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SLAVISH SUBSERVIENCE TO THE SHIBBOLETH: WHAT IS A SPACE?

In the classical teaching of Calculus, these ideas
are immediately obscured by the accidental fact
that, on a one-dimensional vector space, there is
a one- to-one correspondence between linear
forms and numbers, and therefore the derivative
at a point is defined as a number instead of a
linear form.

This slavish subservience to the shibboleth of
numerical interpretation at any cost becomes
much worse...

Jean Dieudonné

We swiftly recall background definitions and results we will be relying on, in order to establish notation and
for general completeness. This section can be skipped or skimmed, and the reader can refer to it later at any
point of confusion.

I.1 Incantations of Topological Spaces

Behold, a picture of a topological space:




L l",,l/
1] 7=
(L ""'IL//,/:’.

Remark 1.1.2. First, we note that taking I = @ in (3) yields @ € (7'(X), which the reader might have expected
in (T). Now we address the cryptic labeling we have employed for these conditions. Indeed, recall:

UU={zex|aU:zcU} €)

Uel

DUV ={zeX|zeUAxeV} (N
X={zeX|T} (M

where we use T to denote True. Hence, we may interpret | J, N, and T within the context of the topological space
X as the analogues for 3, A, and T respectively. Fear not, we plan on make this analogy much more rigorous...

Exercise 1.1.3. Find the analogue for negation — within the context of a topological space X.
(%) Interpret the principle of excluded middle' in such a context.
(ii) Need this principle always hold? If not (wink wink), when does it?
(iii) What can you say about a space where excluded middle holds?

(iv) Engage in deep contemplation about what this means.

1To be or not to be, that is the question!




Q2 :={T, L} and only one non-trivial open set { T }.

[[more examples]]

Remark1.1.7. [[Why the preimage?]|




Exercise 1.1.8. For Sx C X and Sy C Y, verify the following equivalent conditions:
fa(Sx) C Sy & Sx C f71(Sy)
Sy C fy(Sx) & S (Sy) € Sx
Deduce that f3 and f* preserve unions, whereas f* and f preserve intersections.
Exercise 1.1.9. Show that € classifies open sets/subspaces, that is, for every topological space X there is a bijec-

tion of sets:

0(X) 1 Hom(x - Q).

Moreover, show this realization map | - | is natural in X, i.e.

e For f € Hom(X — Y), thereis amap f*: Hom(Y — Q) — Hom(X — ) given by precomposition
g + g o f such that the following diagram commutes?:

() -1 Hom(y — Q)

Ir

|
7(X) — Hom(X — Q)

1
|

Note: For this reason, many people write f* instead of f ~* to denote the preimage map.

Whereas points assemble into a topological space, topological spaces themselves assemble into a higher
space. Before delving into the aspects of higher topologies, we first need to extend the notion of a set, obtain-
ing a higher set or a category.

[[Gio: This definition I gave for a category kinda fucking sucks Imao. The last time I thought of the definition
of a category was in the context of Lie/Etale groupoids, where this was the best way to look at it]]

2By this, we mean that the two possible ways of getting from the top-left corner to the bottom-right corner agree. In this case, we simply
mean that | - | o f~! = f* o |- | holds.




Note: We require o to be associative and unital, with identityid. for everyc € Cy.

Exercise 1.1.11. Verify that topological spaces Top, and continuous maps Top; with their inherited function
composition o form a category, which we will denote by Top.

Exercise I.1.12. Verify that (7'(X) is a category with hom-spaces?

T if UCV
1 else

Hom(U,V) = {

where we've used T (True) and L (False) to denote the singleton set * = {C} and the empty set @ = { } respec-

tively in this context. In more concrete terms, there exists a morphism U — V ifand only if U C V. [[find
arbitrary coproducts, finite products, and terminal objects. In particular, what's the initial object]]

Exercise 1.1.14. For a topological space X, verify there is a category IT; (X) of points in X and paths (up to
homotopy) between them known as the homotopy groupoid of X . Indeed, show that every morphism in IT; (X)
is invertible.

Note: A category such that every morphism is an isomorphism is known as a groupoid.

Note: We will later see that all groupoids arise in this way.

I.2 Incantations of Vector Spaces

I.3 Incantations of Smooth Spaces

3More precisely, these are hom (—1)-spaces. We will later harness the power of negative categorical thinking; but for now, we simply
make the reader aware of the fact that there are two (-1)-categories, corresponding to truth and falsehood. Is U contained in V?
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[[Gio: Schemes generalize manifolds: Manifold M < Sheaf C': 7 (M)®* — Ring where locally C(U) =
C(R™) (by RingI do kinda want C*-algebras). Notice C': 7 (R™)** — Ringis an affine scheme (i.e. the spectrum
of the ring C'(R™) as alocally ringed space) A scheme is just a sheaf of rings which is locally equivalent to an affine
scheme, that is, the spectrum of a chosen ring R]]

Remark 1.3.3. Given an n-dimensional manifold M, such a trivialization U = R"” of an open U C M can be
thought of:

(i) Asachart p: U = R™over U || (1o as in navtical maps (deaw the analosy)||
(ii) Asa parametrizationy: R" = U of U | io: acin Calculus (deaw the analosy )]

Moreover, given two such trivializations U = R™ and V' = R" in M, there is a partially defined map R™” — R”
induced by their intersection U N V. Indeed, consider the map

tU,V:Rn%UﬂV—)Rn

where the first map is the parametrization of U co-restricted to U N V, and the second map is the chart over V'
restricted to U N V. Of course, we could have swapped the roles of U and V, yielding a partially-defined inverse
tyhy =tvu.

Hence, in general, these so-called transition maps are homeomorphisms on their domains. However, R has
more structure than just that of a topological space. Indeed, as the stage on which Calculus is defined, we may
bootstrap the structure of R” to manifolds in order to obtain a differential calculus or geometry on curved spaces.

Remark 1.3.5. [[Gio: Equivalently, a smooth manifold is a covering of M by embeddings Hom(R" < M) such
that blah. Can this be tied into covering sieves?]]

[[Gio: Riemannian Manifolds]]
[[Gio: Lorenzian Manifolds]]

I.4 Incantations of Homotopy Spaces




A FAUSTIAN BARGAIN: WHAT IS AN ALGEBRA?

ALGEBRA IS THE OFFER MADE BY THE DEVIL TO THE
MATHEMATICIAN. THE DEVIL SAYS: I WILL GIVE
YOU THIS POWERFUL MACHINE, IT WILL ANSWER
ANY QUESTION YOU LIKE. ALL YOU NEED TO DO IS
GIVE ME YOUR SOUL: GIVE UP GEOMETRY AND YOU
‘WILL HAVE THIS MARVELOUS MACHINE.

MICHAEL ATIYAH

[[Brett: T think there should be a chapter on “algebra” that emphasizes the role of algebras as dual to spaces
- either here or after the chapter on sheaves - but beginning to build towards the Gelfand duality etc etc picture.
and paralleling the space chapter, by giving a type of algebra for each type of space]]

[[Brett: also if spaces are Incantations then algebras could be Chants, maybe? not great at the theming. or go
with the devil theme and call them Bargains or Contracts. i'm just loosely titling them for now to nail down what
goes in each section]]

ONTRARY to what Atiyah suggests, one really can have it all: algebra does not exist at the expense of geom-

etry. Rather, algebra is the dual of geometry, and every type of space discussed in Chapter has an
algebraic doppelgédnger.

boolean algebras, CABAs, lattices, locales - algebras of sets

vector spaces redux, this time focusing on algebra. probably make
this a chapter on modules and basic homological algebra

c star algebras

lurie math, maybe?
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STEPS TOWARDS HIGHER SPACES: WHAT IS A SITE?

THE WISE MAN LOOKS INTO SPACE AND DOES NOT
REGARD THE SMALL AS TOO LITTLE, NOR THE GREAT
AS TOO BIG, FOR HE KNOWS THAT THERE IS NO
LIMIT TO DIMENSIONS.

ZHUANG ZHOU

77 ECALL that, for a category X, a presheaf of a given flavor of mathematical structure on A’ is simply a con-
travariant functor:
X°? — Structures

where Structures can be taken to be category of Sets, Groups, Ab, Vec, Hilb, C*Alg, W*Alg, etc. depending on our
interests. But where does the term “pre-sheaf” come from, and what would make a “pre”-sheaf not just “pre”?

Idea. If presheaves are like functions on a space, sheaves are to be thought of as the continuous functions.

But in order to talk about “continuity” of a functor on a category, we need the notion of a topology on a
category: thus turning it into a higher space known as a site.

Idea. The category O(X) of open sets is the same data as a topological space X , and is hence a space.!
Albeit unorthodox, we may describe the topology on X as follows:

Foreveryz € X, there s a collection of so-called open neighborhoods 7, C O(X) of z whereeach U € T,
contains x € U. These are required to satisfy the following three axioms:

!n this note we will use this idea to motivate the notion of a site. In particular, we will focus on abstracting “open covers” to arbitrary
categories. However, there is another, equally valid direction in formalizing the very same idea. Indeed, one can instead consider lattices
which behave like the lattice O(X') by admitting:

« finite limits (meets, greatest lower bounds, intersections) A = N,
* arbitrary colimits (joins, least upper bounds, unions) \/ = |
* initial (minimal, smallest, False) and terminal (maximal, greatest, True) objects 0 = g and 1 = X.

These lattices are known as frames/locales in the field of pointless geometry (pun intended). These also play a role in intuitionistic logic, where
they are known as complete Heyting algebras. Of course these structures will turn out to be closely related to sites. In fact, the representations
of a site X’ will form a so-called topos Sh(X'), where a topos is the categorification (homotopification) of a locale.
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Algebraic geometry cheat sheet
Category level 0 Category level 1
Set Category
Topology Grothendieck Topology
Space Site
Function X — C Presheaf X'>» — Hilb
Continuous function f: X — C | Sheaf F': X°*> — Hilb
Abelian group C'(X) Topos Sh(X)
(f +9)(z) = fz) + g(x) (FeG)U):=FU)aGU)
Vector space C'(X) 2-vector space Sh(X)
Scalars A € C Hilbert spaces A € Hilb
A f)x) =X f(z) (A>F)(U)=A® F(U)
Algebra C'(X) Monoidal category Sh(X)
(- 9)(@) = f(2) - g(x) (F&G)U) = F(U) & G(U)
Commutative C*-algebra C'(X) | Symmetric C*-2-algebra Sh(X)

J(@) = f(z) FU) = F(U)

(T1) IfV € T, is an open neighborhood of y € X, then V N'T, C T,.2

(T2) For every collection of points {x;} C X, and every collection of open neighborhoods {U;;} C T,,
we have |J;; U;; € Ty, forevery z;.

(T3) X € T, is an open neighborhood for every z € X

Notice (T1) captures the fact that the topology on X is closed under finite intersections, (T2) captures
closure under arbitrary unions, and (T3) implies X is open.®

One thing to note is that the points z € X generally live “outside” of O(X), as the singletons {z} are seldom
open. Hence, one should morally modify these conditions in terms of coverings for open sets U, instead of
neighborhoods for a point 2.4 This leads us to the following notion of a Grothendieck topology:

2Here we're not worrying about @
3Either include @ in each T (which is admittedly not great conceptually), or include it at the end
4We note that one should also be able to interpret this discussion in terms of filters and ultrafilters.
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X(— — U) € 7y is a covering sieve for every U € X.

Asite (X, T) is then a category X equipped with a Grothendieck topology 7.

Remark 111.0.2. As one can see, the notation for sieves gets a bit heavy and obfuscates this relatively easy concept:
A site is a category equipped with a notion of “covering’, where:

(T1) The preimage of a cover is a cover

(T2) Covering a cover is a cover

(T3) The whole space® covers everything

Alternatively, we can state these axioms in parallel to those of a topology as long as we're willing to squint at the
meaning of “intersections”, “

, “unions”, and “trivial”:
(T1) Finite intersections of covers are covers
(T2) Arbitrary unions of covers are covers®

(T3) Trivial covers are covers

Of course, by construction, we recover our guiding example:

When working in categorification, one notices the following common motif:

Idea. Structures of a certain mathematical flavor assemble into higher mathematical structures with a resembling
taste.

We see this for example as abelian groups themselves form an abelian category Ab, vector spaces form a
2-vector space Vec, Hilbert spaces form a 2-Hilbert space Hilb, and so on. Thus, in the spirit of (vertical)
categorification, we should expect that topological spaces themselves form a higher space, i.e. a sife.

Vertical categorification
Category level 0 Category level 1
Abelian groups Abelian category Ab

Vector spaces 2-vector space Vec
Hilbert spaces 2-Hilbert space Hilb
Topological spaces Site CHaus

5Following the tradition of Yoneda, we identify a space X with its Yoneda embedding.
6The ambiguity of this statement is particularly egregious, as we will see later on.




We note that these covering sieves in CHaus are quite tame. In general, Grothendieck topologies can be much
more fine or coarse. Indeed, just as in point-set topology, there are maximal and minimal Grothendieck topolo-
gies:
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BEING HUNGRY, THEY CARRY THE SHEAVES: WHAT IS A SHEAF?

THOSE WHO GO OUT WEEPING, CARRYING SEED TO
SOW, WILL RETURN WITH SONGS OF JOY, CARRYING
SHEAVES WITH THEM.

PsaALMsS 126:6

=1ow that we have fleshed out the notion of a topology on a category X', we may talk about presheaves of a
certain flavor

X°P — Structures

which preserve the topology we've chosen on our site.

Idea. If we think of a covering sieve S for U € X as an honest covering of U, “preserving” S corresponds to
satisfying a certain “gluing condition”! with respect to this covering. In the case when X = O(X) for a topological
space X, we think of a presheaf F' as assigning a whole structure’s-worth of functions over each U C X. Indeed,
consider the prototypical example where Structures = Groups and F' = C'(— — G)

C(— = G): O(X)°® — Groups
assigns to each open U C X the group of G-valued continuous functions for a topological group G2
C(U — G) :=={f: U — G continuous}.

Now for an open covering {V;} C X of U, consider the commutative diagram

CU—-G) —— C(V; = G) (f:U—=G) —— fly

! | | ]

Observe that each f: U — G is uniquely determined by the collection of functions (f; := f|v;) where fi|v, =
fjlv,. Conversely, given such a collection (f;: V; — G) of continuous functions, we may uniquely glue these
to obtain a continuous f: U — G. The slick way to express this categorically is that the following diagram is a

IYou'll also hear of algebraic geometers talking about “descent conditions”, which are synonymous.
2This is actually closely related to how one thinks of a topological group as a condensed group in Condensed Mathematics.
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pullback square®:

ClU =G — [, C(V; = G)
| |

[ CVi—=G) — [I; C(VinV; = G)

In any case, what the category theory is trying to express is that the space C(U — G) isbuiltfrom each C(V; — G)
by gluing along their intersections C'(V; N V; — G).

Again, by construction, we obtain our first example:

In the following section, we will discuss the meaning of this curious term “germ”. However, prior to such a
digression, we present more examples of sheaves:

3or equalizer diagram, pick your poison.




which assigns to an open set U C X the C*-algebra
C(U) == {f: U — C continuous}.

Of course there’s a problem in that functions in C(U) need not be bounded because U is seldom compact,
i.e. this obviously doesn’t form a C*-algebra. But we may try to modify this construction by considering:

Co: O(X)* — C"Alg (not necessarily unital)
on a locally compact Hausdorff space X, which assigns to an open set U C X the C*-algebra
Co(U) = {f: U — C continuous and vanishing at infinity}.

Albeit a more promising candidate, as this does form a presheaf, we note that Cj does not satisfy the desired
gluing condition for sheaves.

Exercise IV.0.5. Find a locally compact Hausdorff space X so that Cp: O(X)** — C"Algis not a sheafon X. In
particular, build a family of continuous functions vanishing at infinity (f;: U; — C) on an open cover {U; } of X
which does not glue to a global function f: X — C which vanishes at infinity.

Hint: Consider X = R covered byU; = (i — 1,i+ 1) fori € Z.

Remark 1V.0.8. We provide an even “fancier” description of the structure sheaf. Indeed, notice there is a sheaf

Xc: CHaus™ — C'Alg
X — LCHaus(X — C)

where LCHaus is the site of locally compact Hausdorff spaces. Equivalently, we may write

LCHaus(X — C) = li)m CHaus(X — B"(0)) where C = lim B"(0),

r—00
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is viewed as the colimit of discs of radius » > 0 centered at the origin 0. Now, for a particular X € CHaus, we

may construct a site over X, namely the slice category CHaus /X of compact Hausdorff spaces Y’ 7, X. Then
& ¢ induces a sheaf on CHaus /X by

C': (CHaus /X)) — C'Alg
vyLx)ym{vLxscigeox)y

In particular, when Y’ I, XisaninclusionY C X, then C' (Y Ix ) = C(Y) by the Tietze extension theorem.

Perhaps even more abstractly, CHaus /X can be viewed as the category e/( & x) of elements of the sheaf

& x: CHaus®® — CHaus
Y +— CHaus(Y — X).

There is an action of each & x (YY) on C(X) by composition:

CHaus(Y — X) x CHaus(X — C) = CHaus(Y — C)

from which we induce a sheaf & x > C'(X): CHaus® — C"Alg, and hence our desired one on the category of
elements

C': (CHaus /X)) — C"Alg.

[[Now just you pray we don't generalize this further.]]
In any case, the site CHaus /X and 7 (X) are morally the same... |[how can (his be formalized though? Are
they “Morita equivalent” in some sense, i.e. do they have the same sheaves?]]




Sheafs of smooth functions? Continuous functions? Vanishing at certain sets? Imaginably one can cook up
many more sheaves of this form. Indeed, one may consider sheaves of holomorphic functions on compact Rie-
mann surfaces, meromorphic functions on such surfaces equipped with divisors, you name it. In fact, one might
be willing to naively conjecture: the nicer the flavor of functions, the easier it is to form a sheaf out of them. How-
ever, there is a certain element of robustness these families of functions must satisfy. We provide the following
counterexample as a warning.

There is a way to fix this example, which is to consider a slightly larger, more robust class of functions.

Exercise 1V.0.12. Let G be a group equipped with its discrete topology. Show that
C(U = G) = C1.(U — G) for any space U.
We will see that there is a more systematic way of enhancing a presheaf into a sheaf, i.e. a free construction:

free

Sheaves 1 Presheaves
-

forget

For this we will introduce the “stalk picture” and finally discuss “germs” of functions. Before this, we include a
brief digression on spaces of sheaves.
[[What about sheaves of solutions of a PDE on a manifold? Talk with Gabe!]]
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IV.1 Sheaves on smooth spaces

[[Sheaf of differential forms]]
[[Sheaf of functionals of simplices]]




WHERE THE SEA ADVANCES INSENSIBLY IN SILENCE: WHAT IS A
TOPOS?

IT IS BETTER TO HAVE A GOOD CATEGORY WITH BAD
OBJECTS THAN A BAD CATEGORY WITH GOOD
OBJECTS.

ATTRIBUTED TO A. GROTHENDIECK

ONSIDER the following example of a sheaf, which is the “dirac-delta” function’s higher analogue. Of course
this can be stated in terms of any sort of mathematical structure. But, as we are not interested in centipede

mathematics', we will state it here for sheaves of groups.

Exercise V.0.2. What conditions on P C X, if any, does one need to impose so that one can define a sheaf Gy p
on X?

IThis is the tradition of removing as many hypothesis from a theorem as possible while retaining its form. How many legs can you remove
from a centipede until it is no longer a centipede? One? Fifty? Fifty-one? Ninety-nine? A hundred? Moreover, how much discussion can one
include in a footnote until it is no longer a footnote? We leave this as an exercise to the reader.
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The idea of sheaves being “continuous? functions” on a site leads us to the following insight:
Idea. The space of sheaves Sh(X') on a site X plays the role of C(X) on a space X .

From practice, we know that the C*-algebra C'(X) is quite a nice mathematical object, due to the fact that
C is quite rich. More generally, the tradition of Yoneda teaches us that algebraic structures on an object T’
correspond to structures on Hom(— — T'), which in turn descend onto structure for each Hom(X — T)).
So the fact that C is a C*-algebra is what endows C(X) is said structure.

Now the same can be said for higher structures: When 7 is, for example, an abelian category, it follows that
the category Sh(X — T) of sheaves on a site X’ valued in 7 will also form an abelian category. This is the
guiding principle of condensed mathematics®, where topological abelian groups are replaced by sheaves of
abelian groups on a suitable site CHaus of topological spaces.

Indeed, albeit the category of topological abelian groups is not an abelian category, we may identify a topo-
logical abelian group G with its associated sheaf:

C(— — G): CHaus® — Ab
~—~
abelian category

which does live in an abelian category of condensed abelian groups cAb := Sh(CHaus — Ab).*

DEFINITION V.0.3 — A category of the form Sh(X) for a site X is known as a (Grothendieck) topos.

Idea. Condensed structures are like structures that need not have enough points.
For a condensed structure F': CHaus” — Structure, we may consider the underlying structure
|F| = F(x) = F({p}),

which are to be thought of as the space of “points” of F'.> Notice how | F'| could be trivial yet Q7 = F(S*),
the loop space of F, could be non-trivial. For example, consider the condensed abelian group

H'(—;Z) :== CHaus* — Ab

which only has one point H'(;Z) = {0} and an infinite loop space H'(S';Z) = Z. One way to think
about this is that H'! is the condensed abelian group representing the infinitely small circle.

Moreover, since we may view finite sets A as discrete compact Hausdorff spaces in CHaus, there is also an
underlying simplicial structure F|po» : A°P — Structure.

Indeed, for condensed sets, we obtain some nice adjunctions:

k| aop~ &k

sSet T cSet T Top
“~Kan—" S~|-|—7

Note that here, instead of | F'| landing in Set, we equip F'(*) with an organic topology.

Exercise V.0.4. What topology do we need to equip F'(*) with in order to obtain the desired adjunction?

2This last example might be a bit counterintuitive, since characteristic functions are generally not continuous. But what we normally
think of as continuity will arise as a local-triviality condition later on.
30ne will find different formalisms, all based on this principle, which have their own ways of dealing with size issues:

e Condensed mathematics only considers spaces smaller than an uncountable inaccessible cardinal x, taking a (large) colimit on x
whenever needed. In fact, they tend to restrict themselves to so-called pro-finite sets, which form a site with more-or-less the same
sheaves.

e Pyknotic mathematics only considers spaces smaller than the first strongly inaccessible cardinal .

o Quasi-mathematics completely disregards size issues. A quasi-topological space in the sense of Spanier is precisely a sheaf CHaus®? —
Ab on the large category CHaus. This is the philosophy we will follow, noting that “quasi-mathematics” is not a standard term.

“Here it is curious that CHaus®? 2 C" Alg,,..., appears. Is this just a coincidence?
5Again practicing the tradition of Yoneda, the points of I are Hom(x = F) = F'(x) where % := &, = Top(— — *).
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LoVE IN THE TIME OF CHOLERA: WHAT IS A GERM?

ToDAY, WHEN I SAW YOU, | REALIZED THAT WHAT IS
BETWEEN US IS NOTHING MORE THAN AN
ILLUSION.

GABRIEL GARCiA MARQUEZ

E have seen how sheaves on a space X serve to encode classes of partially defined functions on X together
with the way they glue together. In this section, our aim is to present the “Stalk picture" for sheaves, which
is motivated by fiber bundles.




We will quickly talk only of bundles £ 5 B, suppressing the fibers from our notation when possible. In order to
clarify this talk of Structure and structure preserving maps, let us instantiate our cases of interest:

e In the case when Structure = Vec, such a fiber bundle is known as a vector bundle and we require the
transition maps tyny : U NV — Aut(V) to have their image in linear automorphisms Vec(V — V).

¢ When Structure = Hilb, these are known as Hilbert bundles and we require the transition maps to land in

bounded maps (really, the “correct” choice is unitary maps). These are closely related to so-called Rieman-
nian manifolds.

¢ One can also consider Structure = sHilb, which are then related to the semi-Riemannian manifolds ap-
pearing in general relativity.

* Finally, for C*-bundles with Structure = C*Alg, we require that ¢~y land in x-algebra automorphisms.

More generally, one speaks of so-called structure groups:

These structure groups are more refined than just equipping the fibers F' of a bundle £ 2, B with Structure'.
For example, we may talk of n-dimensional vector bundles with structure group O(n). Similarly, we can consider
Hilbert bundles with fiber H having structure group U (H).

Before we move on to relating these bundles to our story about sheaves, we present some examples.

Exercise VI.0.5. Figure out how to equip 7'M with a topology so that T’M — M is a vector bundle.

'Equivalently, one could restrict the morphisms in the category Structure, so that Aut(F) is our desired group in this subcategory. For
example, one could pass from Hilb to the subcategory Hilbjsom of Hilbert spaces with isometric maps in order to obtain bundles with structure
group U (H). This, however, would be a notational nightmare.




We now discuss how to view bundles as sheaves.

A particular instance of this example to keep in mind is the sheaf of vector fields on a manifold:

Xy =T(——=>TM): O(M)°® — Vec.

Idea. Sheafs are like bundles where we allow the “fibers’, called stalks, to be different.

In order to recover the fiber over a basepoint b € B from the section sheaf I'(— — E) of a bundle E, we
somehow need to “shrink” the I'(U — E) by taking smaller and smaller open neighborhoods of b € U €
O(B). Using the language of ultrafilters on O(X), or more generally, of directed limits in X', we obtain the
notion of a stalk:




In the case where F is a sheaf of functions, for example when F = C(— — G) for a topological group G, each
f € C(U — G) determines a germatx € U € O(X) i.e. its image under the map C(U — G) — F,. Thus, the
stalk F, is known as the space of germs at =, and F' = C(— — G) the sheaf of germs of G-valued functions.

To summarize our discussion so far:

Presheaves +——— Sheaves «+——— Fiber bundles

! ! !

Functions +—— Continuous functions «—— Constant functions

Let us now view operator algebras as sheaves through this stalk picture:

Theorem VI1.0.10 (Dauns-Hofmann). Every C*-algebra A can be organically realized as a sheaf
A: O(Spec A)* — TAlg

of ' . onitsspectrum Spec(A) with total section space A(Spec(4)) = A  and
fibers A, = w(A). . Moreover, AisaC: O(Spec A)** — fAlgmodule. = =
C(Spec(4))]]

Proof. Let A be a C*-algebra and let Uy = {w: A — B(H)irrep. |I € kern} be a basis open set in Spec(A)
corresponding to the ideal I C A. We define

A(Up) = A/ ﬂ ker .
weUr
For I C J, the map corresponding to U; C Uy is given by the canonical projection map induced by

ﬂ kerm C ﬂ ker 7

weUr welUy
.A(U]) e .A(UJ)

Using universal properties of quotients, one readily verifies the sheaf condition for .A. Moreover, the basis open
set Uy = Spec A and (), cgp.c 4 kerm = 0 as every a € A admits an irrep 7w of A with ||al| = ||« (a)||. Hence
A(Spec A) = A/0 = A. Finally, lim,cy, A(Ur) = A/ kerm = w(A).

Remark V1.0.11. In the case when A = C(X), we note that Spec(4) = X and A recovers the usual sheaf
C: O(X)*» — tAlg with total section space C'(X) and 1-dimensional fibers C(X), = C. In the stalk picture, A
isinfactjust (X x C — X).




[ Theorem VI1.0.12 (Factor decomposition). = ' ]

We now provide a method of sheafifying any presheaf F, by first viewing it as a “generalized bundle” and then
taking its sheaf of sections.

[[Figure out where to move this]]

Remark V1.0.15. The analogous statement one category level down is that every functional on a Hilbert space is
bounded/continuous.
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FAILURE IS AN OPTION: WHAT IS SHEAF COHOMOLOGY?

WE DON’T MAKE MISTAKES, JUST HAPPY LITTLE
ACCIDENTS.

BoB Ross

= onsider a morphism' ¢: F = G of sheaves F, G: X°® — Structure:

¢ Structure

~_ Vv

G

]

Recall the following idea:
Idea. Maps into an algebraic structure tend to absorb this structure and reflect its properties.

In particular, when Structure forms an abelian category, we expect Sh(X’) to form a category which is also
abelian.

So, for ¢: F = (@, we should be able to construct sheaves Ker ¢ and Im ¢ that fit into a short exact se-
quence:

0 Kerd— F 2 Imeé —0

The first construction one would guess is to define
Ker ¢p: X°® — Structure and Im¢: X°" — Structure
pointwise, i.e. on U € X by
(Ker ¢)(U) = Ker(¢y: F(U) = G(U))  and  (Im)(U) := Im(¢y: F(U) = G(U))

Unfortunately, while Ker ¢ isindeed a sheaf, this naive construction for Im ¢ fails to be more than a presheaf.

!By this, we just mean a natural transformation as functors X°? — Structure

XXXi




Exercise VII.0.2. Show the previous claim by proving:

* There exists a continuous section of ¢"(~) on U, suggestively named % In. Convince yourself that this is
equivalent to idy € (Im ¢)(U).

* Convince yourself the same holds true for V.

* Show there exists no continuous split monomorphism of T — R by homotopical? considerations:

7T1(R) < 7r1(']I‘)
~——

——
0 A

Convince yourself this means that ¢?"(~) has no continuous section on T, and hence idy ¢ (Im ¢)(T).
Okay;, so just sheafify this construction to obtain the desired Im ¢ sheaf, big whoop. Well actually...
Idea. The failure of our naive construction is a feature, not a bug.
Indeed, notice the obstruction we constructed was homotopical in nature: T has nontrivial holes in dimen-
sion 1 whereas R does not. [[Brett: somewhere i want to discuss more generally “failures of abelian-ness”
or “failures to have kernels” - this is another one of those things that shows up everywhere. this is the pt

behind stabilization, triangulated categories, condensed sets in the first place, derived functors, etc. do
you want maybe a whole chapter on cohomology generally?]]

The idea behind sheaf cohomology is to exploit this failure in order to detect holes.
To recap, given a short exact sequence of sheaves on O(X)":
0—-K—=>F—=1—=0

we only have exact sequences:
0—-K{U)—FU)—I{U)

2Recall that 71 (Y) := C(T — Y')/ ~ up to homotopy for a (pointed) space Y.

XxXXii




which we will extend into long exact sequences:

S HMU; K) —— H"(U; F) —— H™U; 1)

VII.1 de Rham’s Theorem
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