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Abstract

The first goal of this worksheet is to generalize Grothendieck-Verdier categories in order to account
for infinite dimensional spaces. We then study Hermitian objects internal to anti-involutive monoidal
categories with such generalized duality theory. Our main goal is then to describe the internal Hilbert
objects, for which we aim to show a corresponding the Riesz representation theorem.

1 Prerequisites on monoidal categories

Exercise 1.1. Write down a definition of monoidal category (C,⊗, 1).

Note: There are many ways to “package” such a definition, but make sure to provide enough detail so that it
is palatable to you!

Exercise 1.2. Describe the graphical calculus for a monoidal category (C,⊗, 1).

Note: Organize this in the way you find most natural!

2 Generalized duality in monoidal categories

2.1 Preliminary definitions

Definition 2.1. For objects W,X ∈ C in a monoidal category C, an exponential WX or the power of W for
X is an object representing the functor C(−⊗X → W ), i.e.

C(A⊗X → W ) ∼= C(A → WX) naturally for all A ∈ C.

If X admits a power of W , we say that X powers W . Moreover, if C admits all powers of W , we say that W
is powered (by C) or C powers W .

In particular, for W = 1, we will denote the power of unity for X by X∗ := 1X .

Exercise 2.2. On the other hand, verify that W 1 always exists for every W ∈ C.
Hint: Here, your intuition about numbers will be correct.

Remark 2.3. The notation WX arises from the case when C = Set, where

WX := {f : X → W}

has cardinality |WX | = |W ||X|. Alternatively, some people use the term internal hom Hom(X,W ) for the
exponential WX . Through this perspective, C powers W precisely when the internal Yoneda construction
Hom(−,W ) assembles into a contravariant functor Cop → C on all of C.
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Exercise 2.4. Fix an object W ∈ C, which we will represent by

W

For X ∈ C, show that the data of a power of W for X is equivalent to a pair(
WX ∈ C, evWX ∈ C(WX ⊗X → W )

)
where we represent WX and evWX diagramatically by:

WX X

W

such that the right Frobenius reciprocity maps Aλ
W
X for A ∈ C are bijective, where:

Aλ
W
X :=

W

XA

WX
: C(A → WX) → C(A⊗X → W )

Hint: First obtain the map evWX from the definition of a power WX . Then verify that Aλ
W
X is indeed bijective.

Exercise 2.5. Adapt the previous diagrams to the case when W = 1 and WX = X∗.

Exercise 2.6. Show that the power WX of W for X is unique up to unique isomorphism (whenever it exists).

That is, if WX and W̃X are powers of W for X, there exists a unique isomorphism ζ : WX → W̃X with

W

XWX

=

W

ζ

XWX

W̃X

Definition 2.7. A monoidal category C is called closed if every W ∈ C is powered.

Definition 2.8. Similarly, fix W ∈ C and consider some X ∈ C which admits a power of W . The left
Frobenius reciprocity maps WλX

A are given by

WλX
A :=

W

AWX

X : C(A → X) → C(X∗ ⊗A → 1)

We then say:
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• WX is faithful or separating if WλX
A is injective for every A ∈ C, and

• WX is full if WλX
A is surjective for every A ∈ C.

• A logarithm logW (X) of W for X is an object X∗ with W logW (X) ∼= X. In the case when W = 1, we
denote the logarithm of unity log1(X) for X by X∗.

2.2 Powers of unity vs. dualizability

In this section, we contrast this new notion of powers of unity against the well-studied notion of duals. In
particular, this discussion relates to the case when W = 1.

Definition 2.9. A dual for an object X ∈ C consists of a tuple

(X∗, evX ∈ C(X∗ ⊗X → 1), coevX ∈ C(1 → X ⊗X∗))

where we represent X∗, evX , and coevX diagramatically by:

evX =

X∗ X

coevX =
X X∗

such that the zig-zag relations hold:

X

X

=
X∗

X

X

and

X∗

X∗

=

X∗

X

X∗

Exercise 2.10. Show that coev existing is actually a property of the pair (X∗, evX).

Hint: Suppose there exist coev, coev′ ∈ C(1 → X ⊗X∗). Show that coev = coev′ by considering the following
morphism:

X

XX∗

X∗

evX

coev′
X

coevX

Exercise 2.11. Prove that the following are equivalent for a pair (X∗, evX).

• There exists coev ∈ C(1 → X ⊗X∗) satisfying the zigzag relations;

• the left and right Frobenius reciprocity maps B
AλX for A,B ∈ C are bijective, where

[[Todo: Include diagram]]

• (X∗, evX) is a power of unity such that the [[Check: left or right]] Frobenius reciprocity maps are
bijective

From this we conclude that being a dual is a property of a power of unity (X∗, evX), i.e. dualizability is a
stricter notion while powers of unity are more general.
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2.3 Powers and morphisms

In a previous section, we defined what it means for an object W in a monoidal category C to be powered. In
this section, we will investigate what happens at the level of morphisms.

Exercise 2.12. When X,Y ∈ C power W and f ∈ C(X → Y ), induce a map W f ∈ C(WY → WX)
determined by:

W

XWY

Y

f

=

W

XWY

WX

W f

Verify that the map f 7→ W f is injective if and only if WY is faithful. Similarly, verify f 7→ W f is surjective
if and only if WY is full.

Definition 2.13. When W is powered, W • assembles into a functor, and we may interpret the previous
exercise as follows.

• W • is faithful when every power of W is faithful, and say C faithfully powers W ;

• W • full when every power of unity W is full, and say C fully powers W ;

• W • is essentially surjective when C admits logarithms of W .

In the case when W = 1, we denote this functor by (−)∗.

Definition 2.14. A Grothendieck-Verdier category (C,W ) is a monoidal category with a choice of powered
W ∈ C such that W • is an equivalence. In the special case when W = 1, we say that (C, 1) or C is an
r-category.1

Exercise 2.15. Show that a functor F : C → D is an equivalence2 if and only if F is faithful, full, and
essentially surjective.

Deduce that (C,W ) is a GV-category if and only if C fully faithfully powers W and admits logarithms for W .

Hint: The first claim is a classic result from category theory, where one must use the Axiom of Choice to
build a weak inverse G : D → C.

Exercise 2.16. Let C = Vec, the category of all (not necessarily finite dimensional) vector spaces.

(a) Show that (−)∗ is faithful.

(b) On the other hand, show that (−)∗ is not full. More specifically, when is V ∗ full for V ∈ Vec?

(c) When does V∗ exist for V ∈ Vec?

(d) Deduce that Vecf.d., the category of finite dimensional vector spaces, is an r-category.

Hint: Recall that a vector space V is uniquely determined by its cardinality dimV . What is the cardinality3

of V ∗ when dimV < ∞? What goes wrong when V is infinite dimensional?

1Here the r stands for rigid, which is the usual term for a category with duality.
2Recall that F : C → D is said to be an equivalence if there exists G : D → C with G ◦ F ∼= idC and F ◦G ∼= idD.
3This problem might require you to read up on infinite cardinals a bit!
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Exercise 2.17. Let C = TVS, the category of topological vector spaces4. Recall that for any vector space V ,
one may equip V with the trivial topology to turn it into a topological vector space. Show that (−)∗ is not
faithful.

Hint: Verify that V ∗ = 0 for every V ∈ Vec.

We have now investigated how powers behave with morphisms in the top component W •. Let us now
divert our attention to the bottom component •X .

Exercise 2.18. Suppose X powers V,W ∈ C. For g ∈ C(V,W ), induce a map gX ∈ C(V X → WX)
determined by:

W

XV X

Y
g

V =

W

XV X

WX

gX

Verify that if X powers every W ∈ C, then •X assembles into a functor C → C.
Note: This is also known as the covariant internal Yoneda embedding Hom(−, X). Given our set-up, it is
more awkward to determine when this one is faithful, full, or essentially surjective. But, as we will in general
be focused on a specific choice of W , this will not be an issue!

2.4 Powers and tensors

In this section, we divert our focus to how powers interact with the tensor product ⊗ on C. This topic is a
bit more delicate, as we will see.

Exercise 2.19. Suppose C admits all powers.

(a) Construct a map (WV )X → WX⊗Y .

Hint: What relation is this map uniquely determined by?

(b) On the other hand, construct a map WX ⊗W ∗ ⊗WV → WV⊗X .

Hint: What relation is this map uniquely determined by?

(c) Suppose we are given a choice of “covector” φ ∈ C(W → 1). Construct a “vector” φ∗ ∈ C(1 → W ∗) and
use it to build a map WX ⊗WV → WV⊗X .

Note: In general, a choice of covector on W is a bit awkward. One way to get around this is to consider the
canonical case when W = 1 and φ = id1.

Definition 2.20. If X,Y ∈ C admit powers of unity, Exercise 2.19 guarantees a canonical map µX,Y : Y ∗ ⊗
X∗ → (X ⊗ Y )∗ which is uniquely determined by:

X∗ XY ∗ Y

= µX,Y

X YX∗Y ∗

(XY )∗

4Recall that a topological vector space is a vector space V equipped with a topology on V such that the operations + and �
are continuous.
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This map is in general not an isomorphism. In fact, the failure of µ being an isomorphism measures
non-dualizability. We will make this precise in the following proposition.

Proposition 2.21. Suppose C admits powers of unity. Then

(a) If X is dualizable, then µX,Y is an isomorphism for every Y ∈ C.

(b) If µY,X is an isomorphism for every Y ∈ C, then X∗ is dualizable.

Exercise 2.22. In this Exercise, we give an outline for how to prove Proposition 2.21.

(a) [[Todo: Include hints]]

(b) [[Todo: Include hints]]

Remark 2.23. The data µ of these morphisms µX,Y for every X,Y ∈ C is what is known as a tensorator for
the functor (−)∗. In a later section, we will describe tensorators for the functor W • in the presence of a
braiding on C. Without such a braiding, we still have the following result for W = 1.

Exercise 2.24. [[Todo: Naturality, associativity, and unitality]]

Exercise 2.25 (Hard). [[Question: If X∗ and Y ∗ are faithful/full, is µX,Y mono/epic? When does this hold?
When do the converses hold?]]

Remark 2.26. [[Todo: More generally, tensorators for W • yield algebra structures on W , namely µ1,1 : W
1 ⊗

W 1 → W 1. For the converse, it seems that we need a braiding. Not sure how to make this work without it]]
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