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1 Background

Definition 1.1 (Algebra) — An (associative, unital) algebra over a commutative ring R is a R-module A together with an R-bilinear
multiplication s : A X A — A and a unit 74 : R — A such that the following diagrams commute:

43 1 xid A2 R®g A"7A®idA A Rn A ida®na A ®r R
b N~
A —— A A

Example 1.2 (C-Algebras) —
e End(V) for any C-vector space V' € Vect, so in particular, Mat,,«,(C),
o Clxy,...,z,) for n € N

o C[[n]], the algebra of formal power series over C with variable A,

e Given a C-algebra A, the opposite algebra A°® is given by piae(a,b) := pa(b, a).
e Given a C-algebra A, the enveloping algebra of A is given by A® := A ® A°".

e The group algebra C[G] of a group G,

e The universal enveloping algebra U(g) of a complex Lie algebra g.



https://en.wikipedia.org/wiki/Universal_enveloping_algebra

e The organic notion of an algebra homomorphism ¢ : A — B is then a linear transformation making the following diagrams commute:

Ax At A ny s A
I
BxB—— B g

e The direct sum, product, and tensor of algebras agree with their vector space counterparts, where additionally, multiplication is
defined entry-wise, e.g. (a ®b)(a’ @ V') = aa’ @ bY'.

e What about representations of these structures?

Definition 1.3 (A-module) — A left A-module M over an C-algebra A is a C-vector space M together with a bilinear map
(a,m) — am from A x M to M such that
a(a'm) = (ad’ym and 1m =m.

e Similarly, a right A-module is a C-vector space M together with a bilinear map (m, a) — ma from M x A such that

(ma)a’ =m(ad’) and ml=m.

e So a right A-module is nothing else than a left module over the opposite algebra A°.



Definition 1.4 (A — A bimodule) — An A — A bimodule M is a C-vector space M together with compatible left and right A-module
structures, i.e.
(am)a’ = a(ma’).

Example 1.5 (Bimodules over Algebras) —

e Any C-algebra A can be viewed as an A — A bimodule, where the left and right actions are given by multiplying on the left and
right respectively.

e More generally, any two-sided ideal B of A can also be endowed with an A — A bimodule structure.
o [[,c;Aand @, ; A are A— A bimodules where the left and right actions are given coordinate-wise, i.e. a(v;)iera’ := (av;a’)er.

e Given a C-vector space V, A ®c V ®¢ A can be equipped with a A — A bimodule structure determined by a(a’ ® v ® b')b =
(ad’) @ v @ (bY).

e Similarly, A — A bimodules are nothing more than left A°-modules.



Let M be an A — A bimodule:
Definition 1.6 (Center) — The center Z4(M) is defined as:

Za(M):={m e M |am =ma for alla € A} .
When M = A, this corresponds to the center Z(A) of an algebra:

Z(A):=Z4(A) ={ac A|lba=abforallbe A}.

Recall the Leibniz (or product) rule for differentiation:

%(f)gﬂtf%(g)-

d
)=
Definition 1.7 (Derivation) — We say that a C-linear § : A — M is a derivation of A with values in M if
d(ab) = d(a)b + ad(b) for every a,b € A.

The space of all such derivations is denoted by Der4(M). When M = A, we say these are derivations on A and write Der(A) := Der4(A).

Example 1.8 (Derivation) — - is a derivation on C[z].

Exercise 1.1. Show that Der(C[z]) = Clz]-L.

Hint: Show that any 0 € Der(Clz]) is of the form §(z)-L.



2 Hochschild Cohomology

Definition 2.1 (Hochschild Complex) — We define the co-chain complex C*(A; M) as:

C*(A; M) := Home(A®*, M) = { C-multi-linear maps }

A" — M.
with differentials d* : C*(A4; M) — C*1(A; M) given on £ : A® — M by:
d*¢(ag, ..., ax) == ag - &(as, . .., ax)
k—1
+ Z(—l)z+1§( ey QA4 - . )
i=0

+ (—1)k+1§(a07 ce ,ak_l) * A

Definition 2.2 (Hochschild Cohomology) — The k** Hochschild Cohomology group of A valued in M is given by:

er(dk
HH*(4; M) := H*(C*(A; M)) = %

When M = A as a bimodule over itself, we write HH¥(A) := HH*(A; A).




Facts 2.3 (Hochschild Cohomology) —
HH?(A; M) = Z4(M) as in Definition 1.6.
Proof of Fact. Notice HH(A; M) = ker(d") = {¢ : C — M |d°¢ = 0} where
d°¢(ao) = ao&(1) — &(1)ao.
Identifying & with £(1) € M, the statement is then clear.
Ker(d') = Z1(C*(A; M)) = Der (M) as in Definition 1.7.

Proof of Fact. For £ : A — M, notice
d'¢(ao, a1) = ag€(ar) — &(apar) + &(ag)ar.

Example 2.4 (Hochschild Cohomology) —
e HH?(CI[n]) = Z(C[n]) = C[h).
o HH!(C[h]) = ker(d") = Der(C[h]) = C[h]4 by Exercise 1.1.
o HH¥(C[H]) = 0 for k > 2.



3 Deformations of Algebras

Let A be a C-algebra, consider the C-vector space A[[h]] = A ®c C][A]].

e The aim of deformation theory is to equip A[[h]] with a multiplication compatible with the multiplication on A, enhancing A[[A]]
into a C[[h]]-algebra.

Definition 3.1 (Deformation of an Algebra) — By a deformation of A, we mean an associative C|[[R]]-bilinear * : A[[R]]?> — A[[R]] such
that the following diagrams commutes

A[[R]] x A[[R]] —— A[[A]]

T ovo

AXA—— A




Definition 3.2 (Deformation of an Algebra) — By a deformation of A, we mean an associative C[[A]]-bilinear * : A[[A]]* — A[[A]] such
that the following diagrams commutes

Observe that such a multiplication would be uniquely determined by its action on A.

This action can be decomposed uniquely into a family of C-bilinear maps {p, : A x A — A}y such that

axb= Zhnun(a,b).

n>0

Notice po(a,b) = ab.

The associativity of x can then be expressed in terms of the maps {1, }nen:

Z i (pe(a, b),c) = Z pi(a, pi(b,c)) fora,b,c € Aandn e N. (3.1)
k+l=n i+j=n



Example 3.3 (Deformations of Algebras) —
e For any algebra A, the trivial deformation is given by ur = 0 for £ > 1. Notice that a x b = ab for every a,b € A.

e For A = Clz, y], the deformation x on A[h] (or A[[R]]) determined by

xn*$m:xn+m’ yn*ym:yn—i—m xn*ym:xnym y*x:xy—i—h
Notice that (A, *) = C(z,y, h)/(yr — xy — h). When we set A = 1, this is known as the Weyl algebra and usually y is denoted
by % or 0.
e For A = Clz,y]/(y?), the deformations *q, ..., *5 on A[h] determined by z" *; ™ = "™ 2" x; y = y *; 2" = 2"y and
g7 =",
y *9 @ - Eh?
Y3 J=71,
YxaJ=7h,
g5y = (T +T)h
Notice that:
(A[h]v *1) - (C<‘T7 Y, h>/(y2 - h2)
(A[h]v *2) = C<3§', Y, h>/(y2 - a:h)
(A[h]’ *3) = (C<'I7 Y, h>/(y2 - mZ}—LZ)
(A[h], *4) - <C<IE, Y, h>/(y2 - ‘T3h)
(A[R], *5) = C(z,y, h)/(y* — 2*h — °t)
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Example 3.4 —

A =Clz,y]/(v*) (A[R], %1) = Cla,y, )/ (y* — 1) (A[R], *2) = Clw, y, h)/(y* — xh)
(A[R], #3) = C(z,y, h)/(y* — 2°1?) (A[R], %4) = C{z,y, B)/(y* — 2°h) (A[R], #5) = C{z,y, h)/(y* — 2°h — 2°h)

e Recall that A = C[z,y]/(y*) can be visualized as a “double line” on the z-axis.

e Then, the deformations of A in Example 3.3 may be visualized for some fixed value of A as follows:

Y Y Y
——
A=t (AR, %) = +—1—— @ (A[R], *g) = +—— x
——
Y Y Y
(A[R], *3) = x (A[R], *4) = +— x (A[R], *5) = e@ x
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e We may also compare deformations of a particular algebra, the organic notion being an C[[A]]-algebra homomorphism ¢ : (A[[A]], *) —

(A[[R]], ") such that:

Definition 3.5 (Equivalence of Deformations) — We say * and " are equivalent if there exists a bijective C[[A]]-linear ¢ : A[[h]] — A][A]]
such that

e p(a) =a (mod h) for all a € A,

o p(axb) = p(a)* ¢(b) for all a,b € A.

12



Definition 3.6 (Equivalence of Deformations) — We say * and " are equivalent if there exists a bijective C[[A]]-linear ¢ : A[[h]] — A][A]]
such that

e p(a) =a (mod h) for all a € A,

o p(axb) = p(a)* ¢(b) for all a,b € A.

e Such a map is uniquely determined by its action on A.

e This action can be decomposed uniquely into a family of C-linear maps {p, : A — A},en such that

ola) = 3 Wu(a).

n>0

e Notice ¢y = idy4.

e The fact that ¢ preserves the deformations of A can then be expressed in terms of the maps {¥n }nen, {fn}tneny and {1, }nen as
follows:

Z or(pe(a,b)) = Z wi(ei(a), pr(b)) for a,b € A and n € N. (3.2)

k+t=n i+j+k=n

Definition 3.7 (Rigidity) — We say that A is rigid if every deformation of A is equivalent to the trivial deformation.
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4 Some Results

Proposition 4.1. If HH!(A) = 0, then any auto-equivalence of the trivial deformation of A is inner.

That is, if 1 : A[[h]] — A[[R]] is a C][[h]]-linear algebra isomorphism such that [ = > A"I, on A with {[; : A — A}x>1 and Iy = id4,
then there exists some invertible @ € A[[h]] such that I(z) = aza~'.

Proof. Let N > 1 be the smallest index such that Iy # 0.
e Since I(ab) = I(a)I(b) = 3", > o B Ii(a)Io(D), comparing the coefficients of A" yields:

In(ab) = Y Ii(a)I(b) = aly(b) + In(a)b.
k+{=N

Thus Iy is a derivation, i.e. d'Iy = 0 as we saw in Facts 2.3.

Since HH!(A) = 0, i.e. ker(d!) = im(d®), there exists some &y € C1(A; A) = A 3 En(1) such that d°¢y = Iy.

In particular, In(x) = z€n (1) — En(1)x.

Note that 1 — ANEn (1) is invertible with
(1 mVen(1) " =D WVEen (1),

k>0

So define:

I(x) = (1= WNen (1) ' I(x) (1 = BVex (1))
= (1+1V¢n(1) + O(R*N)) (z + AN In(z) + O(RN ) (1 — RV En (1))
=x+ ﬁN(]N(x) —xén(1) + &v(l)x) + O(RN T
=+ OV ).

The result then follows by induction on N and noting ([y 1 — hNgN(l))_1 I(z) (TIy1—1Vén(1)) = o
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Proposition 4.2. If HH?(A) = 0, then A is rigid.

Proof. Let x be a deformation of A. We will proceed by constructing a family of deformations i, %9, *3,... equivalent to * such that

ax, b= ab+ O(R¥), i.e. for {pn(zk) : A2 — A},en corresponding to *j, we have u(k) = 0 whenever 1 < i < k.

(2
e Notice that *; := x already satisfies this property.

e Now suppose we have constructed *y, where %y is equivalent to x and

axyb=ab+ OHN) =ab+ hVpu( (a,b) + O(RN ).

e Then the associativity equation for n = N yields
i (a,0)e + u(abe) = D7 (1 (a,b), 0)
k+0=N
5, 2o (@ (b.0) = ap (b 0) + i o, be).

z—i—j N
* S0 dQ:ug\]fV) (CL, b7 C) = CLIU’%V)(@ C) - ME\JIV)<ab7 C) + :ug\]f\[) (CL, bC) - /J“g\]/\[)<a7 b)C =0.
e Since HH2(A) = 0, i.e. kerd? = imd!, there exists some fy € C*(A: A) such that pi{") = d' fy.
e In particular, fy : A — A is a C-linear map such that

i (a,b) = afn(b) — fy(ab) + fa(a)b. (4.1)

15



Now consider the C[[A]]-linear map ¢y : A[[h]] — A[[h]] determined by pn(a) := a + I fx(a) for every a € A.

N is bijective.

Proof of Claim. We’ll skip this, but one can find the proof in the notes.

e We can then define %y by transporting *y via @y, i.e.
a*y41 b= SON(SDJ_VI(G) *N SOJ_vl(b»

e [t is clear by construction that xy.; is a deformation equivalent to *y, and hence to .

16



a *Nyq b=ab + O(hN+1).

Proof of Claim. We will compare two ways of computing a %1 b, namely
e by using the definition of *y; and the linearity of ¢y:

on(a) #n41 on(b) = pn(axy b) = on (ab+ EVu§ (a,b) + O(R™H))
= ab+ 1" (fu(ab) + iy (a,0)) + O(RVH);

e and by distributing over *p 1,

on(a) *ni1on(b) = (a+ BN fa(a)) sy (b4 B fa (D))
= (asns1b) + Y (fu(a) sn41 0) + BN (a sy [ (D) + 2N (fa(a) sner [ (D))

N-1
= ab+ (Z RN (@, b)) + 1N (i (a,b) + fy(@)b + afy (b)) + O(RN Y,
k=1

Comparing each coefficient of A* for 1 < k < N, we find that ,ul({N)(a, b)=0for 1 <k< N —1and
fivlab) + p§7 (a,b) = u$ T (a,0) + fu(a)b + afn(b)

By Equation 4.1, we also obtain M%V“)(a, b) = 0.
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[13

e We conclude that * is equivalent to the trivial deformation via the map ¢ (which is to be thought of as “--- 0y 0¢,”) given on

a € A by:

pla):=) 0" ) fig 00 fi(a). O
k=1 ig> >y
it ti1=k

Corollary 4.3 — Every deformation of C[z] is equivalent to the trivial one.
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