A duality formalism in the spirit of functional analysis: Worksheet

September 5, 2025

Abstract

The first goal of this worksheet is to generalize Grothendieck-Verdier categories in order to account for infinite dimensional spaces. We then study Hermitian objects internal to anti-involutive monoidal categories with such generalized duality theory. Our main goal is then to describe the internal Hilbert objects, for which we aim to show a corresponding the Riesz representation theorem.

1 Prerequisites on monoidal categories

Exercise 1.1. Write down a definition of monoidal category $(\mathcal{C}, \otimes, 1)$.

Note: There are many ways to "package" such a definition, but make sure to provide enough detail so that it is palatable to you!

Exercise 1.2. Describe the graphical calculus for a monoidal category $(\mathcal{C}, \otimes, 1)$.

Note: Organize this in the way you find most natural!

2 Generalized duality in monoidal categories

2.1 Preliminary definitions

Definition 2.1. For objects $W, X \in \mathcal{C}$ in a monoidal category \mathcal{C} , an exponential W^X or the power of W for X is an object representing the functor $\mathcal{C}(-\otimes X \to W)$, i.e.

$$\mathcal{C}(A \otimes X \to W) \cong \mathcal{C}(A \to W^X)$$
 naturally for all $A \in \mathcal{C}$.

If X admits a power of W, we say that X powers W. Moreover, if \mathcal{C} admits all powers of W, we say that W is powered (by \mathcal{C}) or \mathcal{C} powers W.

In particular, for W=1, we will denote the power of unity for X by $X^*:=1^X$.

Exercise 2.2. On the other hand, verify that W^1 always exists for every $W \in \mathcal{C}$.

Hint: Here, your intuition about numbers will be correct.

Remark 2.3. The notation W^X arises from the case when $\mathcal{C} = \mathsf{Set}$, where

$$W^X \coloneqq \{f: X \to W\}$$

has cardinality $|W^X| = |W|^{|X|}$. Alternatively, some people use the term internal hom $\underline{Hom}(X,W)$ for the exponential W^X . Through this perspective, $\mathcal C$ powers W precisely when the internal Yoneda construction $\underline{Hom}(-,W)$ assembles into a contravariant functor $\mathcal C^{\mathrm{op}} \to \mathcal C$ on all of $\mathcal C$.

Exercise 2.4. Fix an object $W \in \mathcal{C}$, which we will represent by

For $X \in \mathcal{C}$, show that the data of a power of W for X is equivalent to a pair

$$(W^X \in \mathcal{C}, \operatorname{ev}_X^W \in \mathcal{C}(W^X \otimes X \to W))$$

where we represent W^X and ev_X^W diagramatically by:

such that the right Frobenius reciprocity maps ${}_A\lambda^W_X$ for $A\in\mathcal{C}$ are bijective, where:

$$A\lambda_X^W \coloneqq W^X \longrightarrow \mathcal{C}(A \otimes X \to W)$$

Hint: First obtain the map ev_X^W from the definition of a power W^X . Then verify that ${}_A\lambda_X^W$ is indeed bijective. **Exercise 2.5.** Adapt the previous diagrams to the case when W=1 and $W^X=X^*$.

Exercise 2.6. Show that the power W^X of W for X is unique up to unique isomorphism (whenever it exists). That is, if W^X and $\widetilde{W^X}$ are powers of W for X, there exists a unique isomorphism $\zeta \colon W^X \to \widetilde{W^X}$ with

$$\begin{array}{c}
W \\
\overline{W} \\
W^{X} \\
X
\end{array} = \begin{array}{c}
W^{X} \\
\overline{\zeta} \\
W^{X} \\
X
\end{array}$$

Definition 2.7. A monoidal category \mathcal{C} is called *closed* if every $W \in \mathcal{C}$ is powered.

Definition 2.8. Similarly, fix $W \in \mathcal{C}$ and consider some $X \in \mathcal{C}$ which admits a power of W. The left Frobenius reciprocity maps ${}^W \lambda_A^X$ are given by

$${}^{W}\lambda_{A}^{X} := igcap_{W^{X}}^{X} : \mathcal{C}(A o X) o \mathcal{C}(X^{*} \otimes A o 1)$$

We then say:

- W^X is faithful or separating if ${}^W\lambda^X_A$ is injective for every $A\in\mathcal{C}$, and
- W^X is full if ${}^W\lambda^X_A$ is surjective for every $A\in\mathcal{C}.$
- A logarithm $\log_W(X)$ of W for X is an object X_* with $W^{\log_W(X)} \cong X$. In the case when W = 1, we denote the logarithm of unity $\log_1(X)$ for X by X_* .

2.2 Powers of unity vs. dualizability

In this section, we contrast this new notion of powers of unity against the well-studied notion of duals. In particular, this discussion relates to the case when W = 1.

Definition 2.9. A dual for an object $X \in \mathcal{C}$ consists of a tuple

$$(X^*, \operatorname{ev}_X \in \mathcal{C}(X^* \otimes X \to 1), \operatorname{coev}_X \in \mathcal{C}(1 \to X \otimes X^*))$$

where we represent X^* , ev_X , and $coev_X$ diagramatically by:

$$\operatorname{ev}_X = \left(\begin{array}{c} X & X^* \\ X^* & X \end{array} \right)$$

such that the zig-zag relations hold:

Exercise 2.10. Show that coev existing is actually a property of the pair (X^*, ev_X) .

Hint: Suppose there exist coev, $coev' \in C(1 \to X \otimes X^*)$. Show that coev = coev' by considering the following morphism:

Exercise 2.11. Prove that the following are equivalent for a pair (X^*, ev_X) .

- There exists coev $\in \mathcal{C}(1 \to X \otimes X^*)$ satisfying the zigzag relations;
- the left and right Frobenius reciprocity maps ${}^B_A \lambda_X$ for $A, B \in \mathcal{C}$ are bijective, where

[[Todo: Include diagram]]

• (X^*, ev_X) is a power of unity such that the [[Check: left or right]] Frobenius reciprocity maps are bijective

From this we conclude that being a dual is a property of a power of unity (X^*, ev_X) , i.e. dualizability is a stricter notion while powers of unity are more general.

2.3 Powers and morphisms

In a previous section, we defined what it means for an object W in a monoidal category \mathcal{C} to be powered. In this section, we will investigate what happens at the level of morphisms.

Exercise 2.12. When $X,Y \in \mathcal{C}$ power W and $f \in \mathcal{C}(X \to Y)$, induce a map $W^f \in \mathcal{C}(W^Y \to W^X)$ determined by:

$$\begin{array}{c}
W \\
Y \\
F \\
W^Y
\end{array} = \begin{array}{c}
W \\
W^T
\end{array}$$

Verify that the map $f \mapsto W^f$ is injective if and only if W^Y is faithful. Similarly, verify $f \mapsto W^f$ is surjective if and only if W^Y is full.

Definition 2.13. When W is powered, W^{\bullet} assembles into a functor, and we may interpret the previous exercise as follows.

- W^{\bullet} is faithful when every power of W is faithful, and say C faithfully powers W;
- W^{\bullet} full when every power of unity W is full, and say C fully powers W;
- W^{\bullet} is essentially surjective when \mathcal{C} admits logarithms of W.

In the case when W = 1, we denote this functor by $(-)^*$.

Definition 2.14. A Grothendieck-Verdier category (C, W) is a monoidal category with a choice of powered $W \in C$ such that W^{\bullet} is an equivalence. In the special case when W = 1, we say that (C, 1) or C is an r-category.

Exercise 2.15. Show that a functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence² if and only if F is faithful, full, and essentially surjective.

Deduce that (C, W) is a GV-category if and only if C fully faithfully powers W and admits logarithms for W. Hint: The first claim is a classic result from category theory, where one must use the Axiom of Choice to build a weak inverse $G: \mathcal{D} \to \mathcal{C}$.

Exercise 2.16. Let $\mathcal{C} = \text{Vec}$, the category of all (not necessarily finite dimensional) vector spaces.

- (a) Show that $(-)^*$ is faithful.
- (b) On the other hand, show that $(-)^*$ is not full. More specifically, when is V^* full for $V \in \text{Vec}$?
- (c) When does V_* exist for $V \in \text{Vec}$?
- (d) Deduce that $\mathsf{Vec}_{f.d.}$, the category of finite dimensional vector spaces, is an r-category.

Hint: Recall that a vector space V is uniquely determined by its cardinality dim V. What is the cardinality³ of V^* when dim $V < \infty$? What goes wrong when V is infinite dimensional?

¹Here the r stands for rigid, which is the usual term for a category with duality.

²Recall that $F: \mathcal{C} \to \mathcal{D}$ is said to be an *equivalence* if there exists $G: \mathcal{D} \to \mathcal{C}$ with $G \circ F \cong \mathrm{id}_{\mathcal{C}}$ and $F \circ G \cong \mathrm{id}_{\mathcal{D}}$.

³This problem might require you to read up on infinite cardinals a bit!

Exercise 2.17. Let $C = \mathsf{TVS}$, the category of topological vector spaces⁴. Recall that for any vector space V, one may equip V with the trivial topology to turn it into a topological vector space. Show that $(-)^*$ is not faithful.

Hint: Verify that $V^* = 0$ for every $V \in \mathsf{Vec}$.

We have now investigated how powers behave with morphisms in the top component W^{\bullet} . Let us now divert our attention to the bottom component \bullet^X .

Exercise 2.18. Suppose X powers $V, W \in \mathbb{C}$. For $g \in \mathcal{C}(V, W)$, induce a map $g^X \in \mathcal{C}(V^X \to W^X)$ determined by:

$$V = W^{X}$$

$$V^{X} = V^{X}$$

$$V^{X} = V^{X}$$

Verify that if X powers every $W \in \mathcal{C}$, then \bullet^X assembles into a functor $\mathcal{C} \to \mathcal{C}$.

Note: This is also known as the covariant internal Yoneda embedding $\underline{Hom}(-,X)$. Given our set-up, it is more awkward to determine when this one is faithful, full, or essentially surjective. But, as we will in general be focused on a specific choice of W, this will not be an issue!

2.4 Powers and tensors

In this section, we divert our focus to how powers interact with the tensor product \otimes on \mathcal{C} . This topic is a bit more delicate, as we will see.

Exercise 2.19. Suppose \mathcal{C} admits all powers.

(a) Construct a map $(W^V)^X \to W^{X \otimes Y}$.

Hint: What relation is this map uniquely determined by?

(b) On the other hand, construct a map $W^X \otimes W^* \otimes W^V \to W^{V \otimes X}$.

Hint: What relation is this map uniquely determined by?

(c) Suppose we are given a choice of "covector" $\varphi \in \mathcal{C}(W \to 1)$. Construct a "vector" $\varphi^* \in \mathcal{C}(1 \to W^*)$ and use it to build a map $W^X \otimes W^V \to W^{V \otimes X}$.

Note: In general, a choice of covector on W is a bit awkward. One way to get around this is to consider the canonical case when W = 1 and $\varphi = id_1$.

Definition 2.20. If $X, Y \in \mathcal{C}$ admit powers of unity, Exercise 2.19 guarantees a canonical map $\mu_{X,Y} : Y^* \otimes X^* \to (X \otimes Y)^*$ which is uniquely determined by:

⁴Recall that a topological vector space is a vector space V equipped with a topology on V such that the operations + and \triangleright are continuous.

This map is in general not an isomorphism. In fact, the failure of μ being an isomorphism measures non-dualizability. We will make this precise in the following proposition.

Proposition 2.21. Suppose C admits powers of unity. Then

- (a) If X is dualizable, then $\mu_{X,Y}$ is an isomorphism for every $Y \in \mathcal{C}$.
- (b) If $\mu_{Y,X}$ is an isomorphism for every $Y \in \mathcal{C}$, then X^* is dualizable.

Exercise 2.22. In this Exercise, we give an outline for how to prove Proposition 2.21.

- (a) [[Todo: Include hints]]
- (b) [[Todo: Include hints]]

Remark 2.23. The data μ of these morphisms $\mu_{X,Y}$ for every $X,Y \in \mathcal{C}$ is what is known as a tensorator for the functor $(-)^*$. In a later section, we will describe tensorators for the functor W^{\bullet} in the presence of a braiding on \mathcal{C} . Without such a braiding, we still have the following result for W = 1.

Exercise 2.24. [[Todo: Naturality, associativity, and unitality]]

Exercise 2.25 (Hard). [[Question: If X^* and Y^* are faithful/full, is $\mu_{X,Y}$ mono/epic? When does this hold? When do the converses hold?]]

Remark 2.26. [[Todo: More generally, tensorators for W^{\bullet} yield algebra structures on W, namely $\mu_{1,1} \colon W^1 \otimes W^1 \to W^1$. For the converse, it seems that we need a braiding. Not sure how to make this work without it]]