precision and recall for a single thread:

Not symmetric!

F-Score Metric

Shen et al '06 Adams + Martell '08

Define retrieval precision and recall for a single pair of threads:

F-Score Metric

- Defined by Shen for a whole transcript:
 - For every gold thread:
 - Match to best annotated thread.
 - Average weighted by thread size.
- Correlates well with one-to-one.

Interannotator Agreement

	Min	Mean	Max	
One-to-One	36	53	64	
Local Agreement	75	81	87	

- Local agreement is good.
- One-to-one not so good!

How Annotators Disagree

Conversations Entropy

Min	Mean	Max
50	81	128
3	4.8	6.2

Some annotations are much finer-grained than others.

Schisms

- Sacks et al '74: Formation of a new conversation.
- Explored by Aoki et al '06:
 - A speaker may start a new conversation on purpose...
 - Or unintentionally, as listeners react in different ways.
- Causes a problem for annotators...

To Split...

I grew up in Romania till I was 10. Corruption everywhere.

And my parents are crazy.

Couldn't stand life so I_dropped out of school.

You're at OSU?

Man, that was an experience.

You still speak Romanian?

Yeah.

Or Not to Split?

I grew up in Romania till I was 10. Corruption everywhere.

And my parents are crazy.

Couldn't stand life so I_dropped out of school.

You're at OSU?

Man, that was an experience.

You still speak Romanian?

Yeah.

Accounting for Disagreements

One-to-One Many-to-One

Min	Mean	Max
36	53	64
76	87	94

Many-to-one mapping from high entropy to low:

First annotation is a strict refinement of the second.

One-to-one: only 75%

Many-to-one: 100%

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - ConversationStart Detection

Questions are welcome!

Pauses Between Utterances

A classic feature for models of multiparty conversation.

Name Mentions

- Sara Is there an easy way to extract files from a patch?
- Carly Sara: No.
- Carly Sara: Patches are diff deltas.
- Sara Carly, duh, but this one is just adding entire files.
 - Very frequent: about 36% of utterances.
 - A coordination strategy used to make disentanglement easier.
 - O'Neill and Martin '03.
 - Usually part of an ongoing conversation.

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - Conversation
 Start Detection

Questions are welcome!

Previous Work

- Shen '06
 - Class discussion corpus
 - Unsupervised (geometric) clustering
 - TF-IDF features
 - ... and discourse features
- Adams + Martell '08
 - Discussion and Navy tactical chat
 - Geometric with TF-IDF

Previous Work

- Aoki et al '03, '06
 - Conversational speech
 - System makes speakers in the same thread louder
 - Evaluated qualitatively (user judgments)
- Camtepe '05, Acar '05
 - Simulated chat data
 - System intended to detect social groups

Previous Work

- Pause features critical for everyone.
- Lexical features:
 - Shen, Adams: very useful.
 - Acar '05: tries (badly), but no gain.
- Message speaker:
 - Adams: tries, no gain.
 - Key for Aoki, Camtepe, Acar.
- Semantics:
 - Adams: tries, no gain.

One Conversation Per Speaker?

- Assumed by Camtepe, Acar:
 - Trying to detect social groups
- Aoki:
 - In 30-second window
 - Computational simplicity
- Legitimate assumption? No!

Conversations Per Speaker

Conversations Per Speaker

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - ConversationStart Detection

Questions are welcome!

Our Method: Classify and Cut

- Common NLP method: Roth and Yih '04.
- Links based on max-ent classifier.
- Greedy cut algorithm.

Found optimal too difficult to compute.

Comparison

- Supervised method.
- Pros:
 - Easy feature combination.
 - All parameters tuned from training data.
- Cons:
 - Needs annotated data.
 - Less portable across corpora?

Classifier

 Pair of utterances: same conversation or different?

- Chat-based features (F 66%):
 - Time between utterances
 - Same speaker
 - Name mentions

Most effective feature set.

Classifier

 Pair of utterances: same conversation or different?

- Chat-based features (F 66%)
- Discourse-based (F 58%):
 - Detect questions, answers, greetings &c
- Lexical (F 56%):
 - Repeated words
 - Technical terms

Classifier

 Pair of utterances: same conversation or different?

- Chat-based features (F 66%)
- Discourse-based (F 58%)
- Lexical (F 56%)
- Combined (F 71%)

Technical Terms

- Tech support vs. idle chat:
 - Rarely in the same thread
- Detect "tech" keywords using a Linux manual.
- A light-weight semantic technique.
- Slight improvements.

Open question: some way to use WordNet or LSA?

Greedy algorithm: process utterances in sequence

Classifier marks each pair "same" or "different" (with confidence scores).

Pro: online inference

Con: not optimal

Greedy algorithm: process utterances in sequence

Pro: online inference

Con: not optimal

Greedy algorithm: Treat classifier decisions process utterances as votes. in sequence Color according to the winning vote. Pro: online inference If no vote is positive, Con: not optimal

begin a new thread.

Greedy algorithm: process utterances in sequence

Color according to the winning vote.

If no vote is positive, begin a new thread.

Pro: online inference

Con: not optimal

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - Conversation
 Start Detection

Questions are welcome!

Baseline Annotations

- All in same conversation
- All in different conversations
- Speaker's utterances are a monologue

- Consecutive blocks of k
- Break at each pause of k
 - Upper-bound performance by optimizing k on the test data.

Results

	Humans	Model	Best Baseline	All Diff	All Same
Max 1-to-1	64	51	56 (Pause 65)	16	54
Mean 1-to-1	53	41	35 (Blocks 40)	10	21
Min 1-to-1	36	34	29 (Pause 25)	6	7
	1				
	Humans	Model	Best Baseline	All Diff	All Same
Max local	87	75	69 (Speaker)	62	57
Mean local	81	73	62 (Speaker)	53	47
Min local	75	70	54 (Speaker)	43	38

One-to-One Overlap Plot

Local Agreement Plot

All annotators agree first with other humans, then the system, then the baselines.

Mention Feature

- Name mention features are critical.
 - When they are removed, system performance drops to baseline.
- But not sufficient.
 - With only name mention and time gap features, performance is midway between baseline and full system.

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - ConversationStart Detection

Questions are welcome!

Coarser/Finer Annotation on Demand

- Annotators disagree about specificity
- Can we meet different demands without retraining?

Bias Tuning

Classifier:

- Assumption: know exact entropy annotator wants.
- Add or subtract from bias...
 until target entropy reached.

Results

Results

	Untuned	Tuned	
Mean 1-to-1	41	49	
Mean Loc3	73	73	

- Specificity has little effect on local metric.
- Useful globally, but...
 - Assumption of exact entropy unrealistic.
- What can users tell us about what they want?

Outline

- Corpus
 - Annotations
 - Metrics
 - Agreement
 - Discussion
 - Features

- Modeling
 - Previous Work
 - Classifier
 - Inference
 - Baselines
 - Results

- Extensions
 - SpecificityTuning
 - ConversationStart Detection

Questions are welcome!

Where Conversations Start

- Current model:
 - Many pairwise decisions.
- Better?
 - One pointwise decision.
 - (like discourse-new classification in coref)
- Couldn't get much improvement...

Oracle Results

If we had perfect detection:

	Normal	Oracle	
Mean 1-to-1	41	47	
Mean Loc3	73	74	

- How good is "normal"?
 - Not very!
 - F-score ~ 50%.
- Can we build a better detector?

Plenty of Work Left

- Annotation standards:
 - Schemes with better agreement
 - Explicitly model splits/merges?
 - No partitioning, just link utterances? (Traum pc.)
- What metrics can we use for these schemes:
 - Graphs, not just clusterings.
- How can users express their preferences?

Plenty of Work Left

- Modeling:
 - Better classification/distance metrics.
 - Semi-supervised methods?
 - Conversation start detection.
 - Semantics.

- Applied settings:
 - Which metrics correlate with IR scores?
- Other domains? Speech?

Data and Software is Free

Available at:

www.cs.brown.edu/~melsner

- Dataset (text files)
- Annotation program (Java)
- Analysis and Model (Python)

Acknowledgements

- Suman Karumuri and Steve Sloman
- Matt Lease
- David McClosky
- Craig Martell
- David Traum
- 7 test and 3 pilot annotators
- 3 anonymous reviewers
- NSF PIRE grant