Braided 2 Categories and the Drinfel'd Center

Giovanni Ferrer

August 30, 2021

Contents

1	Let's recall some stuff first	2
2	Braided Monoidal 2-Categories	3
3	The Drinfel'd Center of a Monoidal 2-Category 3.1 The Base 2-Category $\mathcal{Z}(\mathcal{A})$	14
4		
5	Explicit Description of $\mathcal{Z}(\Sigma \mathcal{B})$	24

1 Let's recall some stuff first

Recall the periodic table of k-tuply monoidal n-categories:

	n=0	n=1	n=2	
k=0	(pointed) set	(pointed) category	(pointed) 2-category	
k=1	monoid	monoidal category	monoidal 2-category	
k=2	abelian monoid	braided monoidal category	braided monoidal 2-category	
k=3	"	symmetric monoidal category	sylleptic monoidal 2-category	
k=4	"	"	symmetric monoidal 2-category	
k=5	,,	"	"	
:	:	:	:	٠.

We see that a monoidal 2-category is just a 3-category with one object.

We will however work with the strictest version possible while still retaining full generality:

Notation 1.1 — By a *monoidal 2-category* we mean a Gray monoid, i.e.

- (S1) a 2-category \mathcal{A} together with
- (S2) a 2-functor $\boxtimes : \mathcal{A} \boxtimes_G \mathcal{A} \to \mathcal{A}$ where \boxtimes_G is the Gray product,

such that:

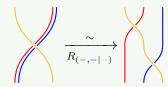
(A1) \boxtimes is (strictly) associative with unit $\mathbf{1} \in \mathbb{C}$.

Braided Monoidal 2-Categories

A braided monoidal 2-category is just a 4-category with a single object and a single 1-morphism. Unfortunately, 4-categories are hard. However, we can provide a semi-strict (Gray) definition for braided monoidal 2-categories. This definition is due to [3].

Definition 2.1 — An braided monoidal 2-category consists of:

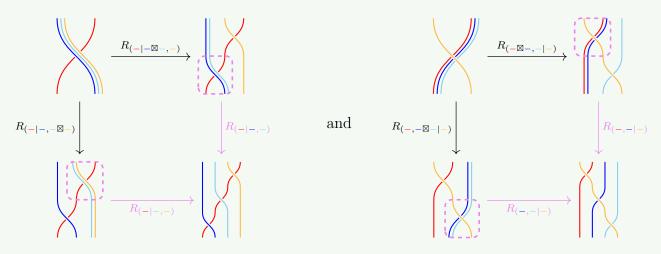
- (S1) A monoidal 2-category $(\mathcal{A}, \boxtimes, I)$
- (S2) A 2-natural equivalence $\beta_{-,-}: \boxtimes \xrightarrow{\sim} \boxtimes -$ represented by
- (S3) Invertible modifications $R_{(-|-,-|)}$ and $R_{(-,-|-|)}$ where:



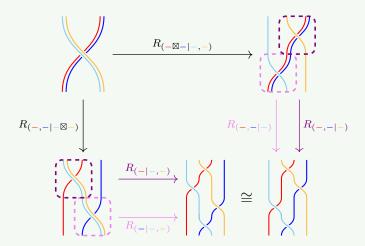
satisfying:

- (A1) the (1,3)-crossing and (3,1)-crossing axioms,
- (A2) the (2,2)-crossing axiom,
- (A3) the Yang-Baxter axiom, and
- (A4) unit axioms.

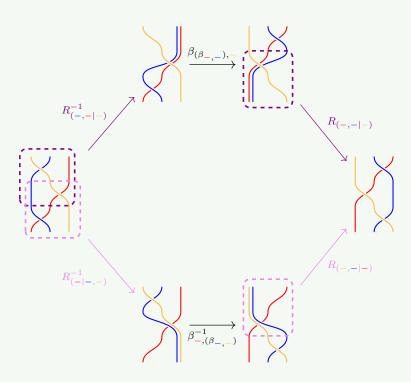
(A1) The (1,3)-crossing and (3,1)-crossing axioms:



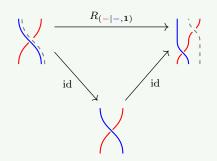
(A2) The (2,2) crossing axiom:

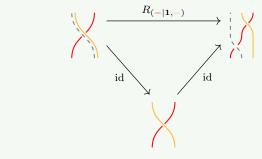


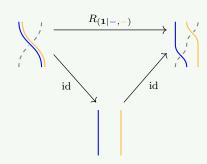
(A3) The Yang-Baxter axiom:

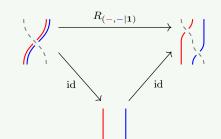


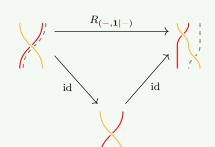
(A4) Unit axioms:

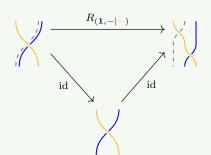












Example 2.2 — Examples of braided monoidal 2-categories

- The Drinfeld center $\mathcal{Z}(\mathcal{A})$ of a monoidal 2-category \mathcal{A} ,
- $\bullet \ \, \text{The braided monoidal 2-category } \, \mathsf{BrMod} \mathcal{B} \,\, \text{of braided module categories over a braided fusion 1-category } \, \mathcal{B}.$
- \bullet The braided fusion 2-categories ${\cal S}$ and ${\cal T}$

Exercise 2.1. Come up with more examples of braided monoidal 2-categories.

3 The Drinfel'd Center of a Monoidal 2-Category

This definition is also from [3].

3.1 The Base 2-Category $\mathcal{Z}(\mathcal{A})$

Definition 3.1 — Given a monoidal 2-category \mathcal{A} , we define $\mathcal{Z}(\mathcal{A})$ to be the 2-category consisting of:

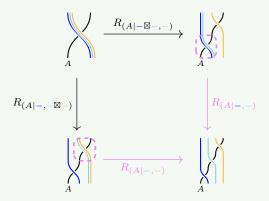
- (0) Objects are triples $(A, \beta_{A,-}, R_{(A|-,-)})$ consisting of:
 - an object $A \in \mathcal{A}$,
 - a 2-natural equivalence $\beta_{A,-}: A \boxtimes -\stackrel{\sim}{\Longrightarrow} \boxtimes A$ represented by

$$A := \left\{ \left. \begin{array}{c} X \\ A \end{array} \right\}_{X} = \beta_{A,X} : A \boxtimes X \to X \boxtimes A \right\}_{X \in \mathcal{A}} \cup \left\{ \beta_{A,f} : \left. \begin{array}{c} X \\ A \end{array} \right\}_{f:X \to X' \text{ in } \mathcal{A}} \right\}_{f:X \to X' \text{ in } \mathcal{A}}$$

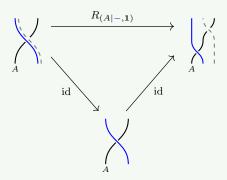
• an invertible modification $R_{(A|-,-)}$ where $\bigwedge^{\sim} \xrightarrow{R_{(A|-,-)}}$

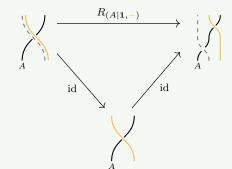
satistfying the (1,3)-crossing and unit axioms.

• The (1,3)-crossing axiom:

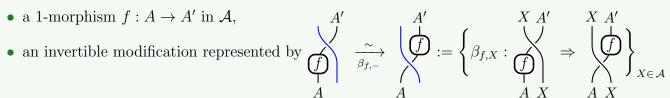


• Unit axioms:



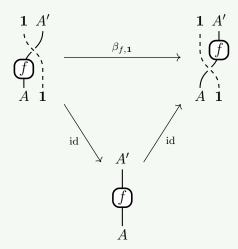


- $(1) \ \ \text{$\Lambda$ 1-morphism } (f,\beta_{f,-}): \left(A,\beta_{A,-},R_{(A|-,-)}\right) \rightarrow \left(A',\beta_{A',-},R_{(A'|-,-)}\right) \text{ consists of:}$

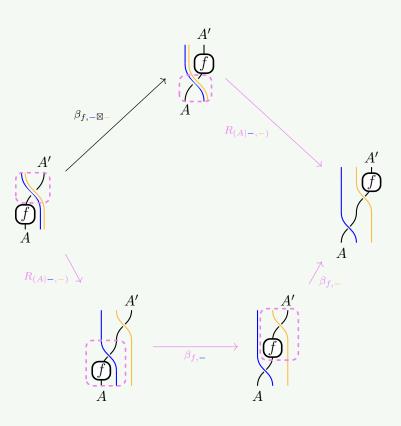


such that $\beta_{f,-}$ satisfies a unit axiom and $R_{(A|-,-)}$ becomes natural in $f:A\to A'$.

• Unit axiom:



• Naturality of $R_{(A|-,-)}$:



(2) A 2-morphism $\alpha:(f,\beta_{f,-})\Rightarrow(f',\beta_{f',-})$ is a 2-morphism $\alpha:f\Rightarrow f'$ in \mathcal{A} such that $\beta_{f,-}$ becomes 2-natural in $\alpha:f\Rightarrow f'$, i.e.

For $(A, \beta_{A,-}, R_{(A|-,-)}) \xrightarrow{(f,\beta_{f,-})} (A', \beta_{A',-}, R_{(A'|-,-)}) \xrightarrow{(f',\beta_{f',-})} (A'', \beta_{A'',-}, R_{(A''|-,-)})$ in $\mathcal{Z}(\mathcal{A})$, their 1-composite $(f,\beta_{f,-}) \otimes (f',\beta_{f',-})$ is defined to be $(f \otimes f', \beta_{f \otimes f',-})$ where:

$$\beta_{f \otimes f', -} := \underbrace{\begin{pmatrix} f' \\ f \end{pmatrix}}_{A} \xrightarrow{\beta_{f', -}} \underbrace{\begin{pmatrix} A'' \\ f \end{pmatrix}}_{A} \xrightarrow{\beta_{f, -}} \underbrace{\begin{pmatrix} A'' \\ f \end{pmatrix}}_{A}$$

The compositions \otimes and \circ of 2-morphisms in $\mathcal{Z}(\mathcal{A})$ are the same as in \mathcal{A} .

3.2 The Monoidal Structure

Definition 3.2 — For objects $(A, \beta_{A,-}, R_{(A|-,-)})$ and $(B, \beta_{B,-}, R_{(B|-,-)})$, we define $(A, \beta_{A,-}, R_{(A|-,-)}) \boxtimes (B, \beta_{B,-}, R_{(B|-,-)})$ to be $(A \boxtimes B, \beta_{A\boxtimes B,-}, R_{(A\boxtimes B|-,-)})$ where:

$$\beta_{A\boxtimes B,-} = \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right) := \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right)$$

$$R_{(A\boxtimes B|-,-)}: = \bigcap_{A \bowtie B} \bigcap_{A \bowtie$$

For an object $(A, \beta_{A,-}, R_{(A|-,-)})$ and a 1-morphism $(g: B \to B', \beta_{g,-})$, we define:

$$\left(A,\beta_{A,-},R_{(A|-,-)}\right)\boxtimes\left(g,\beta_{g,-}\right):=\left(A\boxtimes g,\beta_{A\boxtimes g,-}\right)\quad\text{and}\quad\left(g,\beta_{g,-}\right)\boxtimes\left(A,\beta_{A,-},R_{(A|-,-)}\right):=\left(g\boxtimes A,\beta_{g\boxtimes A,-}\right)\text{ where:}$$

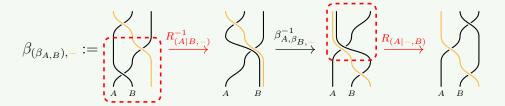
$$\beta_{A\boxtimes g,-}:= \bigcap_{A \ B} \bigcap$$

The other \boxtimes -products are defined as in \mathcal{A} .

3.3 The Braiding

Definition 3.3 — We define the braiding $(\beta_{-,-}, R_{(-|-,-)}, R_{(-,-|-)})$ on $\mathcal{Z}(\mathcal{A})$ as follows:

 $(\beta 0) \text{ For objects } \mathbf{A} = \left(A, \beta_{A,-}, R_{(A|-,-)}\right) \text{ and } \mathbf{B} = \left(B, \beta_{B,-}, R_{(B|-,-)}\right), \text{ we define } \beta_{\mathbf{A},\mathbf{B}} := (\beta_{A,B}, \beta_{(\beta_{A,B}),-}) \text{ where } \beta_{\mathbf{A},\mathbf{B}} := (\beta_{A,B}, \beta_{(\beta_{A,B}),-})$



(β 1) For an object $\mathbf{A} = (A, \beta_{A,-}, R_{(A|-,-)})$ and a 1-morphism $\mathbf{f} = (f: X \to X', \beta_{f,-})$, we define

$$\beta_{\mathbf{A},\mathbf{f}} := \underbrace{\begin{pmatrix} X' & A & & X' & A \\ & & & & \\ & & & & \\ & A & X & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

(R) For objects $\mathbf{A} = (A, \beta_{A,-}, R_{(A|-,-)})$, $\mathbf{B} = (B, \beta_{B,-}, R_{(B|-,-)})$, and $\mathbf{C} = (C, \beta_{C,-}, R_{(C|-,-)})$, we define

$$R_{(\mathbf{A}|\mathbf{B},\mathbf{C})} := \bigvee_{A \ B \ C} \xrightarrow{\frac{\sim}{R_{(A|B,C)}}} \bigvee_{A \ B \ C} \quad \text{and} \quad R_{(\mathbf{A},\mathbf{B}|\mathbf{C})} := \bigvee_{A \ B \ C} \xrightarrow{\frac{\sim}{\mathrm{id}}} \bigvee_{A \ B \ C}$$

3.4 Some Facts

Theorem 3.4. Given any monoidal 2-category $(A, \boxtimes, 1)$, the Drinfeld center $\mathcal{Z}(A)$ is a braided monoidal 2-category.

Proof. An incomplete proof of this theorem appears in [Baez + Neuchl], which is completed and corrected by [Crans].

Theorem 3.5. Given any braided monoidal 2-category $(A, \boxtimes, 1, \beta_{-,-}, R_{(-|-,-|)}, R_{(-,-|-)})$, there exists an embedding $\zeta : A \hookrightarrow \mathcal{Z}(A)$ given by:

$$(A \in \mathcal{A}) \mapsto (A, \beta_{A,-}, R_{(A|-,-)})$$
$$(f : A \to A') \mapsto (f, \beta_{f,-})$$
$$(\alpha : f \Rightarrow f') \mapsto \alpha.$$

Note that this implies that every braided monoidal 2-category is equivalent to one for which $R_{(-,-|-)}$ is trivial.

4 Braided Module Categories

This section is based on chapter 3 of [4]. From here on out, \mathcal{B} will always be braided fusion 1-category.

4.1 Definitions

Definition 4.1 — A braided (right) module category of \mathcal{B} is:

 $\mathrm{(S1)}\ a\ \mathrm{finite}\ \mathrm{semisimple}\ \mathrm{(right)}\ \mathcal{B}\text{-module}\ \mathrm{category}\ (\mathcal{M}, \triangleleft: \mathcal{M}\boxtimes \mathcal{B}\to \mathcal{M}, \ldots)$

(S2) a natural isomorphism $\sigma_{-,-}: \triangleleft \Rightarrow \triangleleft$ represented by: $= \left\{ \bigcirc \right\}_{m=x} : = \sigma_{m,x} : m \triangleleft x \rightarrow m \triangleleft x \right\}_{m \in \mathcal{M}, x \in \mathcal{B}}$

satisfying:

- (A1) a unit axiom,
- (A2) compatibility with \triangleleft and braiding, and
- (A3) compatibility with the \otimes -product on \mathcal{B} .

(A1) Unit axiom:

(A2) Compatibility with \triangleleft and braiding:

(A3) Compatibility with the \otimes -product on \mathcal{B} :

Remark 4.1. The term *braided* in the previous definition is justified as follows:

• Recall that the Artin braid group of type B is the group B_n generated by $\sigma_0, \ldots, \sigma_{n-1}$ subject to the relations:

$$\begin{split} \sigma_1 \sigma_0 \sigma_1 \sigma_0 &= \sigma_0 \sigma_1 \sigma_0 \sigma_1, \\ \sigma_i \sigma_j &= \sigma_j \sigma_i & \text{whenever } |i-j| > 1, \\ \sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } i = 1, \dots, n-1. \end{split}$$

• Given $X_1, \ldots, X_{n-1} \in \mathcal{B}$ and $M \in \mathcal{M}$, there are isomorphisms

$$M \triangleleft X_1 \triangleleft \cdots \triangleleft X_{n-1} \rightarrow M \triangleleft X_{\sigma(1)} \triangleleft \cdots \triangleleft X_{\sigma(n-1)}, \text{ for } \sigma \in B_n,$$

compatible with the composition of braids.

Definition 4.2 — A braided module functor $(\mathcal{M}, \triangleleft, \sigma_{-,-}) \xrightarrow{(F, F_{-,-})} (\mathcal{M}', \triangleleft', \sigma'_{-,-})$ is:

- (S1) a linear functor $F: \mathcal{M} \to \mathcal{M}'$, and
- (S2) a natural isomorphism $F_{-,-} = \{F_{m,x} : F(m \triangleleft x) \to F(m) \triangleleft' x\}_{m \in M, x \in \mathcal{B}}$ such that:
- (A1) $F_{m,x} \circ F(\sigma_{m,x}) = \sigma'_{f(m),x} \circ F_{m,x}.$

$$F(m) \ x \\ F_{m,x} \\ F(x \triangleleft x) = F(m \triangleleft x)$$

Remark 4.2. Note that being a *braided* module functor is a property of a module functor, *not* extra structure.

Definition 4.3 — A transformation $\alpha:(F,F_{-,-})\Rightarrow(F',F'_{-,-})$ of braided module functors is simply a natural transformation $\alpha:F\Rightarrow F'$ of the underlying \mathcal{B} -module functors.

Definition 4.4 — We define $BrMod-\mathcal{B}$ to be the 2-category of braided modules over \mathcal{B} , braided module functors, and natural transformations.

Example 4.5 — Any braided monoidal functor $F: \mathcal{B} \to \mathcal{C}$ of braided fusion 1-categories equips \mathcal{C} with the structure of a braided \mathcal{B} -module category with $c \triangleleft b := c \otimes_{\mathcal{C}} F(b)$ and module braiding:

$$:= \sum_{F(-)} = \left\{ \sum_{m = F(x)} = \beta_{F(x),m}^{C} \circ \beta_{m,F(x)}^{C} : m \triangleleft x \rightarrow m \triangleleft x \right\}_{m \in \mathcal{C}, x \in \mathcal{B}}$$

• In particular, when \mathcal{C} is a braided tensor category containing \mathcal{B} , we can equip \mathcal{C} with this braided \mathcal{B} -module category structure. In this case, the category of braided module endofunctors is braided equivalent to:

$$\mathcal{Z}_{(2)}(\mathcal{B} \subset \mathcal{C}) := \{ c \in \mathcal{C} \mid \beta_{c,b} \circ \beta_{b,c} = \mathrm{id}_{b \otimes c} \text{ for all } b \in \mathcal{B} \}$$

• A special case of this is when $\mathcal{C} = \mathcal{B}$, where we see \mathcal{B} as the rank one free braided \mathcal{B} -module category. Then, the category of braided module endofunctors of \mathcal{B} is braided equivalent to the Müger center $\mathcal{Z}_{(2)}(\mathcal{B}) := \mathcal{Z}_{(2)}(\mathcal{B} \subset \mathcal{B})$.

4.2 α -Inductions and the Intermediate Category A(B)

Definition 4.6 — The α -inductions [2] for a right \mathcal{B} -module category \mathcal{M} are tensor functors:

$$\alpha_{\mathcal{M}}^{\pm}: \mathcal{B} \to \operatorname{End}_{\mathcal{B}}(\mathcal{M}), \qquad \alpha_{\mathcal{M}}^{\pm}(X) := - \triangleleft X = \left| \begin{array}{c} \\ \\ \\ \\ \end{array} \right|, \text{ for every } X \in \mathcal{B}.$$

where $\operatorname{End}_{\mathcal{B}}^{r.e.}(\mathcal{M})$ is the category of right exact \mathcal{B} -module endofunctors of \mathcal{M} . The \mathcal{B} -module functor structures on $\alpha_{\mathcal{M}}^{\pm}(X): \mathcal{M} \to \mathcal{M}$ do differ and are given by:

$$\alpha_{\mathcal{M}}^{+}(X)(M \triangleleft Y) = M Y X \qquad \alpha_{\mathcal{M}}^{-}(X)(M \triangleleft Y) = M Y X$$

$$\alpha_{\mathcal{M}}^{+}(X)_{M,Y} \qquad := \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad$$

The monoidal functor structures of $\alpha_{\mathcal{M}}^{\pm}$ also differ and are given by:

Remark 4.3. Notice that, by definition, every \mathcal{B} -module functor $F: \mathcal{M} \to \mathcal{N}$ gives rise to natural transformations $F_{-,X}^{\pm}$ of \mathcal{B} -module functors:

$$\begin{array}{ccc}
\mathcal{M} & \xrightarrow{F} & \mathcal{N} \\
\alpha_{\mathcal{M}}^{\pm}(X) & & F_{-,X}^{\pm} & & \\
\downarrow^{\rho} & & & \\
\mathcal{M} & \xrightarrow{F} & \mathcal{N}
\end{array} \qquad \text{for all } X \in \mathcal{B}.$$

Definition 4.7 — Let $A(\mathcal{B})$ be the 2-category consisting of:

- (0) objects are pairs (\mathcal{M}, η) where \mathcal{M} is a \mathcal{B} -module category and $\eta : \alpha_{\mathcal{M}}^+ \xrightarrow{\sim} \alpha_{\mathcal{M}}^-$ is an isomorphism of tensor functors,
- (1) a 1-morphism $F:(\mathcal{M},\eta)\to(\mathcal{N},\eta')$ is a \mathcal{B} -module functor $F:\mathcal{M}\to\mathcal{N}$ such that

(2) A 2-morphism $\alpha: F \Rightarrow F'$ is just a \mathcal{B} -module natural transformation.

5 Explicit Description of $\mathcal{Z}(\Sigma \mathcal{B})$

This section is based on sections 4.1 and 4.2 of [4]. First recall that $\Sigma \mathcal{B} \cong \mathsf{Mod} - \mathcal{B}$, the category of finite semisimple (right) \mathcal{B} -module categories, pointed by the rank one free module \mathcal{B} ([5], 1.3.13). The goal of this section is to prove the following:

Theorem 5.1. $\mathcal{Z}(\Sigma \mathcal{B}) \cong \mathsf{BrMod} - \mathcal{B}$

We will proceed by showing $\mathcal{Z}(\mathsf{Mod}-\mathcal{B}) \cong \mathbf{A}(\mathcal{B}) \cong \mathsf{BrMod}-\mathcal{B}$.

Lemma 5.2 — There is a canonical 2-equivalence $A(\mathcal{B}) \cong \mathsf{BrMod} - \mathcal{B}$.

Proof of Lemma. Let \mathcal{M} be a \mathcal{B} -module category. Note that a module braiding $\sigma_{-,-}$ on \mathcal{M} is actually the same thing as a natural isomorphism $\eta: \alpha_{\mathcal{M}}^+ \stackrel{\sim}{\Longrightarrow} \alpha_{\mathcal{M}}^-$:

$$M \triangleleft X \xrightarrow{\sigma_{M,X}} M \triangleleft X$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \text{for } X \in \mathcal{B} \text{ and } M \in \mathcal{M}.$$

$$\alpha_{\mathcal{M}}^{+}(X)(M) \xrightarrow{\eta_{X}(M)} \alpha_{\mathcal{M}}^{-}(X)(M)$$

• C is equivalent to $\eta_X : \alpha_{\mathcal{M}}^+(X) \xrightarrow{\sim} \alpha_{\mathcal{M}}^-(X)$ being an isomorphism of left \mathcal{B} -module functors, i.e.:

$$\alpha_{\mathcal{M}}^{+}(X)(M) \triangleleft Y \xrightarrow{(\alpha_{\mathcal{M}}^{+}(X))_{M,Y}} \alpha_{\mathcal{M}}^{+}(X)(M \triangleleft Y)$$

$$\eta_{X}(M) \triangleleft \operatorname{id}_{Y} \downarrow \qquad \qquad \downarrow \eta_{X}(M \triangleleft Y)$$

$$\alpha_{\mathcal{M}}^{-}(X)(M) \triangleleft Y \xrightarrow{(\alpha_{\mathcal{M}}^{-}(X))_{M,Y}} \alpha_{\mathcal{M}}^{-}(X)(M \triangleleft Y)$$

is equivalent to the monoidality of the natural isomorphism
$$\eta$$
, i.e.:

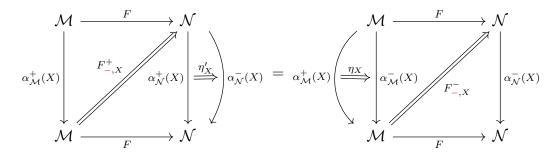
$$\alpha_{\mathcal{N}}^{+}(A_{1}) \otimes \alpha_{\mathcal{N}}^{+}(A_{2}) \xrightarrow{\eta_{A_{1}} \otimes \eta_{A_{2}}} \alpha_{\mathcal{N}}^{-}(A_{1}) \otimes \alpha_{\mathcal{N}}^{-}(A_{2})$$

$$(\alpha_{\mathcal{N}}^{+})_{A_{1},A_{2}} \downarrow \qquad \qquad \downarrow (\alpha_{\mathcal{N}}^{-})_{A_{1},A_{2}}$$

$$\alpha_{\mathcal{N}}^{+}(A_{1} \otimes A_{2}) \xrightarrow{\eta_{A_{1}} \otimes A_{2}} \alpha_{\mathcal{N}}^{-}(A_{1} \otimes A_{2})$$

Furthermore, for a \mathcal{B} -module functor $F: \mathcal{M} \to \mathcal{N}$:

• F being braided, that is $F_{m,x} = F_{m,x}$, is equivalent to:



Lastly, the 2-morphisms in each category just all \mathcal{B} -module natural transformations.

Sketch of proof of Theorem 5.1. In light of lemma 5.2, we need only show $\mathcal{Z}(\mathsf{Mod}-\mathcal{B}) \cong \mathbf{A}(\mathcal{B})$.

- (\Leftarrow) We construct a 2-functor $\mathbf{A}(\mathcal{B}) \to \mathcal{Z}(\mathsf{Mod} \mathcal{B})$ as follows:
 - Let $(\mathcal{N}, \eta : \alpha_{\mathcal{N}}^+ \xrightarrow{\sim} \alpha_{\mathcal{N}}^-)$ be an object of $\mathbf{A}(\mathcal{B})$, so $\mathcal{N} \in \mathsf{Mod}-\mathcal{B}$.
 - Recall that for any $\mathcal{M} \in \mathsf{Mod}-\mathcal{B}$, there exists an algebra A in \mathcal{B} such that $\mathcal{M} \cong A \mathsf{Mod}_{\mathcal{B}}$, the category of (left) \mathcal{A} -modules in \mathcal{B} ([6], Cor. 7.10.5). Then,

$$\mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M} \cong \mathcal{N} \boxtimes_{\mathcal{B}} (A - \mathsf{Mod}_{\mathcal{B}}) \cong \mathsf{Mod}_{\mathcal{N}} - \alpha_{\mathcal{N}}^+(A),$$

where $\alpha_{\mathcal{N}}^+(A)$ is an algebra in $\mathsf{End}_{\mathcal{B}}^{\mathsf{r.e.}}(\mathcal{N})$ and its modules in \mathcal{N} are objects in $N \in \mathcal{N}$ together with an action $\alpha_{\mathcal{N}}^+(A)(N) \to N$ satisfying the usual axioms.

Similarly, $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \cong \mathsf{Mod}_{\mathcal{N}} - \alpha_{\mathcal{N}}^{-}(A)$.

Hence, the isomorphism $\eta_A: \alpha_{\mathcal{N}}^+(A) \xrightarrow{\simeq} \alpha_{\mathcal{N}}^-(A)$ of algebras in $\mathsf{End}_{\mathcal{B}}^{\mathsf{r.e.}}(\mathcal{N})$ yields a 2-natural \mathcal{B} -module equivalence

$$\beta_{\mathcal{M},\mathcal{N}}: \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M} \to \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}.$$

• Let $\mathcal{L} \cong A_1 - \mathsf{Mod}_{\mathcal{B}}$ and $\mathcal{M} \cong A_2 - \mathsf{Mod}_{\mathcal{B}}$. The invertible modification $R_{(\mathcal{N}|\mathcal{L},\mathcal{M})}$ arises from the following commutative diagram of algebra isomorphisms:

$$\alpha_{\mathcal{N}}^{+}(A_{1}) \otimes \alpha_{\mathcal{N}}^{+}(A_{2}) \xrightarrow{\eta_{A_{1}} \otimes \eta_{A_{2}}} \alpha_{\mathcal{N}}^{-}(A_{1}) \otimes \alpha_{\mathcal{N}}^{-}(A_{2})$$

$$\downarrow^{(\alpha_{\mathcal{N}}^{+})_{A_{1},A_{2}}} \qquad \qquad \downarrow^{(\alpha_{\mathcal{N}}^{-})_{A_{1},A_{2}}}$$

$$\alpha_{\mathcal{N}}^{+}(A_{1} \otimes A_{2}) \xrightarrow{\eta_{A_{1}} \otimes A_{2}} \alpha_{\mathcal{N}}^{-}(A_{1} \otimes A_{2})$$

Indeed, since $\alpha_{\mathcal{N}}^{\pm}$ is a central functor, $\alpha_{\mathcal{N}}^{\pm}(A_1)\otimes\alpha_{\mathcal{N}}^{\pm}(A_2)$ are algebras in $\mathsf{End}_{\mathcal{B}}^{\mathsf{r.e.}}(\mathcal{N})$ and $\eta_{A_1}\otimes\eta_{A_2}$ is an algebra isomorphism.

The fact that $R_{(\mathcal{N}|-,-)}$ satisfies the (1,3)-crossing and unit axioms follows from the monoidality of η .

This gives rise to a 2-functor $(\mathcal{N}, \eta) \mapsto (\mathcal{N}, \beta_{\mathcal{N},-}, R_{(\mathcal{N}|-,-)})$.

- (\Rightarrow) We construct a 2-functor $\mathcal{Z}(\mathsf{Mod}\mathcal{-B}) \to \mathbf{A}(\mathcal{B})$ as follows:
 - Note that for any $X \in \operatorname{End}_{\mathcal{B}}^{r.e.}(\mathcal{B}) \cong \mathcal{B}$ and $\mathcal{N} \in \operatorname{\mathsf{Mod}}\nolimits \mathcal{B}$

$$\bigcup_{\mathcal{N}} : \mathcal{B} \to \mathsf{End}_{\mathcal{B}}^{\mathsf{r.e.}}(\mathcal{N}) \quad \text{given by} \quad X \mapsto \rho_{\mathcal{N}} \circ (\mathrm{id}_{\mathcal{N}} \boxtimes_{\mathcal{B}} X) \circ \rho_{\mathcal{N}}^{-1}$$

$$\bigcirc \bigcup_{\mathcal{N}} : \mathcal{B} \to \mathsf{End}_{\mathcal{B}}^{\mathsf{r.e.}}(\mathcal{N}) \quad \text{given by} \quad X \mapsto \lambda_{\mathcal{N}} \circ (X \boxtimes_{\mathcal{B}} \mathrm{id}_{\mathcal{N}}) \circ \lambda_{\mathcal{N}}^{-1}$$

are isomorphic to $\alpha_{\mathcal{N}}^+$ and $\alpha_{\mathcal{N}}^-$ respectively.

• For an object $(\mathcal{N}, \beta_{\mathcal{N},-}, R_{(\mathcal{N}|-,-)}) \in \mathcal{Z}(\mathsf{Mod}-\mathcal{B})$, consider:

$$\eta_X : \alpha_{\mathcal{N}}^+(X) \cong \left[\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right] = \left[\begin{array}{c} & \\ & \\ & \\ & \end{array} \right] = \left[\begin{array}{c} & \\ & \\ & \\ & \end{array} \right] \cong \alpha_{\mathcal{N}}^-(X)$$

Since $\beta_{\mathcal{N},-}$ is a 2-natural transformation, $\beta_{\mathcal{N},X\circ Y}=\beta_{\mathcal{N},X}\circ\beta_{\mathcal{N},Y}$, implying that η is an isomorphism of tensor functors.

This gives rise to a 2-functor $(\mathcal{N}, \beta_{\mathcal{N},-}, R_{(\mathcal{N}|-,-)}) \mapsto (\mathcal{N}, \eta)$ which is a quasi-inverse to $\mathbf{A}(\mathcal{B}) \to \mathcal{Z}(\mathsf{Mod}-\mathcal{B})$.

Corollary 5.3 — BrMod $-\mathcal{B}$ may be equipped with the structure of a braided monoidal 2-category due to the equivalence $\mathcal{Z}(\Sigma\mathcal{B})\cong \text{BrMod}-\mathcal{B}$ of monoidal 2-categories. This structure can be described explicitly (see [3], Remark 4.13).

Remark 5.1. The forgetful functor $\mathcal{Z}(\Sigma\mathcal{B}) \cong \mathsf{BrMod} - \mathcal{B} \xrightarrow{\mathsf{forget}} \mathsf{Mod} - \mathcal{B} \cong \Sigma\mathcal{B}$ is fully faithful on 2-morphisms since every module natural transformations between two braided module functors is allowed.

Remark 5.2. Any \mathcal{B} -module summand of a braided \mathcal{B} -module category can be equipped with the structure of a braided \mathcal{B} -module category.

Hence, a braided \mathcal{B} -module category is indecomposable if and only if it is indecomposable as a \mathcal{B} -module category.

Warning 5.4 — For a general non-connected fusion 2-category \mathcal{A} , the canonical map $\mathcal{Z}(\mathcal{A}) \to \mathcal{A}$ is faithful on 2-morphisms but *not necessarily* full.

Exercise 5.1. Find such a fusion 2-category \mathcal{A} such that the map $\mathcal{Z}(\mathcal{A}) \to \mathcal{A}$ is not full.

Corollary 5.5 — $\Omega \mathcal{Z}(\Sigma \mathcal{B}) = \mathcal{Z}_{(2)}(\mathcal{B}).$

Proof of Corollary. The unit object in $\mathcal{Z}(\Sigma\mathcal{B})$ corresponds to the "rank-1 free module" $\mathcal{B} \in \mathsf{BrMod} - \mathcal{B}$. Then recall that in example 4.5, we saw that the endomorphism category of \mathcal{B} is $\mathcal{Z}_{(2)}(\mathcal{B})$.

References

- [1] J. Baez and M. Neuchl, Higher-dimensional algebra I: braided monoidal 2-categories, Adv. Math. 121 (1996), 196-244.
- [2] J. Böckenhauer, D.E. Evans, and Y. Kawahigashi, On α -induction, chiral generators and modular invariants for subfactors, Publ. Res. Inst. Math. Sci., **37** (2001), no. 1, 1–35.
- [3] S. Crans, Generalized centers of braided and sylleptic monoidal 2-categories, Adv. Math. 136 (1998), 183-223.
- [4] A. Davydov and D. Nikshych. Braided Picard groups and graded extensions of braided tensor categories. 2021. arXiv:2006.08022
- [5] C. L. Douglas and D. J. Reutter. Fusion 2-categories and a state-sum invariant for 4-manifolds. 2018. arXiv:1812.11933.
- [6] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, vol. 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
- [7] N. Johnson and D. Yau. 2-Dimensional Categories. 2020. arXiv:2002.06055
- [8] D. Penneys. MATH 8800 Course Notes, Spring 2021.