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Abstract

The first goal of this worksheet is to generalize Grothendieck-Verdier categories in order to account
for infinite dimensional spaces. We then study Hermitian objects internal to anti-involutive monoidal
categories with such generalized duality theory. Our main goal is then to describe the internal Hilbert
objects, for which we aim to show a corresponding the Riesz representation theorem.

1 Prerequisites on monoidal categories

Exercise 1.1. Write down a definition of monoidal category (C,®,1).

Note: There are many ways to “package” such a definition, but make sure to provide enough detail so that it
1s palatable to you!

Exercise 1.2. Describe the graphical calculus for a monoidal category (C,®,1).

Note: Organize this in the way you find most natural!

2 Generalized duality in monoidal categories

2.1 Preliminary definitions

Definition 2.1. For objects W, X € C in a monoidal category C, an exponential WX or the power of W for
X is an object representing the functor C(— @ X — W), i.e.

C(A® X — W) = C(A — W) naturally for all A € C.

If X admits a power of W, we say that X powers W. Moreover, if C admits all powers of W, we say that W
is powered (by C) or C powers W.

In particular, for W = 1, we will denote the power of unity for X by X* := 1X.

Exercise 2.2. On the other hand, verify that W' always exists for every W € C.
Hint: Here, your intuition about numbers will be correct.

Remark 2.3. The notation WX arises from the case when C = Set, where
WX ={f: X > W}

has cardinality |IWX| = [W|IX|. Alternatively, some people use the term internal hom Hom(X, W) for the
exponential WX. Through this perspective, C powers W precisely when the internal Yoneda construction
Hom(—, W) assembles into a contravariant functor C>® — C on all of C.



Exercise 2.4. Fix an object W € C, which we will represent by

:

W
For X € C, show that the data of a power of W for X is equivalent to a pair
(WX ec,ev¥ eCW¥ 0 X = W))
where we represent W and ev diagramatically by:
w
wX X
such that the right Frobenius reciprocity maps 42A¥ for A € C are bijective, where:

w

DAY= W CASWX) S CAX 5 W)

A X

Hint: First obtain the map evy from the definition of a power WX . Then verify that AA\¥ is indeed bijective.
Exercise 2.5. Adapt the previous diagrams to the case when W =1 and WX = X*.

Exercise 2.6. Show that the power W of W for X is unique up to unique isomorphism (whenever it exists).
That is, if WX and WX are powers of W for X, there exists a unique isomorphism ¢: W¥ — WX with

W %
- WX
wX X wX X

Definition 2.7. A monoidal category C is called closed if every W € C is powered.

Definition 2.8. Similarly, fix W € C and consider some X € C which admits a power of W. The left
Frobenius reciprocity maps A% are given by

|44

WyX = X CA-X) s C(X @A)

wXx A
We then say:



o WX is faithful or separating if WAX is injective for every A € C, and
o WX is full if WA is surjective for every A € C.

e A logarithm logy, (X) of W for X is an object X, with W'sw(X) > X In the case when W = 1, we
denote the logarithm of unity log; (X) for X by X..

2.2 Powers of unity vs. dualizability

In this section, we contrast this new notion of powers of unity against the well-studied notion of duals. In
particular, this discussion relates to the case when W = 1.

Definition 2.9. A dual for an object X € C consists of a tuple
(X*,evx €eC(X*®@ X — 1),coevy € C(1 > X ® X™))

where we represent X*, evx, and coevy diagramatically by:

such that the zig-zag relations hold:
X X X* X*

= and =
X* X

X X X* X*
Exercise 2.10. Show that coev existing is actually a property of the pair (X* evy).

Hint: Suppose there exist coev,coev’ € C(1 = X ® X*). Show that coev = coev’ by considering the following
morphism:
X X*

Exercise 2.11. Prove that the following are equivalent for a pair (X* evx).

e There exists coev € C(1 — X ® X*) satisfying the zigzag relations;

e the left and right Frobenius reciprocity maps §Ax for A, B € C are bijective, where

[[Todo: Include diagraml]
e (X* evx) is a power of unity such that the [[Check: left or right]] Frobenius reciprocity maps are
bijective

From this we conclude that being a dual is a property of a power of unity (X*,evy), i.e. dualizability is a
stricter notion while powers of unity are more general.



2.3 Powers and morphisms

In a previous section, we defined what it means for an object W in a monoidal category C to be powered. In
this section, we will investigate what happens at the level of morphisms.

Exercise 2.12. When X,Y € C power W and f € C(X — Y), induce a map W/ ¢ c(WY — W¥X)
determined by:
w w
Y _ owX
WY X WY X

Verify that the map f — W/ is injective if and only if WY is faithful. Similarly, verify f — W/ is surjective
if and only if WY is full.

Definition 2.13. When W is powered, W* assembles into a functor, and we may interpret the previous
exercise as follows.

e IW* is faithful when every power of W is faithful, and say C faithfully powers W;
e WW* full when every power of unity W is full, and say C fully powers W;
e IV* is essentially surjective when C admits logarithms of W.

In the case when W = 1, we denote this functor by (—)*.

Definition 2.14. A Grothendieck-Verdier category (C,W) is a monoidal category with a choice of powered
W € C such that W* is an equivalence. In the special case when W = 1, we say that (C,1) or C is an
r-category.!

Exercise 2.15. Show that a functor F: C — D is an equivalence? if and only if F is faithful, full, and
essentially surjective.

Deduce that (C, W) is a GV-category if and only if C fully faithfully powers W and admits logarithms for W.

Hint: The first claim is a classic result from category theory, where one must use the Axziom of Choice to
build a weak inverse G: D — C.

Exercise 2.16. Let C = Vec, the category of all (not necessarily finite dimensional) vector spaces.
(a) Show that (—)* is faithful.

(b) On the other hand, show that (—)* is not full. More specifically, when is V* full for V' € Vec?
(¢) When does V, exist for V € Vec?

(d) Deduce that Vecy 4., the category of finite dimensional vector spaces, is an r-category.

Hint: Recall that a vector space V is uniquely determined by its cardinality dim' V. What is the cardinality’
of V* when dimV < co? What goes wrong when V' is infinite dimensional?

1Here the 7 stands for rigid, which is the usual term for a category with duality.
2Recall that F': C — D is said to be an equivalence if there exists G: D — C with G o F 2 id¢ and F o G 22 idp.
3This problem might require you to read up on infinite cardinals a bit!



Exercise 2.17. Let C = TVS, the category of topological vector spaces®. Recall that for any vector space V,
one may equip V with the trivial topology to turn it into a topological vector space. Show that (—)* is not
faithful.

Hint: Verify that V* =0 for every V € Vec.

We have now investigated how powers behave with morphisms in the top component W*. Let us now
divert our attention to the bottom component o~ .

Exercise 2.18. Suppose X powers V,W € C. For g € C(V,W), induce a map g% € C(VX — W¥X)
determined by:

w

vx X vx X
Verify that if X powers every W & C, then X assembles into a functor C — C.

Note: This is also known as the covariant internal Yoneda embedding Hom(—, X). Given our set-up, it is
more awkward to determine when this one is faithful, full, or essentially surjective. But, as we will in general
be focused on a specific choice of W, this will not be an issue!

2.4 Powers and tensors

In this section, we divert our focus to how powers interact with the tensor product ® on C. This topic is a
bit more delicate, as we will see.

Exercise 2.19. Suppose C admits all powers.
(a) Construct a map (WV)X — WX®Y,
Hint: What relation is this map uniquely determined by?
(b) On the other hand, construct a map W¥ @ W* @ WV — WVeX,

Hint: What relation is this map uniquely determined by?

(¢) Suppose we are given a choice of “covector” ¢ € C(W — 1). Construct a “vector” ¢* € C(1 — W*) and
use it to build a map WX @ WV — WVeX,

Note: In general, a choice of covector on W is a bit awkward. One way to get around this is to consider the
canonical case when W =1 and ¢ =id;.

Definition 2.20. If X,Y € C admit powers of unity, Exercise 2.19 guarantees a canonical map pxy: Y* ®
X* = (X ® Y)* which is uniquely determined by:

Yy X* X Y Y*X* X Y
4Recall that a topological vector space is a vector space V equipped with a topology on V such that the operations + and >
are continuous.




This map is in general not an isomorphism. In fact, the failure of p being an isomorphism measures
non-dualizability. We will make this precise in the following proposition.

Proposition 2.21. Suppose C admits powers of unity. Then

(a) If X is dualizable, then px,y is an isomorphism for everyY € C.

(b) If puy,x is an isomorphism for every Y € C, then X* is dualizable.

Exercise 2.22. In this Exercise, we give an outline for how to prove Proposition 2.21.
(a) [[Todo: Include hints]]

(b) [[Todo: Include hints]]

Remark 2.23. The data p of these morphisms pxy for every X,Y € C is what is known as a tensorator for
the functor (—)*. In a later section, we will describe tensorators for the functor W* in the presence of a
braiding on C. Without such a braiding, we still have the following result for W = 1.

Exercise 2.24. [[Todo: Naturality, associativity, and unitality]]

Exercise 2.25 (Hard). [[Question: If X* and Y* are faithful/full, is px y mono/epic? When does this hold?
When do the converses hold?]]

Remark 2.26. [[Todo: More generally, tensorators for W* yield algebra structures on W, namely pq,1: W' @
W' — W For the converse, it seems that we need a braiding. Not sure how to make this work without it]]
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