

Higher Unitary Quantum Symmetries

Giovanni Ernesto Ferrer Suárez¹

¹Department of Mathematics, The Ohio State University

Host Researcher: Dr. Yasuyuki Kawahigashi² ²Department of Mathematical Sciences, The University of Tokyo

Classical Information

Quantum Information

Classical Bits

- Classical computers store information in *bits*.
- The state ψ of a bit is binary: either 0 (up) or 1 (down).
- The state space of a single bit is a set: $\{0, 1\}$

Quantum Bits

- Quantum computers store information in *qubits*.
- The state $|\psi\rangle$ of a qubit is in a superposition of $|0\rangle$ and $|1\rangle$.
- The state space of a single qubit is a Hilbert space: $\mathbb{C}|0\rangle \oplus \mathbb{C}|1\rangle$

Classical Symmetries

Symmetry Groups

Quantum Symmetries

Unitary Algebras

- A symmetry of an object is a "structure-preserving" move.
- These form mathematical structures known as *groups*.
- Groups were studied by mathematicians since the 19th century. Significant progress was made throughout the 20th century. These are now standard coursework in the 21st century.
- By superposition, quantum symmetries act *probabilistically*.
- Quantum symmetries assemble into richer structures, such as *unitary algebras, quantum groups, and tensor categories.*
- Such structures were first introduced in the 20th century. Progress on their study continues in the 21st century.

Research Programme

Applications

Select Recent Work

Unitary quantum symmetries textbook (F, Kawagoe, Penneys)
Theory of 3-Hilbert spaces (Chen, F, Hungar, Penneys, Sanford)
Foundations for 3-unitary algebras (F)
Groundwork for higher unitarity (F, et. al.)

Ethos

Higher Hilbert spaces naturally describe topological order.
 (N+1)-Hilbert spaces correspond to (N+1)D phases of matter
 Studying higher unitary quantum symmetries yields results about topologically ordered phases of matter.

For Acknowledgments, References, Contact information Scan this QR code!