Braided 2 Categories and the Drinfel'd Center

Giovanni Ferrer
August 30, 2021

Contents
1 Let's recall some stuff first 2
2 Braided Monoidal 2-Categories 3
3 The Drinfel'd Center of a Monoidal 2-Category 9
3.1 The Base 2-Category $\mathcal{Z}(\mathcal{A})$ 9
3.2 The Monoidal Structure 14
3.3 The Braiding 15
3.4 Some Facts 16
4 Braided Module Categories 17
4.1 Definitions 17
4.2α-Inductions and the Intermediate Category $\mathbf{A}(\mathcal{B})$ 22
5 Explicit Description of $\mathcal{Z}(\Sigma \mathcal{B})$ 24

1 Let's recall some stuff first

Recall the periodic table of k-tuply monoidal n-categories:

	$\mathrm{n}=0$	$\mathrm{n}=1$	$\mathrm{n}=2$	\ldots
$\mathrm{k}=0$	(pointed) set	(pointed) category	(pointed) 2-category	\ldots
$\mathrm{k}=1$	monoid	monoidal category	monoidal 2-category	\ldots
$\mathrm{k}=2$	abelian monoid	braided monoidal category	braided monoidal 2-category	\ldots
$\mathrm{k}=3$	"	symmetric monoidal category	sylleptic monoidal 2-category	\ldots
$\mathrm{k}=4$	"		symmetric monoidal 2-category	\ldots
$\mathrm{k}=5$	"	"	"	\ldots
!	!	\vdots	\vdots	\because.

We see that a monoidal 2-category is just a 3-category with one object.
We will however work with the strictest version possible while still retaining full generality:
Notation 1.1 - By a monoidal 2-category we mean a Gray monoid, i.e.
(S1) a 2-category \mathcal{A} together with
(S2) a 2-functor $\boxtimes: \mathcal{A} \boxtimes_{G} \mathcal{A} \rightarrow \mathcal{A}$ where \boxtimes_{G} is the Gray product, such that:
(A1) \boxtimes is (strictly) associative with unit $\mathbf{1} \in \mathbb{C}$.

2 Braided Monoidal 2-Categories

A braided monoidal 2-category is just a 4-category with a single object and a single 1-morphism. Unfortunately, 4-categories are hard. However, we can provide a semi-strict (Gray) definition for braided monoidal 2-categories. This definition is due to [3].

Definition 2.1 - An braided monoidal 2-category consists of:
(S1) A monoidal 2-category $(\mathcal{A}, \boxtimes, I)$
(S2) A 2-natural equivalence $\beta_{-,-}:-\boxtimes-\xlongequal{\cong}-\boxtimes-$ represented by
(S3) Invertible modifications $R_{(-\mid-,-)}$and $R_{(-,-\mid-)}$where:

and

satisfying:
(A1) the (1,3)-crossing and (3,1)-crossing axioms,
(A2) the (2,2)-crossing axiom,
(A3) the Yang-Baxter axiom, and
(A4) unit axioms.
(A1) The (1,3)-crossing and (3,1)-crossing axioms:

and

(A2) The (2,2) crossing axiom:

(A3) The Yang-Baxter axiom:

(A4) Unit axioms:

$$
\because=1 \quad \because \quad \because=1
$$

Example 2.2 - Examples of braided monoidal 2-categories

- The Drinfeld center $\mathcal{Z}(\mathcal{A})$ of a monoidal 2-category \mathcal{A},
- The braided monoidal 2-category BrMod- \mathcal{B} of braided module categories over a braided fusion 1-category \mathcal{B}.
- The braided fusion 2-categories \mathcal{S} and \mathcal{T}

Exercise 2.1. Come up with more examples of braided monoidal 2-categories.

3 The Drinfel'd Center of a Monoidal 2-Category

This definition is also from [3].

3.1 The Base 2-Category $\mathcal{Z}(\mathcal{A})$

Definition 3.1 - Given a monoidal 2-category \mathcal{A}, we define $\mathcal{Z}(\mathcal{A})$ to be the 2-category consisting of:
(0) Objects are triples $\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right)$ consisting of:

- an object $A \in \mathcal{A}$,
- a 2-natural equivalence $\beta_{A,-}: A \boxtimes-\xlongequal{\sim}-\boxtimes A$ represented by

$$
\bigcap_{A}:=\left\{\gamma_{A X}=\beta_{A, X}: A \boxtimes X \rightarrow X \boxtimes A\right\}_{X \in \mathcal{A}} \cup \quad\{\beta_{A, f}: \underbrace{X_{X}^{\prime} A}_{A} \Rightarrow \underbrace{1}_{A} \underbrace{X^{\prime} A}_{X}\}_{f: X \rightarrow X^{\prime} \text { in } \mathcal{A}}
$$

- an invertible modification $R_{(A \mid-,-)}$ where

satistfying the (1,3)-crossing and unit axioms.
- The (1,3)-crossing axiom:

$$
R_{(A \mid-,-\boxtimes-)} \xrightarrow{R_{(A \mid-\boxtimes-,-)}}
$$

- Unit axioms:

$$
\underset{A}{i}=\left.\right|_{A}
$$

(1) A 1-morphism $\left(f, \beta_{f,-}\right):\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right) \rightarrow\left(A^{\prime}, \beta_{A^{\prime},-}, R_{\left(A^{\prime} \mid-,-\right)}\right)$ consists of:

- a 1-morphism $f: A \rightarrow A^{\prime}$ in \mathcal{A},
- an invertible modification represented by

such that $\beta_{f,-}$ satisfies a unit axiom and $R_{(A \mid-,-)}$ becomes natural in $f: A \rightarrow A^{\prime}$.
- Unit axiom:

- Naturality of $R_{(A \mid-,-)}$:

(2) A 2-morphism $\alpha:\left(f, \beta_{f,-}\right) \Rightarrow\left(f^{\prime}, \beta_{f^{\prime},-}\right)$ is a 2-morphism $\alpha: f \Rightarrow f^{\prime}$ in \mathcal{A} such that $\beta_{f,-}$ becomes 2-natural in $\alpha: f \Rightarrow f^{\prime}$, i.e.

For $\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right) \xrightarrow{\left(f, \beta_{f,-}\right)}\left(A^{\prime}, \beta_{A^{\prime},-,}, R_{\left(A^{\prime} \mid-,-\right)}\right) \xrightarrow{\left(f^{\prime}, \beta_{\left.f^{\prime},-\right)}\right)}\left(A^{\prime \prime}, \beta_{A^{\prime \prime},-}, R_{\left(A^{\prime \prime} \mid-,-\right)}\right)$ in $\mathcal{Z}(\mathcal{A})$, their 1-composite $\left(f, \beta_{f,-}\right) \otimes\left(f^{\prime}, \beta_{\left.f^{\prime},-\right)}\right)$ is defined to be $\left(f \otimes f^{\prime}, \beta_{f \otimes f^{\prime},-}\right)$ where:

The compositions \otimes and \circ of 2 -morphisms in $\mathcal{Z}(\mathcal{A})$ are the same as in \mathcal{A}.

3.2 The Monoidal Structure

Definition 3.2 - For objects $\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right)$ and $\left(B, \beta_{B,-}, R_{(B \mid-,-)}\right)$, we define $\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right) \boxtimes\left(B, \beta_{B,-}, R_{(B \mid-,-)}\right)$ to be $\left(A \boxtimes B, \beta_{A \boxtimes B,-}, R_{(A \boxtimes B \mid-,-)}\right)$ where:

For an object $\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right)$ and a 1-morphism $\left(g: B \rightarrow B^{\prime}, \beta_{g,-}\right)$, we define:

$$
\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right) \boxtimes\left(g, \beta_{g,-}\right):=\left(A \boxtimes g, \beta_{A \boxtimes g,--}\right) \quad \text { and } \quad\left(g, \beta_{g,-}\right) \boxtimes\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right):=\left(g \boxtimes A, \beta_{g \boxtimes A,-}\right) \text { where: }
$$

The other \boxtimes-products are defined as in \mathcal{A}.

3.3 The Braiding

Definition 3.3 - We define the braiding $\left(\beta_{-,-}, R_{(-\mid-,-)}, R_{(-,-\mid-)}\right)$on $\mathcal{Z}(\mathcal{A})$ as folllows:
($\beta 0$) For objects $\mathbf{A}=\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right)$ and $\mathbf{B}=\left(B, \beta_{B,-}, R_{(B \mid-,-)}\right)$, we define $\beta_{\mathbf{A}, \mathbf{B}}:=\left(\beta_{A, B}, \beta_{\left(\beta_{A, B}\right),-}\right)$ where

($\beta 1$) For an object $\mathbf{A}=\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right)$ and a 1-morphism $\mathbf{f}=\left(f: X \rightarrow X^{\prime}, \beta_{f,-}\right)$, we define
(R) For objects $\mathbf{A}=\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right), \mathbf{B}=\left(B, \beta_{B,-}, R_{(B \mid-,-)}\right)$, and $\mathbf{C}=\left(C, \beta_{C,-}, R_{(C \mid-,-)}\right)$, we define

$$
R_{(\mathbf{A} \mid \mathbf{B}, \mathbf{C})}:=\bigcap_{A} \underset{R_{B C}}{\sim} \text { and } R_{(\mathbf{A}, \mathbf{B} \mid \mathbf{C})}:=\bigcap_{A B C} \underset{\mathrm{id}}{\sim}
$$

3.4 Some Facts

Theorem 3.4. Given any monoidal 2-category $(\mathcal{A}, \boxtimes, \mathbf{1})$, the Drinfeld center $\mathcal{Z}(\mathcal{A})$ is a braided monoidal 2-category.

Proof. An incomplete proof of this theorem appears in [Baez + Neuchl], which is completed and corrected by [Crans].

Theorem 3.5. Given any braided monoidal 2-category $\left(\mathcal{A}, \boxtimes, 1, \beta_{-,-}, R_{(-\mid-,-)}, R_{(-,-\mid-)}\right)$, there exists an embedding $\zeta: \mathcal{A} \hookrightarrow \mathcal{Z}(\mathcal{A})$ given by:

$$
\begin{aligned}
(A \in \mathcal{A}) & \mapsto\left(A, \beta_{A,-}, R_{(A \mid-,-)}\right) \\
\left(f: A \rightarrow A^{\prime}\right) & \mapsto\left(f, \beta_{f,-}\right) \\
\left(\alpha: f \Rightarrow f^{\prime}\right) & \mapsto \alpha .
\end{aligned}
$$

Note that this implies that every braided monoidal 2-category is equivalent to one for which $R_{(-,-\mid-)}$is trivial.

4 Braided Module Categories

This section is based on chapter 3 of [4]. From here on out, \mathcal{B} will always be braided fusion 1-category.

4.1 Definitions

Definition 4.1 - A braided (right) module category of \mathcal{B} is:
(S1) a finite semisimple (right) \mathcal{B}-module category $(\mathcal{M}, \triangleleft: \mathcal{M} \boxtimes \mathcal{B} \rightarrow \mathcal{M}, \ldots)$
 satisfying:
(A1) a unit axiom,
(A2) compatibility with \triangleleft and braiding, and
(A3) compatibility with the \otimes-product on \mathcal{B}.
(A1) Unit axiom:

$$
\underset{\substack{-\cdots \\ \hdashline \cdots}}{\substack{1}}=\mid=\operatorname{id}_{\mathcal{M}}
$$

(A2) Compatibility with \triangleleft and braiding:

$$
\frac{\|}{\|}=\frac{1>}{1 /}
$$

(A3) Compatibility with the \otimes-product on \mathcal{B} :

Remark 4.1. The term braided in the previous definition is justified as follows:

- Recall that the Artin braid group of type B is the group B_{n} generated by $\sigma_{0}, \ldots, \sigma_{n-1}$ subject to the relations:

$$
\begin{array}{rlrl}
\sigma_{1} \sigma_{0} \sigma_{1} \sigma_{0} & =\sigma_{0} \sigma_{1} \sigma_{0} \sigma_{1}, \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} & & \text { whenever }|i-j|>1 \\
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \text { for } i=1, \ldots, n-1
\end{array}
$$

- Given $X_{1}, \ldots, X_{n-1} \in \mathcal{B}$ and $M \in \mathcal{M}$, there are isomorphisms

$$
M \triangleleft X_{1} \triangleleft \cdots \triangleleft X_{n-1} \rightarrow M \triangleleft X_{\sigma(1)} \triangleleft \cdots \triangleleft X_{\sigma(n-1)}, \quad \text { for } \sigma \in B_{n},
$$

compatible with the composition of braids.

Definition 4.2 - A braided module functor $\left(\mathcal{M}, \triangleleft, \sigma_{-,-}\right) \xrightarrow{\left(F, F_{-,-}\right)}\left(\mathcal{M}^{\prime}, \triangleleft^{\prime}, \sigma_{-,-}^{\prime}\right)$ is:
(S1) a linear functor $F: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$, and
(S2) a natural isomorphism $F_{-,-}=\left\{F_{m, x}: F(m \triangleleft x) \rightarrow F(m) \triangleleft^{\prime} x\right\}_{m \in M, x \in \mathcal{B}}$ such that:
(A1) $F_{m, x} \circ F\left(\sigma_{m, x}\right)=\sigma_{f(m), x}^{\prime} \circ F_{m, x}$.

Remark 4.2. Note that being a braided module functor is a property of a module functor, not extra structure.

Definition 4.3 - A transformation $\alpha:\left(F, F_{-,-}\right) \Rightarrow\left(F^{\prime}, F_{-,-}^{\prime}\right)$ of braided module functors is simply a natural transformation $\alpha: F \Rightarrow F^{\prime}$ of the underlying \mathcal{B}-module functors.

Definition 4.4 - We define $\operatorname{BrMod}-\mathcal{B}$ to be the 2-category of braided modules over \mathcal{B}, braided module functors, and natural transformations.

Example 4.5 - Any braided monoidal functor $F: \mathcal{B} \rightarrow \mathcal{C}$ of braided fusion 1-categories equips \mathcal{C} with the structure of a braided \mathcal{B}-module category with $c \triangleleft b:=c \otimes_{C} F(b)$ and module braiding:

- In particular, when \mathcal{C} is a braided tensor category containing \mathcal{B}, we can equip \mathcal{C} with this braided \mathcal{B}-module category structure. In this case, the category of braided module endofunctors is braided equivalent to:

$$
\mathcal{Z}_{(2)}(\mathcal{B} \subset \mathcal{C}):=\left\{c \in \mathcal{C} \mid \beta_{c, b} \circ \beta_{b, c}=\operatorname{id}_{b \otimes c} \text { for all } b \in \mathcal{B}\right\}
$$

- A special case of this is when $\mathcal{C}=\mathcal{B}$, where we see \mathcal{B} as the rank one free braided \mathcal{B}-module category. Then, the category of braided module endofunctors of \mathcal{B} is braided equivalent to the Müger center $\mathcal{Z}_{(2)}(\mathcal{B}):=\mathcal{Z}_{(2)}(\mathcal{B} \subset \mathcal{B})$.

4.2α-Inductions and the Intermediate Category $\mathbf{A}(\mathcal{B})$

Definition 4.6 - The α-inductions [2] for a right \mathcal{B}-module category \mathcal{M} are tensor functors:

$$
\alpha_{\mathcal{M}}^{ \pm}: \mathcal{B} \rightarrow \operatorname{End}_{\mathcal{B}}(\mathcal{M}), \quad \alpha_{\mathcal{M}}^{ \pm}(X):=-\triangleleft X=| |_{X}, \text { for every } X \in \mathcal{B}
$$

where $\operatorname{End}_{\mathcal{B}}^{\text {r.e. }}(\mathcal{M})$ is the category of right exact \mathcal{B}-module endofunctors of \mathcal{M}. The \mathcal{B}-module functor structures on $\alpha_{\mathcal{M}}^{ \pm}(X): \mathcal{M} \rightarrow \mathcal{M}$ do differ and are given by:

and

$=$
:=

The monoidal functor structures of $\alpha_{\mathcal{M}}^{ \pm}$also differ and are given by:

and

Remark 4.3. Notice that, by definition, every \mathcal{B}-module functor $F: \mathcal{M} \rightarrow \mathcal{N}$ gives rise to natural transformations $F_{-, X}^{ \pm}$of \mathcal{B}-module functors:

Definition 4.7 - Let $\mathbf{A}(\mathcal{B})$ be the 2-category consisting of:
(0) objects are pairs (\mathcal{M}, η) where \mathcal{M} is a \mathcal{B}-module category and $\eta: \alpha_{\mathcal{M}}^{+} \xlongequal{\sim} \alpha_{\mathcal{M}}^{-}$is an isomorphism of tensor functors,
(1) a 1-morphism $F:(\mathcal{M}, \eta) \rightarrow\left(\mathcal{N}, \eta^{\prime}\right)$ is a \mathcal{B}-module functor $F: \mathcal{M} \rightarrow \mathcal{N}$ such that

(2) A 2-morphism $\alpha: F \Rightarrow F^{\prime}$ is just a \mathcal{B}-module natural transformation.

5 Explicit Description of $\mathcal{Z}(\Sigma \mathcal{B})$

This section is based on sections 4.1 and 4.2 of [4]. First recall that $\Sigma \mathcal{B} \cong \operatorname{Mod}-\mathcal{B}$, the category of finite semisimple (right) \mathcal{B}-module categories, pointed by the rank one free module $\mathcal{B}([5], 1.3 .13)$. The goal of this section is to prove the following:

Theorem 5.1. $\mathcal{Z}(\Sigma \mathcal{B}) \cong \operatorname{BrMod}-\mathcal{B}$

We will proceed by showing $\mathcal{Z}(\operatorname{Mod}-\mathcal{B}) \cong \mathbf{A}(\mathcal{B}) \cong \operatorname{BrMod}-\mathcal{B}$.
Lemma 5.2 - There is a canonical 2-equivalence $\mathbf{A}(\mathcal{B}) \cong \operatorname{BrMod}-\mathcal{B}$.
Proof of Lemma. Let \mathcal{M} be a \mathcal{B}-module category. Note that a module braiding $\sigma_{-,-}$on \mathcal{M} is actually the same thing as a natural isomorphism $\eta: \alpha_{\mathcal{M}}^{+} \xlongequal{\sim} \alpha_{\mathcal{M}}^{-}$:

is equivalent to $\eta_{X}: \alpha_{\mathcal{M}}^{+}(X) \stackrel{\sim}{\Longrightarrow} \alpha_{\mathcal{M}}^{-}(X)$ being an isomorphism of left \mathcal{B}-module functors, i.e.:

$$
\begin{array}{r}
\alpha_{\mathcal{M}}^{+}(X)(M) \triangleleft Y \xrightarrow{\left(\alpha_{\mathcal{M}}^{+}(X)\right)_{M, Y}} \alpha_{\mathcal{M}}^{+}(X)(M \triangleleft Y) \\
\eta_{X}(M) \triangleleft \operatorname{idd}_{Y} \downarrow \\
\alpha_{\mathcal{M}}^{-}(X)(M) \triangleleft Y \xrightarrow[\left(\alpha_{\mathcal{M}}^{-}(X)\right)_{M, Y}]{ } \alpha_{\mathcal{M}}^{-}(X)(M \triangleleft Y)
\end{array}
$$

(Cles) is equivalent to the monoidality of the natural isomorphism η, i.e.:

$$
\begin{array}{r}
\alpha_{\mathcal{N}}^{+}\left(A_{1}\right) \otimes \alpha_{\mathcal{N}}^{+}\left(A_{2}\right) \xrightarrow{\eta_{A_{1}} \otimes \eta_{A_{2}}} \alpha_{\mathcal{N}}^{-}\left(A_{1}\right) \otimes \alpha_{\mathcal{N}}^{-}\left(A_{2}\right) \\
\begin{array}{c}
\left(\alpha_{\mathcal{N}}^{+}\right)_{A_{1}, A_{2}} \downarrow \\
\quad \alpha_{\mathcal{N}}^{+}\left(A_{1} \otimes A_{2}\right) \xrightarrow{\left.\downarrow^{(} \alpha_{\mathcal{N}}^{-}\right)_{A_{1}, A_{2}}} \\
\eta_{A_{1} \otimes A_{2}}
\end{array} \alpha_{\mathcal{N}}^{-}\left(A_{1} \otimes A_{2}\right)
\end{array}
$$

Furthermore, for a \mathcal{B}-module functor $F: \mathcal{M} \rightarrow \mathcal{N}$:

- F being braided, that is

Lastly, the 2-morphisms in each category just all \mathcal{B}-module natural transformations.

Sketch of proof of Theorem 5.1. In light of lemma 5.2, we need only show $\mathcal{Z}(\operatorname{Mod}-\mathcal{B}) \cong \mathbf{A}(\mathcal{B})$.
(\Leftarrow) We construct a 2 -functor $\mathbf{A}(\mathcal{B}) \rightarrow \mathcal{Z}(\operatorname{Mod}-\mathcal{B})$ as follows:

- Let $\left(\mathcal{N}, \eta: \alpha_{\mathcal{N}}^{+} \xlongequal{\sim} \alpha_{\mathcal{N}}^{-}\right)$be an object of $\mathbf{A}(\mathcal{B})$, so $\mathcal{N} \in \operatorname{Mod}-\mathcal{B}$.
- Recall that for any $\mathcal{M} \in \operatorname{Mod}-\mathcal{B}$, there exists an algebra A in \mathcal{B} such that $\mathcal{M} \cong A-\operatorname{Mod}_{\mathcal{B}}$, the category of (left) \mathcal{A}-modules in \mathcal{B} ([6], Cor. 7.10.5). Then,

$$
\mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M} \cong \mathcal{N} \boxtimes_{\mathcal{B}}\left(A-\operatorname{Mod}_{\mathcal{B}}\right) \cong \operatorname{Mod}_{\mathcal{N}}-\alpha_{\mathcal{N}}^{+}(A),
$$

where $\alpha_{\mathcal{N}}^{+}(A)$ is an algebra in $\operatorname{End}_{\mathcal{B}}^{\text {r.e. }}(\mathcal{N})$ and its modules in \mathcal{N} are objects in $N \in \mathcal{N}$ together with an action $\alpha_{\mathcal{N}}^{+}(A)(N) \rightarrow N$ satisfying the usual axioms.
Similarly, $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \cong \operatorname{Mod}_{\mathcal{N}}-\alpha_{\mathcal{N}}^{-}(A)$.
Hence, the isomorphism $\eta_{A}: \alpha_{\mathcal{N}}^{+}(A) \xlongequal{\sim} \alpha_{\mathcal{N}}^{-}(A)$ of algebras in $\operatorname{End}_{\mathcal{B}}^{\text {r.e. }}(\mathcal{N})$ yields a 2-natural \mathcal{B}-module equivalence

$$
\beta_{\mathcal{M}, \mathcal{N}}: \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M} \rightarrow \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} .
$$

- Let $\mathcal{L} \cong A_{1}-\operatorname{Mod}_{\mathcal{B}}$ and $\mathcal{M} \cong A_{2}-\operatorname{Mod}_{\mathcal{B}}$. The invertible modification $R_{(\mathcal{N} \mid \mathcal{L}, \mathcal{M})}$ arises from the following commutative diagram of algebra isomorphisms:

$$
\begin{aligned}
& \alpha_{\mathcal{N}}^{+}\left(A_{1}\right) \otimes \alpha_{\mathcal{N}}^{+}\left(A_{2}\right) \xrightarrow{\eta_{A_{1}} \otimes \eta_{A_{2}}} \alpha_{\mathcal{N}}^{-}\left(A_{1}\right) \otimes \alpha_{\mathcal{N}}^{-}\left(A_{2}\right) \\
& \left(\alpha_{\mathcal{N}}^{+}\right)_{A_{1}, A_{2}} \downarrow \\
& \quad \alpha_{\mathcal{N}}^{+}\left(A_{1} \otimes A_{2}\right) \xrightarrow[\eta_{A_{1} \otimes A_{2}}]{\underset{\eta_{\mathcal{N}}}{\left(\alpha_{\mathcal{N}}^{-}\right)_{A_{1}, A_{2}}}} \underset{\alpha_{\mathcal{N}}^{-}\left(A_{1} \otimes A_{2}\right)}{ }
\end{aligned}
$$

Indeed, since $\alpha_{\mathcal{N}}^{ \pm}$is a central functor, $\alpha_{\mathcal{N}}^{ \pm}\left(A_{1}\right) \otimes \alpha_{\mathcal{N}}^{ \pm}\left(A_{2}\right)$ are algebras in $\operatorname{End}_{\mathcal{B}}^{\text {r.e. }}(\mathcal{N})$ and $\eta_{A_{1}} \otimes \eta_{A_{2}}$ is an algebra isomorphism. The fact that $R_{(\mathcal{N} \mid-,-)}$ satisfies the (1,3)-crossing and unit axioms follows from the monoidality of η.

This gives rise to a 2 -functor $(\mathcal{N}, \eta) \mapsto\left(\mathcal{N}, \beta_{\mathcal{N},-}, R_{(\mathcal{N} \mid-,-)}\right)$.
(\Rightarrow) We construct a 2-functor $\mathcal{Z}(\operatorname{Mod}-\mathcal{B}) \rightarrow \mathbf{A}(\mathcal{B})$ as follows:

- Note that for any $X \in \operatorname{End}_{\mathcal{B}}^{\text {r.e. }}(\mathcal{B}) \cong \mathcal{B}$ and $\mathcal{N} \in \operatorname{Mod}-\mathcal{B}$

are isomorphic to $\alpha_{\mathcal{N}}^{+}$and $\alpha_{\mathcal{N}}^{-}$respectively.
- For an object $\left(\mathcal{N}, \beta_{\mathcal{N},--}, R_{(\mathcal{N} \mid-,-)}\right) \in \mathcal{Z}(\operatorname{Mod}-\mathcal{B})$, consider:

Since $\beta_{\mathcal{N},-}$ is a 2-natural transformation, $\beta_{\mathcal{N}, X \circ Y}=\beta_{\mathcal{N}, X} \circ \beta_{\mathcal{N}, Y}$, implying that η is an isomorphism of tensor functors.
This gives rise to a 2 -functor $\left(\mathcal{N}, \beta_{\mathcal{N},-}, R_{(\mathcal{N} \mid-,-)}\right) \mapsto(\mathcal{N}, \eta)$ which is a quasi-inverse to $\mathbf{A}(\mathcal{B}) \rightarrow \mathcal{Z}(\operatorname{Mod}-\mathcal{B})$.

Corollary $5.3-\operatorname{BrMod}-\mathcal{B}$ may be equipped with the structure of a braided monoidal 2-category due to the equivalence $\mathcal{Z}(\Sigma \mathcal{B}) \cong$ BrMod $-\mathcal{B}$ of monoidal 2-categories. This structure can be described explicitly (see [3], Remark 4.13).

Remark 5.1. The forgetful functor $\mathcal{Z}(\Sigma \mathcal{B}) \cong \operatorname{BrMod}-\mathcal{B} \xrightarrow{\text { forget }} \operatorname{Mod}-\mathcal{B} \cong \Sigma \mathcal{B}$ is fully faithful on 2-morphisms since every module natural transformations between two braided module functors is allowed.

Remark 5.2. Any \mathcal{B}-module summand of a braided \mathcal{B}-module category can be equipped with the structure of a braided \mathcal{B}-module category.
Hence, a braided \mathcal{B}-module category is indecomposable if and only if it is indecomposable as a \mathcal{B}-module category.

Warning 5.4 - For a general non-connected fusion 2-category \mathcal{A}, the canonical map $\mathcal{Z}(\mathcal{A}) \rightarrow \mathcal{A}$ is faithful on 2-morphisms but not necessarily full.

Exercise 5.1. Find such a fusion 2-category \mathcal{A} such that the map $\mathcal{Z}(\mathcal{A}) \rightarrow \mathcal{A}$ is not full.

Corollary $5.5-\Omega \mathcal{Z}(\Sigma \mathcal{B})=\mathcal{Z}_{(2)}(\mathcal{B})$.
Proof of Corollary. The unit object in $\mathcal{Z}(\Sigma \mathcal{B})$ corresponds to the "rank- 1 free module" $\mathcal{B} \in \operatorname{BrMod}-\mathcal{B}$. Then recall that in example 4.5, we saw that the endomorphism category of \mathcal{B} is $\mathcal{Z}_{(2)}(\mathcal{B})$.

References

[1] J. Baez and M. Neuchl, Higher-dimensional algebra I: braided monoidal 2-categories, Adv. Math. 121 (1996), 196-244.
[2] J. Böckenhauer, D.E. Evans, and Y. Kawahigashi, On α-induction, chiral generators and modular invariants for subfactors, Publ. Res. Inst. Math. Sci., 37 (2001), no. 1, 1-35.
[3] S. Crans, Generalized centers of braided and sylleptic monoidal 2-categories, Adv. Math. 136 (1998), 183-223.
[4] A. Davydov and D. Nikshych. Braided Picard groups and graded extensions of braided tensor categories. 2021. arXiv:2006. 08022
[5] C. L. Douglas and D. J. Reutter. Fusion 2-categories and a state-sum invariant for 4-manifolds. 2018. arXiv:1812.11933.
[6] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, vol. 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
[7] N. Johnson and D. Yau. 2-Dimensional Categories. 2020. arXiv:2002. 06055
[8] D. Penneys. MATH 8800 Course Notes, Spring 2021.

