Hochschild Cohomology and Deformations of Algebras

Giovanni Ferrer
August 30, 2021

Contents

1 Background 2
2 Hochschild Cohomology 6
3 Deformations of Algebras 8
4 Some Results 14

1 Background

Definition 1.1 (Algebra) - An (associative, unital) algebra over a commutative ring R is a R-module A together with an R-bilinear multiplication $\mu_{A}: A \times A \rightarrow A$ and a unit $\eta_{A}: R \rightarrow A$ such that the following diagrams commute:

Example 1.2 (\mathbb{C}-Algebras) -

- $\operatorname{End}(V)$ for any \mathbb{C}-vector space $V \in \operatorname{Vect}$, so in particular, $\operatorname{Mat}_{n \times n}(\mathbb{C})$,
- $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ for $n \in \mathbb{N}$,
- $\mathbb{C}[[\hbar]]$, the algebra of formal power series over \mathbb{C} with variable \hbar,
- Given a \mathbb{C}-algebra A, the opposite algebra $A^{\text {op }}$ is given by $\mu_{A^{\mathrm{op}}}(a, b):=\mu_{A}(b, a)$.
- Given a \mathbb{C}-algebra A, the enveloping algebra of A is given by $A^{e}:=A \otimes A^{\text {op }}$.
- The group algebra $\mathbb{C}[G]$ of a group G,
- The universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of a complex Lie algebra \mathfrak{g}.
- The organic notion of an algebra homomorphism $\varphi: A \rightarrow B$ is then a linear transformation making the following diagrams commute:

- The direct sum, product, and tensor of algebras agree with their vector space counterparts, where additionally, multiplication is defined entry-wise, e.g. $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}$.
- What about representations of these structures?

Definition 1.3 (A-module) - A left A-module M over an \mathbb{C}-algebra A is a \mathbb{C}-vector space M together with a bilinear map $(a, m) \mapsto a m$ from $A \times M$ to M such that

$$
a\left(a^{\prime} m\right)=\left(a a^{\prime}\right) m \quad \text { and } \quad 1 m=m
$$

- Similarly, a right A-module is a \mathbb{C}-vector space M together with a bilinear map $(m, a) \mapsto m a$ from $M \times A$ such that

$$
(m a) a^{\prime}=m\left(a a^{\prime}\right) \quad \text { and } \quad m 1=m .
$$

- So a right A-module is nothing else than a left module over the opposite algebra $A^{\text {op }}$.

Definition 1.4 ($A-A$ bimodule) - An $A-A$ bimodule M is a \mathbb{C}-vector space M together with compatible left and right A-module structures, i.e.

$$
(a m) a^{\prime}=a\left(m a^{\prime}\right)
$$

Example 1.5 (Bimodules over Algebras) -

- Any \mathbb{C}-algebra A can be viewed as an $A-A$ bimodule, where the left and right actions are given by multiplying on the left and right respectively.
- More generally, any two-sided ideal B of A can also be endowed with an $A-A$ bimodule structure.
- $\prod_{i \in I} A$ and $\bigoplus_{i \in I} A$ are $A-A$ bimodules where the left and right actions are given coordinate-wise, i.e. $a\left(v_{i}\right)_{i \in I} a^{\prime}:=\left(a v_{i} a^{\prime}\right)_{i \in I}$.
- Given a \mathbb{C}-vector space $V, A \otimes_{\mathbb{C}} V \otimes_{\mathbb{C}} A$ can be equipped with a $A-A$ bimodule structure determined by $a\left(a^{\prime} \otimes v \otimes b^{\prime}\right) b=$ $\left(a a^{\prime}\right) \otimes v \otimes\left(b b^{\prime}\right)$.
- Similarly, $A-A$ bimodules are nothing more than left A^{e}-modules.

Let M be an $A-A$ bimodule:
Definition 1.6 (Center) - The center $Z_{A}(M)$ is defined as:

$$
Z_{A}(M):=\{m \in M \mid a m=m a \text { for all } a \in A\} .
$$

When $M=A$, this corresponds to the center $Z(A)$ of an algebra:

$$
Z(A):=Z_{A}(A)=\{a \in A \mid b a=a b \text { for all } b \in A\} .
$$

Recall the Leibniz (or product) rule for differentiation:

$$
\frac{d}{d x}(f g)=\frac{d}{d x}(f) g+f \frac{d}{d x}(g)
$$

Definition 1.7 (Derivation) — We say that a \mathbb{C}-linear $\delta: A \rightarrow M$ is a derivation of A with values in M if

$$
\delta(a b)=\delta(a) b+a \delta(b) \quad \text { for every } a, b \in A
$$

The space of all such derivations is denoted by $\operatorname{Der}_{A}(M)$. When $M=A$, we say these are derivations on A and write $\operatorname{Der}(A):=\operatorname{Der}_{A}(A)$.

Example 1.8 (Derivation) - $\frac{d}{d x}$ is a derivation on $\mathbb{C}[x]$.

Exercise 1.1. Show that $\operatorname{Der}(\mathbb{C}[x])=\mathbb{C}[x] \frac{d}{d x}$.
Hint: Show that any $\delta \in \operatorname{Der}(\mathbb{C}[x])$ is of the form $\delta(x) \frac{d}{d x}$.

2 Hochschild Cohomology

Definition 2.1 (Hochschild Complex) — We define the co-chain complex $C^{\bullet}(A ; M)$ as:

$$
C^{k}(A ; M):=\operatorname{Hom}_{\mathbb{C}}\left(A^{\otimes k}, M\right)=\left\{\begin{array}{c}
\mathbb{C} \text {-multi-linear maps } \\
A^{n} \rightarrow M .
\end{array}\right\}
$$

with differentials $\mathrm{d}^{k}: C^{k}(A ; M) \rightarrow C^{k+1}(A ; M)$ given on $\xi: A^{n} \rightarrow M$ by:

$$
\begin{aligned}
\mathrm{d}^{k} \xi\left(a_{0}, \ldots, a_{k}\right) & :=a_{0} \cdot \xi\left(a_{1}, \ldots, a_{k}\right) \\
& +\sum_{i=0}^{k-1}(-1)^{i+1} \xi\left(\ldots, a_{i} a_{i+1}, \ldots\right) \\
& +(-1)^{k+1} \xi\left(a_{0}, \ldots, a_{k-1}\right) \cdot a_{k}
\end{aligned}
$$

Definition 2.2 (Hochschild Cohomology) — The $k^{\text {th }}$ Hochschild Cohomology group of A valued in M is given by:

$$
\mathrm{HH}^{k}(A ; M):=H^{k}\left(C^{\bullet}(A ; M)\right)=\frac{\operatorname{Ker}\left(\mathrm{d}^{k}\right)}{\operatorname{Im}\left(\mathrm{d}^{k-1}\right)} .
$$

When $M=A$ as a bimodule over itself, we write $\mathrm{HH}^{k}(A):=\mathrm{HH}^{k}(A ; A)$.

Facts 2.3 (Hochschild Cohomology) -

- $\mathrm{HH}^{0}(A ; M)=Z_{A}(M)$ as in Definition 1.6.

Proof of Fact. Notice $\mathrm{HH}^{0}(A ; M)=\operatorname{ker}\left(\mathrm{d}^{0}\right)=\left\{\xi: \mathbb{C} \rightarrow M \mid \mathrm{d}^{0} \xi=0\right\}$ where

$$
\mathrm{d}^{0} \xi\left(a_{0}\right)=a_{0} \xi(1)-\xi(1) a_{0}
$$

Identifying ξ with $\xi(1) \in M$, the statement is then clear.

- $\operatorname{Ker}\left(\mathrm{d}^{1}\right)=Z^{1}\left(C^{\bullet}(A ; M)\right)=\operatorname{Der}_{A}(M)$ as in Definition 1.7.

Proof of Fact. For $\xi: A \rightarrow M$, notice

$$
\mathrm{d}^{1} \xi\left(a_{0}, a_{1}\right)=a_{0} \xi\left(a_{1}\right)-\xi\left(a_{0} a_{1}\right)+\xi\left(a_{0}\right) a_{1} .
$$

Example 2.4 (Hochschild Cohomology) -

- $\mathrm{HH}^{0}(\mathbb{C}[\hbar])=Z(\mathbb{C}[\hbar])=\mathbb{C}[\hbar]$.
- $\mathrm{HH}^{1}(\mathbb{C}[\hbar])=\operatorname{ker}\left(\mathrm{d}^{1}\right)=\operatorname{Der}(\mathbb{C}[\hbar])=\mathbb{C}[\hbar] \frac{d}{d \hbar}$ by Exercise 1.1.
- $\mathrm{HH}^{k}(\mathbb{C}[\hbar])=0$ for $k \geq 2$.

3 Deformations of Algebras

Let A be a \mathbb{C}-algebra, consider the \mathbb{C}-vector space $A[[\hbar]]=A \otimes_{\mathbb{C}} \mathbb{C}[[\hbar]]$.

$$
\begin{aligned}
& A[[\hbar]] \\
& \int_{A} L^{2} L^{\mathrm{ev}_{0}}
\end{aligned}
$$

- The aim of deformation theory is to equip $A[[\hbar]]$ with a multiplication compatible with the multiplication on A, enhancing $A[[\hbar]]$ into a $\mathbb{C}[[\hbar]]$-algebra.

Definition 3.1 (Deformation of an Algebra) - By a deformation of A, we mean an associative $\mathbb{C}[[\hbar]]$-bilinear $*: A[[\hbar]]^{2} \rightarrow A[[\hbar]]$ such that the following diagrams commutes

Definition 3.2 (Deformation of an Algebra) - By a deformation of A, we mean an associative $\mathbb{C}[[\hbar]]$-bilinear $*: A[[\hbar]]^{2} \rightarrow A[[\hbar]]$ such that the following diagrams commutes

- Observe that such a multiplication would be uniquely determined by its action on A.
- This action can be decomposed uniquely into a family of \mathbb{C}-bilinear maps $\left\{\mu_{n}: A \times A \rightarrow A\right\}_{n \in \mathbb{N}}$ such that

$$
a * b=\sum_{n \geq 0} \hbar^{n} \mu_{n}(a, b) .
$$

- Notice $\mu_{0}(a, b)=a b$.
- The associativity of $*$ can then be expressed in terms of the maps $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$:

$$
\begin{equation*}
\sum_{k+\ell=n} \mu_{k}\left(\mu_{\ell}(a, b), c\right)=\sum_{i+j=n} \mu_{i}\left(a, \mu_{j}(b, c)\right) \quad \text { for } a, b, c \in A \text { and } n \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

Example 3.3 (Deformations of Algebras) -

- For any algebra A, the trivial deformation is given by $\mu_{k}=0$ for $k \geq 1$. Notice that $a * b=a b$ for every $a, b \in A$.
- For $A=\mathbb{C}[x, y]$, the deformation $*$ on $A[\hbar]$ (or $A[[\hbar]]$) determined by

$$
x^{n} * x^{m}=x^{n+m}, \quad y^{n} * y^{m}=y^{n+m} \quad x^{n} * y^{m}=x^{n} y^{m} \quad y * x=x y+\hbar
$$

Notice that $(A, *)=\mathbb{C}\langle x, y, \hbar\rangle /(y x-x y-\hbar)$. When we set $\hbar=1$, this is known as the Weyl algebra and usually y is denoted by $\frac{d}{d x}$ or ∂_{x}.

- For $A=\mathbb{C}[x, y] /\left(y^{2}\right)$, the deformations $*_{1}, \ldots, *_{5}$ on $A[\hbar]$ determined by $x^{n} *_{i} x^{m}=x^{n+m}, x^{n} *_{i} y=y *_{i} x^{n}=x^{n} y$ and

$$
\begin{aligned}
& \bar{y} *_{1} \bar{y}=\hbar^{2}, \\
& \bar{y} *_{2} \bar{y}=\bar{x} \hbar, \\
& \bar{y} *_{3} \bar{y}=\bar{x}^{2} \hbar^{2}, \\
& \bar{y} *_{4} \bar{y}=\bar{x}^{3} \hbar, \\
& \bar{y} *_{5} \bar{y}=\left(\bar{x}^{2}+\bar{x}^{3}\right) \hbar .
\end{aligned}
$$

Notice that:

$$
\begin{aligned}
& \left(A[\hbar], *_{1}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-\hbar^{2}\right) \\
& \left(A[\hbar], *_{2}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-x \hbar\right) \\
& \left(A[\hbar], *_{3}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-x^{2} \hbar^{2}\right) \\
& \left(A[\hbar], *_{4}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-x^{3} \hbar\right) \\
& \left(A[\hbar], *_{5}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-x^{2} \hbar-x^{3} t\right)
\end{aligned}
$$

Example 3.4 -

$$
\left.\begin{array}{rlrl}
A & =\mathbb{C}[x, y] /\left(y^{2}\right) & & \left(A[\hbar], *_{1}\right)
\end{array}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-\hbar^{2}\right) \quad\left(A[\hbar], *_{2}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-x \hbar\right), ~\left(A[\hbar], *_{5}\right)=\mathbb{C}\langle x, y, \hbar\rangle /\left(y^{2}-x^{2} \hbar-x^{3} \hbar\right)
$$

- Recall that $A=\mathbb{C}[x, y] /\left(y^{2}\right)$ can be visualized as a "double line" on the x-axis.
- Then, the deformations of A in Example 3.3 may be visualized for some fixed value of \hbar as follows:

$\left(A[\hbar], *_{4}\right)=\longleftrightarrow \overbrace{\downarrow}^{y} x$

$\left(A[\hbar], *_{5}\right)=$
- We may also compare deformations of a particular algebra, the organic notion being an $\mathbb{C}[[\hbar]]$-algebra homomorphism $\varphi:(A[[\hbar]], *) \rightarrow$ $\left(A[[\hbar]], *^{\prime}\right)$ such that:

Definition 3.5 (Equivalence of Deformations) — We say * and $*^{\prime}$ are equivalent if there exists a bijective $\mathbb{C}[[\hbar]]$-linear $\varphi: A[[\hbar]] \rightarrow A[[\hbar]]$ such that

- $\varphi(a)=a(\bmod \hbar)$ for all $a \in A$,
- $\varphi(a * b)=\varphi(a) *^{\prime} \varphi(b)$ for all $a, b \in A$.

Definition 3.6 (Equivalence of Deformations) — We say * and $*^{\prime}$ are equivalent if there exists a bijective $\mathbb{C}[[\hbar]]$-linear $\varphi: A[[\hbar]] \rightarrow A[[\hbar]]$ such that

- $\varphi(a)=a(\bmod \hbar)$ for all $a \in A$,
- $\varphi(a * b)=\varphi(a) *^{\prime} \varphi(b)$ for all $a, b \in A$.
- Such a map is uniquely determined by its action on A.
- This action can be decomposed uniquely into a family of \mathbb{C}-linear maps $\left\{\varphi_{n}: A \rightarrow A\right\}_{n \in \mathbb{N}}$ such that

$$
\varphi(a)=\sum_{n \geq 0} \hbar^{n} \varphi_{n}(a) .
$$

- Notice $\varphi_{0}=\mathrm{id}_{A}$.
- The fact that φ preserves the deformations of A can then be expressed in terms of the maps $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}},\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\mu_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ as follows:

$$
\begin{equation*}
\sum_{k+\ell=n} \varphi_{k}\left(\mu_{\ell}(a, b)\right) \quad=\sum_{i+j+k=n} \mu_{i}^{\prime}\left(\varphi_{j}(a), \varphi_{k}(b)\right) \quad \text { for } a, b \in A \text { and } n \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

Definition 3.7 (Rigidity) - We say that A is rigid if every deformation of A is equivalent to the trivial deformation.

4 Some Results

Proposition 4.1. If $\mathrm{HH}^{1}(A)=0$, then any auto-equivalence of the trivial deformation of A is inner.
That is, if $I: A[[\hbar]] \rightarrow A[[\hbar]]$ is a $\mathbb{C}[[\hbar]]$-linear algebra isomorphism such that $I=\sum \hbar^{n} I_{n}$ on A with $\left\{I_{k}: A \rightarrow A\right\}_{k \geq 1}$ and $I_{0}=\operatorname{id}_{A}$, then there exists some invertible $\widetilde{a} \in A[[\hbar]]$ such that $I(x)=\widetilde{a} x \widetilde{a}^{-1}$.

Proof. Let $N \geq 1$ be the smallest index such that $I_{N} \neq 0$.

- Since $I(a b)=I(a) I(b)=\sum_{n} \sum_{k+\ell=n} \hbar^{n} I_{k}(a) I_{\ell}(b)$, comparing the coefficients of \hbar^{N} yields:

$$
I_{N}(a b)=\sum_{k+\ell=N} I_{k}(a) I_{\ell}(b)=a I_{N}(b)+I_{N}(a) b .
$$

- Thus I_{N} is a derivation, i.e. $\mathrm{d}^{1} I_{N}=0$ as we saw in Facts 2.3.
- Since $\mathrm{HH}^{1}(A)=0$, i.e. $\operatorname{ker}\left(\mathrm{d}^{1}\right)=\operatorname{im}\left(\mathrm{d}^{0}\right)$, there exists some $\xi_{N} \in C^{1}(A ; A) \cong A \ni \xi_{N}(1)$ such that $\mathrm{d}^{0} \xi_{N}=I_{N}$.
- In particular, $I_{N}(x)=x \xi_{N}(1)-\xi_{N}(1) x$.
- Note that $1-\hbar^{N} \xi_{N}(1)$ is invertible with

$$
\left(1-\hbar^{N} \xi_{N}(1)\right)^{-1}=\sum_{k \geq 0} \hbar^{N k} \xi_{N}(1)^{k} .
$$

- So define:

$$
\begin{aligned}
\widetilde{I}(x) & =\left(1-\hbar^{N} \xi_{N}(1)\right)^{-1} I(x)\left(1-\hbar^{N} \xi_{N}(1)\right) \\
& =\left(1+\hbar^{N} \xi_{N}(1)+O\left(\hbar^{2 N}\right)\right)\left(x+\hbar^{N} I_{N}(x)+O\left(\hbar^{N+1}\right)\right)\left(1-\hbar^{N} \xi_{N}(1)\right) \\
& =x+\hbar^{N}\left(I_{N}(x)-x \xi_{N}(1)+\xi_{N}(1) x\right)+O\left(\hbar^{N+1}\right) \\
& =x+O\left(\hbar^{N+1}\right) .
\end{aligned}
$$

The result then follows by induction on N and noting $\left(\prod_{N} 1-\hbar^{N} \xi_{N}(1)\right)^{-1} I(x)\left(\prod_{N} 1-\hbar^{N} \xi_{N}(1)\right)=x$.

Proposition 4.2. If $\mathrm{HH}^{2}(A)=0$, then A is rigid.

Proof. Let $*$ be a deformation of A. We will proceed by constructing a family of deformations $*_{1}, *_{2}, *_{3}, \ldots$ equivalent to $*$ such that $a *_{k} b=a b+O\left(\hbar^{k}\right)$, i.e. for $\left\{\mu_{n}^{(k)}: A^{2} \rightarrow A\right\}_{n \in \mathbb{N}}$ corresponding to $*_{k}$, we have $\mu_{i}^{(k)}=0$ whenever $1<i<k$.

- Notice that $*_{1}:=*$ already satisfies this property.
- Now suppose we have constructed $*_{N}$, where $*_{N}$ is equivalent to $*$ and

$$
a *_{N} b=a b+O\left(\hbar^{N}\right)=a b+\hbar^{N} \mu_{N}^{(N)}(a, b)+O\left(\hbar^{N+1}\right) .
$$

- Then the associativity equation for $n=N$ yields

$$
\begin{aligned}
\mu_{N}^{(N)}(a, b) c+\mu_{N}^{(N)}(a b, c) & =\sum_{k+\ell=N} \mu_{k}^{(N)}\left(\mu_{\ell}^{(N)}(a, b), c\right) \\
& =\overline{(3.1)} \sum_{i+j=N} \mu_{i}^{(N)}\left(a, \mu_{j}^{(N)}(b, c)\right)=a \mu_{N}^{(N)}(b, c)+\mu_{N}^{(N)}(a, b c) .
\end{aligned}
$$

- So $\mathrm{d}^{2} \mu_{N}^{(N)}(a, b, c)=a \mu_{N}^{(N)}(b, c)-\mu_{N}^{(N)}(a b, c)+\mu_{N}^{(N)}(a, b c)-\mu_{N}^{(N)}(a, b) c=0$.
- Since $\mathrm{HH}^{2}(A)=0$, i.e. ker $\mathrm{d}^{2}=\mathrm{imd}^{1}$, there exists some $f_{N} \in C^{1}(A ; A)$ such that $\mu_{N}^{(N)}=\mathrm{d}^{1} f_{N}$.
- In particular, $f_{N}: A \rightarrow A$ is a \mathbb{C}-linear map such that

$$
\begin{equation*}
\mu_{N}^{(N)}(a, b)=a f_{N}(b)-f_{N}(a b)+f_{N}(a) b . \tag{4.1}
\end{equation*}
$$

Now consider the $\mathbb{C}[[\hbar]]$-linear map $\varphi_{N}: A[[\hbar]] \rightarrow A[[\hbar]]$ determined by $\varphi_{N}(a):=a+\hbar^{N} f_{N}(a)$ for every $a \in A$.

Claim 4.2.1 - φ_{N} is bijective.
Proof of Claim. We'll skip this, but one can find the proof in the notes.

- We can then define $*_{N+1}$ by transporting $*_{N}$ via φ_{N}, i.e.

$$
a *_{N+1} b:=\varphi_{N}\left(\varphi_{N}^{-1}(a) *_{N} \varphi_{N}^{-1}(b)\right) .
$$

- It is clear by construction that $*_{N+1}$ is a deformation equivalent to $*_{N}$, and hence to $*$.

Claim 4.2.2 - $a *_{N+1} b=a b+O\left(\hbar^{N+1}\right)$.
Proof of Claim. We will compare two ways of computing $a *_{N+1} b$, namely

- by using the definition of $*_{N+1}$ and the linearity of φ_{N} :

$$
\begin{aligned}
\varphi_{N}(a) *_{N+1} \varphi_{N}(b)=\varphi_{N}\left(a *_{N} b\right) & =\varphi_{N}\left(a b+\hbar^{N} \mu_{N}^{(N)}(a, b)+O\left(\hbar^{n+1}\right)\right) \\
& =a b+\hbar^{N}\left(f_{N}(a b)+\mu_{N}^{(N)}(a, b)\right)+O\left(\hbar^{N+1}\right)
\end{aligned}
$$

- and by distributing over $*_{N+1}$,

$$
\begin{aligned}
\varphi_{N}(a) *_{N+1} \varphi_{N}(b) & =\left(a+\hbar^{N} f_{N}(a)\right) *_{N+1}\left(b+\hbar^{N} f_{N}(b)\right) \\
& =\left(a *_{N+1} b\right)+\hbar^{N}\left(f_{N}(a) *_{N+1} b\right)+\hbar^{N}\left(a *_{N+1} f_{N}(b)\right)+\hbar^{2 N}\left(f_{N}(a) *_{N+1} f_{N}(b)\right) \\
& =a b+\left(\sum_{k=1}^{N-1} \hbar^{k} \mu_{k}^{(N+1)}(a, b)\right)+\hbar^{N}\left(\mu_{N}^{(N+1)}(a, b)+f_{N}(a) b+a f_{N}(b)\right)+O\left(\hbar^{N+1}\right)
\end{aligned}
$$

Comparing each coefficient of \hbar^{k} for $1 \leq k \leq N$, we find that $\mu_{k}^{(N)}(a, b)=0$ for $1 \leq k<N-1$ and

$$
f_{N}(a b)+\mu_{N}^{(N)}(a, b)=\mu_{N}^{(N+1)}(a, b)+f_{N}(a) b+a f_{N}(b)
$$

By Equation 4.1, we also obtain $\mu_{N}^{(N+1)}(a, b)=0$.

- We conclude that $*$ is equivalent to the trivial deformation via the map φ (which is to be thought of as "..o $\varphi_{2} \circ \varphi_{1}$ ") given on $a \in A$ by:

$$
\varphi(a):=\sum_{k=1}^{\infty} \hbar^{k} \sum_{\substack{i_{\ell}>\ldots>i_{1} \\ i_{\ell}+\cdots+i_{1}=k}} f_{i_{\ell}} \circ \cdots \circ f_{i_{1}}(a) .
$$

Corollary 4.3 - Every deformation of $\mathbb{C}[x]$ is equivalent to the trivial one.

