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1 Background

Definition 1.1 (Algebra) — An (associative, unital) algebra over a commutative ring R is a R-module A together with an R-bilinear
multiplication µA : A× A→ A and a unit ηA : R→ A such that the following diagrams commute:

A3 A2

A2 A

id×µA

µA×id

µA

µA

R⊗R A A⊗R A A⊗R R

A

ηA⊗idA idA⊗ηA

Example 1.2 (C-Algebras) —

• End(V ) for any C-vector space V ∈ Vect, so in particular, Matn×n(C),

• C[x1, . . . , xn] for n ∈ N,

• C[[~]], the algebra of formal power series over C with variable ~,

• Given a C-algebra A, the opposite algebra Aop is given by µAop(a, b) := µA(b, a).

• Given a C-algebra A, the enveloping algebra of A is given by Ae := A⊗ Aop.

• The group algebra C[G] of a group G,

• The universal enveloping algebra U(g) of a complex Lie algebra g.
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• The organic notion of an algebra homomorphism ϕ : A→ B is then a linear transformation making the following diagrams commute:

A× A A

B ×B B

ϕ×ϕ

µA

ϕ

µB

A

R

B

ϕ

ηA

ηB

• The direct sum, product, and tensor of algebras agree with their vector space counterparts, where additionally, multiplication is
defined entry-wise, e.g. (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

• What about representations of these structures?

Definition 1.3 (A-module) — A left A-module M over an C-algebra A is a C-vector space M together with a bilinear map
(a,m) 7→ am from A×M to M such that

a(a′m) = (aa′)m and 1m = m.

• Similarly, a right A-module is a C-vector space M together with a bilinear map (m, a) 7→ ma from M × A such that

(ma)a′ = m(aa′) and m1 = m.

• So a right A-module is nothing else than a left module over the opposite algebra Aop.
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Definition 1.4 (A−A bimodule) — An A−A bimodule M is a C-vector space M together with compatible left and right A-module
structures, i.e.

(am)a′ = a(ma′).

Example 1.5 (Bimodules over Algebras) —

• Any C-algebra A can be viewed as an A−A bimodule, where the left and right actions are given by multiplying on the left and
right respectively.

• More generally, any two-sided ideal B of A can also be endowed with an A− A bimodule structure.

•
∏

i∈I A and
⊕

i∈I A are A− A bimodules where the left and right actions are given coordinate-wise, i.e. a(vi)i∈Ia
′ := (avia

′)i∈I .

• Given a C-vector space V , A⊗C V ⊗C A can be equipped with a A− A bimodule structure determined by a(a′ ⊗ v ⊗ b′)b =
(aa′)⊗ v ⊗ (bb′).

• Similarly, A− A bimodules are nothing more than left Ae-modules.
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Let M be an A− A bimodule:

Definition 1.6 (Center) — The center ZA(M) is defined as:

ZA(M) := {m ∈M | am = ma for all a ∈ A} .

When M = A, this corresponds to the center Z(A) of an algebra:

Z(A) := ZA(A) = {a ∈ A | ba = ab for all b ∈ A} .

Recall the Leibniz (or product) rule for differentiation:

d

dx
(fg) =

d

dx
(f)g + f

d

dx
(g).

Definition 1.7 (Derivation) — We say that a C-linear δ : A→M is a derivation of A with values in M if

δ(ab) = δ(a)b+ aδ(b) for every a, b ∈ A.

The space of all such derivations is denoted by DerA(M). When M = A, we say these are derivations on A and write Der(A) := DerA(A).

Example 1.8 (Derivation) — d
dx

is a derivation on C[x].

Exercise 1.1. Show that Der(C[x]) = C[x] d
dx

.
Hint: Show that any δ ∈ Der(C[x]) is of the form δ(x) d

dx
.
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2 Hochschild Cohomology

Definition 2.1 (Hochschild Complex) — We define the co-chain complex C•(A;M) as:

Ck(A;M) := HomC(A⊗k,M) =

{
C-multi-linear maps

An →M.

}
with differentials dk : Ck(A;M)→ Ck+1(A;M) given on ξ : An →M by:

dkξ(a0, . . . , ak) := a0 · ξ(a1, . . . , ak)

+
k−1∑
i=0

(−1)i+1ξ(. . . , aiai+1, . . .)

+ (−1)k+1ξ(a0, . . . , ak−1) · ak

Definition 2.2 (Hochschild Cohomology) — The kth Hochschild Cohomology group of A valued in M is given by:

HHk(A;M) := Hk(C•(A;M)) =
Ker(dk)

Im(dk−1)
.

When M = A as a bimodule over itself, we write HHk(A) := HHk(A;A).
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Facts 2.3 (Hochschild Cohomology) —

• HH0(A;M) = ZA(M) as in Definition 1.6.

Proof of Fact. Notice HH0(A;M) = ker(d0) = {ξ : C→M | d0ξ = 0} where

d0ξ(a0) = a0ξ(1)− ξ(1)a0.

Identifying ξ with ξ(1) ∈M , the statement is then clear. �

• Ker(d1) = Z1(C•(A;M)) = DerA(M) as in Definition 1.7.

Proof of Fact. For ξ : A→M , notice
d1ξ(a0, a1) = a0ξ(a1)− ξ(a0a1) + ξ(a0)a1. �

Example 2.4 (Hochschild Cohomology) —

• HH0(C[~]) = Z(C[~]) = C[~].

• HH1(C[~]) = ker(d1) = Der(C[~]) = C[~] d
d~ by Exercise 1.1.

• HHk(C[~]) = 0 for k ≥ 2.
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3 Deformations of Algebras

Let A be a C-algebra, consider the C-vector space A[[~]] = A⊗C C[[~]].

A[[~]]

A

ev0

• The aim of deformation theory is to equip A[[~]] with a multiplication compatible with the multiplication on A, enhancing A[[~]]
into a C[[~]]-algebra.

Definition 3.1 (Deformation of an Algebra) — By a deformation of A, we mean an associative C[[~]]-bilinear ∗ : A[[~]]2 → A[[~]] such
that the following diagrams commutes

A[[~]]× A[[~]] A[[~]]

A× A A

∗

ev0
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Definition 3.2 (Deformation of an Algebra) — By a deformation of A, we mean an associative C[[~]]-bilinear ∗ : A[[~]]2 → A[[~]] such
that the following diagrams commutes

A[[~]]× A[[~]] A[[~]]

A× A A

∗

ev0

• Observe that such a multiplication would be uniquely determined by its action on A.

• This action can be decomposed uniquely into a family of C-bilinear maps {µn : A× A→ A}n∈N such that

a ∗ b =
∑
n≥0

~nµn(a, b).

• Notice µ0(a, b) = ab.

• The associativity of ∗ can then be expressed in terms of the maps {µn}n∈N:∑
k+`=n

µk(µ`(a, b), c) =
∑
i+j=n

µi(a, µj(b, c)) for a, b, c ∈ A and n ∈ N. (3.1)
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Example 3.3 (Deformations of Algebras) —

• For any algebra A, the trivial deformation is given by µk = 0 for k ≥ 1. Notice that a ∗ b = ab for every a, b ∈ A.

• For A = C[x, y], the deformation ∗ on A[~] (or A[[~]]) determined by

xn ∗ xm = xn+m, yn ∗ ym = yn+m xn ∗ ym = xnym y ∗ x = xy + ~

Notice that (A, ∗) = C〈x, y, ~〉/(yx− xy − ~). When we set ~ = 1, this is known as the Weyl algebra and usually y is denoted
by d

dx
or ∂x.

• For A = C[x, y]/(y2), the deformations ∗1, . . . , ∗5 on A[~] determined by xn ∗i xm = xn+m, xn ∗i y = y ∗i xn = xny and

y ∗1 y = ~2,
y ∗2 y = x~,
y ∗3 y = x2~2,
y ∗4 y = x3~,
y ∗5 y = (x2 + x3)~.

Notice that:

(A[~], ∗1) = C〈x, y, ~〉/(y2 − ~2)
(A[~], ∗2) = C〈x, y, ~〉/(y2 − x~)

(A[~], ∗3) = C〈x, y, ~〉/(y2 − x2~2)
(A[~], ∗4) = C〈x, y, ~〉/(y2 − x3~)

(A[~], ∗5) = C〈x, y, ~〉/(y2 − x2~− x3t)
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Example 3.4 —

A = C[x, y]/(y2) (A[~], ∗1) = C〈x, y, ~〉/(y2 − ~2) (A[~], ∗2) = C〈x, y, ~〉/(y2 − x~)

(A[~], ∗3) = C〈x, y, ~〉/(y2 − x2~2) (A[~], ∗4) = C〈x, y, ~〉/(y2 − x3~) (A[~], ∗5) = C〈x, y, ~〉/(y2 − x2~− x3~)

• Recall that A = C[x, y]/(y2) can be visualized as a “double line” on the x-axis.

• Then, the deformations of A in Example 3.3 may be visualized for some fixed value of ~ as follows:

A = x

y

(A[~], ∗1) = x

y

(A[~], ∗2) = x

y

(A[~], ∗3) = x

y

(A[~], ∗4) = x

y

(A[~], ∗5) = x

y

11



• We may also compare deformations of a particular algebra, the organic notion being an C[[~]]-algebra homomorphism ϕ : (A[[~]], ∗)→
(A[[~]], ∗′) such that:

(A[[~]], ∗) (A[[~]], ∗′)

A A

ϕ

ev0

Definition 3.5 (Equivalence of Deformations) — We say ∗ and ∗′ are equivalent if there exists a bijective C[[~]]-linear ϕ : A[[~]]→ A[[~]]
such that

• ϕ(a) = a (mod ~) for all a ∈ A,

• ϕ(a ∗ b) = ϕ(a) ∗′ ϕ(b) for all a, b ∈ A.
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Definition 3.6 (Equivalence of Deformations) — We say ∗ and ∗′ are equivalent if there exists a bijective C[[~]]-linear ϕ : A[[~]]→ A[[~]]
such that

• ϕ(a) = a (mod ~) for all a ∈ A,

• ϕ(a ∗ b) = ϕ(a) ∗′ ϕ(b) for all a, b ∈ A.

• Such a map is uniquely determined by its action on A.

• This action can be decomposed uniquely into a family of C-linear maps {ϕn : A→ A}n∈N such that

ϕ(a) =
∑
n≥0

~nϕn(a).

• Notice ϕ0 = idA.

• The fact that ϕ preserves the deformations of A can then be expressed in terms of the maps {ϕn}n∈N, {µn}n∈N and {µ′n}n∈N as
follows: ∑

k+`=n

ϕk(µ`(a, b)) =
∑

i+j+k=n

µ′i(ϕj(a), ϕk(b)) for a, b ∈ A and n ∈ N. (3.2)

Definition 3.7 (Rigidity) — We say that A is rigid if every deformation of A is equivalent to the trivial deformation.
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4 Some Results

Proposition 4.1. If HH1(A) = 0, then any auto-equivalence of the trivial deformation of A is inner.

That is, if I : A[[~]]→ A[[~]] is a C[[~]]-linear algebra isomorphism such that I =
∑

~nIn on A with {Ik : A→ A}k≥1 and I0 = idA,
then there exists some invertible ã ∈ A[[~]] such that I(x) = ãxã−1.

Proof. Let N ≥ 1 be the smallest index such that IN 6= 0.

• Since I(ab) = I(a)I(b) =
∑

n

∑
k+`=n ~nIk(a)I`(b), comparing the coefficients of ~N yields:

IN(ab) =
∑

k+`=N

Ik(a)I`(b) = aIN(b) + IN(a)b.

• Thus IN is a derivation, i.e. d1IN = 0 as we saw in Facts 2.3.

• Since HH1(A) = 0, i.e. ker(d1) = im(d0), there exists some ξN ∈ C1(A;A) ∼= A 3 ξN(1) such that d0ξN = IN .

• In particular, IN(x) = xξN(1)− ξN(1)x.

• Note that 1− ~NξN(1) is invertible with (
1− ~NξN(1)

)−1
=
∑
k≥0

~NkξN(1)k.

• So define:

Ĩ(x) =
(
1− ~NξN(1)

)−1
I(x)

(
1− ~NξN(1)

)
=
(
1 + ~NξN(1) +O(~2N)

)(
x+ ~NIN(x) +O(~N+1)

)(
1− ~NξN(1)

)
= x+ ~N

(
IN(x)− xξN(1) + ξN(1)x

)
+O(~N+1)

= x+O(~N+1).

The result then follows by induction on N and noting
(∏

N 1− ~NξN(1)
)−1

I(x)
(∏

N 1− ~NξN(1)
)

= x.
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Proposition 4.2. If HH2(A) = 0, then A is rigid.

Proof. Let ∗ be a deformation of A. We will proceed by constructing a family of deformations ∗1, ∗2, ∗3, . . . equivalent to ∗ such that
a ∗k b = ab+O(~k), i.e. for {µ(k)

n : A2 → A}n∈N corresponding to ∗k, we have µ
(k)
i = 0 whenever 1 < i < k.

• Notice that ∗1 := ∗ already satisfies this property.

• Now suppose we have constructed ∗N , where ∗N is equivalent to ∗ and

a ∗N b = ab+O(~N) = ab+ ~Nµ(N)
N (a, b) +O(~N+1).

• Then the associativity equation for n = N yields

µ
(N)
N (a, b)c+ µ

(N)
N (ab, c) =

∑
k+`=N

µ
(N)
k (µ

(N)
` (a, b), c)

=
(3.1)

∑
i+j=N

µ
(N)
i (a, µ

(N)
j (b, c)) = aµ

(N)
N (b, c) + µ

(N)
N (a, bc).

• So d2µ
(N)
N (a, b, c) = aµ

(N)
N (b, c)− µ(N)

N (ab, c) + µ
(N)
N (a, bc)− µ(N)

N (a, b)c = 0.

• Since HH2(A) = 0, i.e. ker d2 = im d1, there exists some fN ∈ C1(A;A) such that µ
(N)
N = d1fN .

• In particular, fN : A→ A is a C-linear map such that

µ
(N)
N (a, b) = afN(b)− fN(ab) + fN(a)b. (4.1)
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Now consider the C[[~]]-linear map ϕN : A[[~]]→ A[[~]] determined by ϕN(a) := a+ ~NfN(a) for every a ∈ A.

Claim 4.2.1 — ϕN is bijective.

Proof of Claim. We’ll skip this, but one can find the proof in the notes. �

• We can then define ∗N+1 by transporting ∗N via ϕN , i.e.

a ∗N+1 b := ϕN(ϕ−1N (a) ∗N ϕ−1N (b)).

• It is clear by construction that ∗N+1 is a deformation equivalent to ∗N , and hence to ∗.
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Claim 4.2.2 — a ∗N+1 b = ab+O(~N+1).

Proof of Claim. We will compare two ways of computing a ∗N+1 b, namely

• by using the definition of ∗N+1 and the linearity of ϕN :

ϕN(a) ∗N+1 ϕN(b) = ϕN(a ∗N b) = ϕN
(
ab+ ~Nµ(N)

N (a, b) +O(~n+1)
)

= ab+ ~N
(
fN(ab) + µ

(N)
N (a, b)

)
+O(~N+1);

• and by distributing over ∗N+1,

ϕN(a) ∗N+1 ϕN(b) =
(
a+ ~NfN(a)

)
∗N+1

(
b+ ~NfN(b)

)
=
(
a ∗N+1 b

)
+ ~N

(
fN(a) ∗N+1 b

)
+ ~N

(
a ∗N+1 fN(b)

)
+ ~2N

(
fN(a) ∗N+1 fN(b)

)
= ab+

(
N−1∑
k=1

~kµ(N+1)
k (a, b)

)
+ ~N

(
µ
(N+1)
N (a, b) + fN(a)b+ afN(b)

)
+O(~N+1).

Comparing each coefficient of ~k for 1 ≤ k ≤ N , we find that µ
(N)
k (a, b) = 0 for 1 ≤ k < N − 1 and

fN(ab) + µ
(N)
N (a, b) = µ

(N+1)
N (a, b) + fN(a)b+ afN(b)

By Equation 4.1, we also obtain µ
(N+1)
N (a, b) = 0. �
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• We conclude that ∗ is equivalent to the trivial deformation via the map ϕ (which is to be thought of as “ · · · ◦ ϕ2 ◦ ϕ1”) given on
a ∈ A by:

ϕ(a) :=
∞∑
k=1

~k
∑

i`> ···>i1
i` + ···+ i1 = k

fi` ◦ · · · ◦ fi1(a).

Corollary 4.3 — Every deformation of C[x] is equivalent to the trivial one.
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