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1 Let’s recall some stuff first

Recall the periodic table of k-tuply monoidal n-categories:

n=0 n=1 n=2
k=0 | (pointed) set (pointed) category (pointed) 2-category
k=1 monoid monoidal category monoidal 2-category
k=2 | abelian monoid | braided monoidal category | braided monoidal 2-category
k=3 7 symmetric monoidal category sylleptic monoidal 2-category
k=4 7 ” symmetric monoidal 2-category
k=5 7 7 7

We see that a monoidal 2-category is just a 3-category with one object.

We will however work with the strictest version possible while still retaining full generality:
Notation 1.1 — By a monoidal 2-category we mean a Gray monoid, i.e.

(S1) a 2-category A together with

(S2) a 2-functor X : A Xg A — A where K is the Gray product,

such that:

(A1) X is (strictly) associative with unit 1 € C.



2 Braided Monoidal 2-Categories

A braided monoidal 2-category is just a 4-category with a single object and a single 1-morphism. Unfortunately, 4-categories are hard.
However, we can provide a semi-strict (Gray) definition for braided monoidal 2-categories. This definition is due to [3].

Definition 2.1 — An braided monoidal 2-category consists of:

(S1) A monoidal 2-category (A, X, I)

(S2) A 2-natural equivalence 5 : — X — = — X — represented by X

(53) Invertible modifications R(_|_ ) and R _| y where:

//#// and /%/
0 |

the (1,3)-crossing and (3,1)-crossing axioms,

satisfying:
Al
A2

the (2,2)-crossing axiom,

A4

unit axioms.
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A3) the Yang-Baxter axiom, and
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(A2) The (2,2) crossing axiom:




(A3) The Yang-Baxter axio

......



(A4) Unit axioms:




Example 2.2 — Examples of braided monoidal 2-categories
e The Drinfeld center Z(.A) of a monoidal 2-category A,

e The braided monoidal 2-category BrMod—B of braided module categories over a braided fusion 1-category B.

e The braided fusion 2-categories S and T

Exercise 2.1. Come up with more examples of braided monoidal 2-categories.



3 The Drinfel’d Center of a Monoidal 2-Category

This definition is also from [3].

3.1 The Base 2-Category Z(A)

Definition 3.1 — Given a monoidal 2-category A, we define Z(.A) to be the 2-category consisting of:
(0) Objects are triples (A,ﬁA7,,R(A‘_, )) consisting of:

e an object A € A,
e a 2-natural equivalence 84 : AK — = — X A represented by

X’jl X' A
X:Z{X ZﬁAyxiA&X%X@A} U {ﬂA’f: (i)}
A AX XeA 4 fiX—X'in A
A X A X

/
e an invertible modification R4 —, ) where >\/ %) Q
(Al=)
(
A A

satistfying the (1,3)-crossing and unit axioms.




e The (1,3)-crossing axiom:

e Unit axioms:
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(1) A 1-morphism (f, B ) : (A,BA,,,R(M,, )) — (A’,BA/,,,R(M,’ )) consists of:

e a l-morphism f: A — A" in A, X A

/
e an invertible modification represented by ’ /3 £XC
5

X

such that gy _ satisfies a unit axiom and R4, ) becomes natural in f: A — A’

e Unit axiom:

1 A 1 A4
\\\/ ﬁf’l \ E
(D <
A1l A 1
id id
A/

&

11

=

X

/

AX

/

8

XecA



o Naturality of R —, ):

<G

==

Bf,—®
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(2) A 2-morphism « : (f,8y—) = (f', By —) is a 2-morphism a : f = f’ in A such that §;_ becomes 2-natural in o : f = f’, i.e.

.
A A

/ ¢
-
T

(f.81,-) (F"Byr, ) . . .
For (A, Ba—, Rea-, ) s (A, Bar—, Rew—, ) e (A", Bar—, Rian—, )) in Z(A), their 1-composite (f, B,—)® (f, By .—)

is defined to be (f ® f’, Byg,—) where:

A7 A" A"

%

Brop,— = -
(
A A

The compositions ® and o of 2-morphisms in Z(.A) are the same as in A.

13



3.2 The Monoidal Structure
Definition 3.2 — For objects (AaBA,—aR(A|—, )) and (3,537_,R(B|_7 )), we define (A,BA’_,R(N_7 )) X (3,537_,R(B|_7 )) to be

(AX B,Barp, ,Rurp , )) where:
/ /
BAXlB, - / o= (

(

AB A B

| )
Riags| , ) : //J_> L{/J ~ J{ _ /

Ry,
’
AB A B

,___~

For an object (A, Ba,—, Ra-, )) and a l-morphism (¢ : B — B’, 8, ), we define:

(Av 6A,—7R(A|f, )) X (gvﬁg,—) = (A X g)ﬁAgg, ) and (.g?Bg,—) X (AaﬁA,—aR(Alf, )) = (g X Aaﬁg&A, )Where:

I

[/ o

The other K-products are defined as in A.
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3.3 The Braiding

Definition 3.3 — We define the braiding (8-, R_|-, ), R - )) on Z(A) as folllows:
(80) For objects A = (A, Ba—, Ria-, )) and B = (B, B, Rp|-, )), we define Sa B := (84,5, 8(8,.p), ) Where

(1) For an object A = (A,BA,—,R(AF, )) and a l-morphism f = (f : X — X', 5;_), we define

AX'
] { foam b
Bag = Gas K and S = %\ By K
(R) For objects A = (A Ba,—, R, )) B = B ,Be,—, Rep|-, )), and C = (C, Be,—, Rel-, )), we define
RaB,c) and RapB|c) = / J
R(A\B o) // /
A BC ABC AB C A BC
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3.4 Some Facts

Theorem 3.4. Given any monoidal 2-category (A, X, 1), the Drinfeld center Z(.A) is a braided monoidal 2-category.

Proof. An incomplete proof of this theorem appears in [Baez + Neuchl|, which is completed and corrected by [Crans].

Theorem 3.5. Given any braided monoidal 2-category (.A, X, 1,8, R -, ), B )), there exists an embedding ¢ : A — Z(A)
given by:
(A &€ A) — (A, ﬁA_, R(A|_7 ))
(f: A=A~ (f,Bs-)

(a:f=f)—a

Note that this implies that every braided monoidal 2-category is equivalent to one for which R _| ) is trivial.
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4 Braided Module Categories

This section is based on chapter 3 of [4]. From here on out, B will always be braided fusion 1-category.

4.1 Definitions
Definition 4.1 — A braided (right) module category of B is:
(S1) a finite semisimple (right) B-module category (M,<: MK B — M, ...)

—~

—~
(S2) a natural isomorphism o_ _ : < = < represented by: i — {Q = O i MLAT = m< :Jc}

1 1
m meM,xeB

satisfying:
(A1) a unit axiom,
(A2) compatibility with < and braiding, and

(A3) compatibility with the ®-product on 5.
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(A1) Unit axiom:

(A2) Compatibility with < and braiding;:

(A3) Compatibility with the ®-product on B:

1

= D
| 54

‘/ |
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Remark 4.1. The term braided in the previous definition is justified as follows:

e Recall that the Artin braid group of type B is the group B, generated by oy, ...,0,_1 subject to the relations:

01000100 = 000100071,
0i0; = 0;0; whenever [i — j| > 1,

0;0i110; = 0;410:0,41 fori=1,... n— 1

e Given Xy,..., X, 1 € Band M € M, there are isomorphisms
MaXy < <Xy g =+ MaXyy<-- a4 Xgmo), foroe B,

compatible with the composition of braids.
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Definition 4.2 — A braided module functor (M,<,o_ _) B, (M, 0’ ) s

(S1) a linear functor F: M — M’ and

(S2) a natural isomorphism F_ _ = {F,,, : F(m<z) = F(m) < 2}memaen
such that:

(Al) Fm7x o F(O-m7x) - U}(m),x O Fm’x.

|/
Fm’x =S %

dE

F(m<x) F(m<x)

Remark 4.2. Note that being a braided module functor is a property of a module functor, not extra structure.

Definition 4.3 — A transformation a : (F, F_ ) = (F’, F’ _) of braided module functors is simply a natural transformation
a : F = F’ of the underlying B-module functors.

Definition 4.4 — We define BrMod—B to be the 2-category of braided modules over B, braided module functors, and natural

transformations.
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Example 4.5 — Any braided monoidal functor F': B — C of braided fusion 1-categories equips C with the structure of a braided
B-module category with c<b := ¢ ®¢ F(b) and module braiding:

<::§ :{ § = Bra)m © %F(z):qu%qu}

F(—) m F(:E) mGC,mEB

e In particular, when C is a braided tensor category containing BB, we can equip C with this braided B-module category structure.
In this case, the category of braided module endofunctors is braided equivalent to:

Ziy(BCC):={ceC|Bepo Py =idpg for all b € B}

e A special case of this is when C = B, where we see B as the rank one free braided B-module category. Then, the category of
braided module endofunctors of B is braided equivalent to the Miiger center Z)(B) := Z(2)(B C B).
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4.2 a-Inductions and the Intermediate Category A(B)

Definition 4.6 — The a-inductions [2] for a right B-module category M are tensor functors:

oy : B — Endg(M), (X)) =—<X = | , for every X € B.

X

where End;® (M) is the category of right exact B-module endofunctors of M. The B-module functor structures on a/j\[A(X J:M— M
do differ and are given by:

o (X)(M«Y) = MY X (X)) (M «Y) = MY X
aMX)M,yT — ‘ \/\ and amX)M,yT = ‘ \<
aj(X)(M) <Y = M XY ap(X)(M) Y = M XY
The monoidal functor structures of aﬁl also differ and are given by:
a(X®Y) = XY ay(X®Y) = XY
(aL)x,yw = >< and (amx,yw = /\
ajy(X) o afy(Y) = Y X (X)) 0 (Y) = Y X

22



Remark 4.3. Notice that, by definition, every B-module functor F' : M — N gives rise to natural transformations F f + of B-module
functors:

F

M N
aﬁ(}()l FEy laﬁ(x) for all X € B.
M N

\l

l\

F

Definition 4.7 — Let A(B) be the 2-category consisting of:

(0) objects are pairs (M, n) where M is a B-module category and 1 : a}, = a), is an isomorphism of tensor functors,

(1) a l-morphism F : (M, n) — (N,7n) is a B-module functor F': M — N such that
M—E N

+
F—,X

n; —
aL(X) aj\'/-(X) == ay(X) — aj\'/[

M——— N

(2) A 2-morphism « : F' = F" is just a B-module natural transformation.
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5 Explicit Description of Z(XB)

This section is based on sections 4.1 and 4.2 of [4]. First recall that X8 = Mod—B, the category of finite semisimple (right) B-module
categories, pointed by the rank one free module B ([5], 1.3.13). The goal of this section is to prove the following:

Theorem 5.1. Z(XB) = BrMod—B

We will proceed by showing Z(Mod—B) = A(B) = BrMod—B.

There is a canonical 2-equivalence A(B) = BrMod—B.
Proof of Lemma. Let M be a B-module category. Note that a module braiding o_ _ on M is actually the same thing as a natural
isomorphism 7 : af, = aj:

MaX — 22X L MaX
H H for X € Band M € M.

M) ot ap(X)(M)

-

/
i\ = > is equivalent to nx : aj,(X) = a,(X) being an isomorphism of left B-module functors, i.e.:
[ 17

X X

L0 (M) ay LMODr e ey (v« y)

Qldyl l’l]x M<1Y

MK M) 1Y ————— ay(X)(M aY)

(e (X)) my
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| | ~
B
Q‘ = | is equivalent to the monoidality of the natural isomorphism 7, i.e.:

NA, ® NAy

ay (A1) ® ajy(Ar) (A1) © ay(As)
(O‘/tf)AlaMl l(aX/)Al,AQ
> OéX/(Al X AQ)

NA1®Ag

Furthermore, for a B-module functor F': M — N

F(m) z

F(m) =
|/
F' being braided, that is Fina ) — % , is equivalent to:
) Ume
()

F(m<z) F(m<x)

Lastly, the 2-morphisms in each category just all B-module natural transformations.
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Sketch of proof of Theorem 5.1. In light of lemma 5.2, we need only show Z(Mod—B) = A(B).
(<) We construct a 2-functor A(B) — Z(Mod—B) as follows:

o Let (N,n: ajff = aj) be an object of A(B), so N' € Mod—B.

e Recall that for any M € Mod—2, there exists an algebra A in B such that M = A — Modg, the category of (left) A-modules in
B ([6], Cor. 7.10.5). Then,
N&BM = N&B (A - MOCIB> = MOdN—Oéj\_/(A),

where aj;(A) is an algebra in Endj*(N) and its modules in N are objects in N € N together with an action a(A)(N) — N
satisfying the usual axioms.

Similarly, M Kz N = Mody —a(A).
Hence, the isomorphism 74 : aj{/(A) = ay(A) of algebras in End;®(N) yields a 2-natural B-module equivalence
ﬁM,N:N&BM%MXIBN.
o Let L= A; —Modg and M = A; — Modg. The invertible modification Rz ) arises from the following commutative diagram

of algebra isomorphisms:

NA;®NAy

aj (A1) ® aj(Az) (A1) ® ay(As)
(aj\—f)A1vA2l l(aXf)AlﬁAQ
QX}(/LL§§/42) > C{E«/41Q§142)

NA1®Ag
Indeed, since a;; is a central functor, a;r(A;) ® ai-(Ay) are algebras in Endg®(N) and na, ® 74, is an algebra isomorphism.

The fact that R, ) satisfies the (1, 3)-crossing and unit axioms follows from the monoidality of 7.

This gives rise to a 2-functor (N, n) — (N, Brr— Bov-, )).
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(=) We construct a 2-functor Z(Mod—B) — A(B) as follows:
e Note that for any X € End;*(B) = B and N € Mod—B

|®:B%Endge‘(./\/) given by X +— py o (idy Mp X) o pi/

N

G)| : B— Endg®(NV) given by X = Ay o (X Kgidy)o Ay
N

are isomorphic to ozj(/ and o, respectively.
e For an object (N, Brr—s R, )) € Z(Mod—B), consider:

)
nx s af(X) = = ( — ( = = a(X)
' [

N N N N

Since By — is a 2-natural transformation, Sy xoy = fx.x © By y, implying that 7 is an isomorphism of tensor functors.

This gives rise to a 2-functor (N, Bnr—s R, )) — (N, n) which is a quasi-inverse to A(B) — Z(Mod—B8).
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BrMod—B may be equipped with the structure of a braided monoidal 2-category due to the equivalence Z(XB) =
BrMod—B of monoidal 2-categories. This structure can be described explicitly (see [3], Remark 4.13).

Remark 5.1. The forgetful functor Z(XB) = BrMod—B oreet Mod—B = $B is fully faithful on 2-morphisms since every module natural
transformations between two braided module functors is allowed.

Remark 5.2. Any B-module summand of a braided B-module category can be equipped with the structure of a braided B-module
category.

Hence, a braided B-module category is indecomposable if and only if it is indecomposable as a B-module category.

For a general non-connected fusion 2-category A, the canonical map Z(A) — A is faithful on 2-morphisms but not
necessarily full.

Exercise 5.1. Find such a fusion 2-category A such that the map Z(A) — A is not full.
QZ(EB) = Z2)(B).

Proof of Corollary. The unit object in Z(3B) corresponds to the “rank-1 free module” B € BrMod—B. Then recall that in example 4.5,
we saw that the endomorphism category of B is Z)(B).
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