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Abstract

In this talk, we will construct the free W*-category generated by a C*-category. This leads us to
prove the Sherman-Takeda theorem along the way, which states that the double-dual of a C*-category
agrees with the bicommutant of its universal representation.
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1.1 C*-preliminaries

We begin by recalling the main objects of study.

Definition 1.1.1 (†-category) — Let A be a linear category, i.e. a category where each hom set
A(A→ B) is equipped with a vector space structure such that composition is bilinear. A dagger on A
consists of a conjugate linear map † : A(A → B) → A(B → A) for each pair of objects A,B ∈ A such
that:

• x†† = x for every morphism x, and

• (y ◦ x)† = (A
x−→ B

y−→ C)† = A
x†

←− B y†

←− C = x† ◦ y† for each pair of composable morphisms.
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A †-category is then a linear category together with a choice of dagger. For simplicity, we will further
assume all †-categories admit orthogonal direct sums.

Remark 1.1.2. Note that being a †-category is not a property of a category, but extra structure.

Definition 1.1.3 (C*-category) — We say that a †-category is C* if the spectral norm, given on a
morphism x : A→ B by

‖x‖ := sup
{
|λ|

∣∣ (x† ◦ x)− λidA is not invertible
}
,

is complete on each hom-space A(A→ B).

Remark 1.1.4. Note that being C* is a property of a †-category, and not extra structure.

Fact — The spectral norm on a †-category satisfies the so-called C*-identity

‖x‖2 = ‖x† ◦ x‖.

Furthermore, any complete norm which satisfies the C*-identity must agree with the spectral norm.

Example 1.1.5 (C*-category) — The category Hilb of Hilbert spaces together with bounded linear
maps (a.k.a. operators), where † is given by taking the adjoint of an operator. Furthermore, every
norm-closed subcategory of Hilb forms a C*-category.

We now provide the structure preserving maps between †-categories and in particular C*-categories.

Definition 1.1.6 (†-functor) — We say that a functor F : A → B between †-categories A and B is a
†-functor if it is linear on each hom-space A(A→ B) and †-preserving, i.e.

(†) F (x)† = F (x†) for every morphism x ∈ A(A→ B).

Exercise 1.1.7. Let F : A → B be a †-functor between C*-categories. Show that F is contractive, i.e. for
every morphism x ∈ A(A→ B) we have ‖Fx‖ ≤ ‖x‖.
Exercise 1.1.8. Prove that C*-categories together with †-functors form a category, which we denote by C∗Cat.
Philosophy 1.1.9. As a digression, first recall how groups are symmetries in a sense. Indeed, Cayley’s
theorem tells us that every group can be realized as a group of symmetries (or permutations) on a set. In
the very same sense, C*-categories are categories of operators on Hilbert spaces. This is made precise by the
Gelfand-Naimark theorem and, in particular, the Gelfand-Naimark-Segal (GNS) construction.

Theorem (Gelfand-Naimark-Segal) — Every small C*-category A admits a monica †-functor

Υ: A → Hilb,

called the universalb representation of A. This construction satisfies the following property:

• For objects A,B ∈ A and a functional ϕ ∈ A(A→ B)∗, there exist ξ ∈ Υ(A) and η ∈ Υ(B) such
that

ϕ(x) = 〈Υ(x)ξ, η〉, for all x ∈ A(A→ B).

In this case we will write ϕ = 〈Υ · ξ, η〉.
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aBy monic, we mean faithful and injective on objects
bCapital upsilon stands for Υniversal.

Definition 1.1.10 — We define the C*-category GNS(A) to be the image of Υ in Hilb, for which
Υ: A → GNS(A) is an isomorphism of C*-categories.

Exercise 1.1.11. Note that each x ∈ Hilb(H → K) induces a bounded sesquilinear form Bx : H × K → C
given by

Bx(ξ, η) := 〈xξ, η〉.

Show that the map x 7→ Bx is an isometric bijective correspondence between operators in Hilb(H → K) and
bounded sesquilinear forms H×K → C.

Hint: First show the map x 7→ Bx is isometric, then show surjectivity using the Riesz representation theorem.

1.2 W*-preliminaries

Definition 1.2.1 (W*-category) — We say a C*-category A is W* if each hom-space A(A→ B) admits
a predual A(A→ B)∗, i.e.

A(A→ B) ∼= A(A→ B)∗∗.

Remark 1.2.2. Note that being W* is a property of a †-category, and not extra structure.

Example 1.2.3 (W*-category) — One can show Hilb is a W*-category. Furthermore, any †-subcategory
of Hilb which is WOT-closeda forms a W*-category.

aWe say that xλ → x WOT in Hilb(H → K) if ⟨xλξ, η⟩ → ⟨xξ, η⟩ for every ξ ∈ H and η ∈ K.

Fact — Addition and scalar action are weak*-continuous in a W*-category, whereas composition is
only separately weak*-continuous.

Definition 1.2.4 (Normal †-functor) — We say a †-functor F : A → B between W*-categories is normal
if it is weak*-continuous on each hom-space.

Exercise 1.2.5. Prove that we may identify A(A → B)∗ with the functionals on A(A → B) which are
weak*-continuous. Deduce that F : A → B is normal if and only if precomposition by F restricts to a map

F ∗ : B(FA→ FB)∗ → A(A→ B)∗ for every A,B ∈ A.

Fact — Fully faithful †-functors between W*-categories are automatically normal.

Exercise 1.2.6. Show that W*-categories together with normal †-functors form a category, which we denote
by W∗Cat.
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Definition 1.2.7 (Bicommutant) — Given any C*-subcategory A of Hilb, we may take its WOT-closure
in Hilb, a W*-category which we will call the bicommutant A′′ of A.

Remark 1.2.8. The previous definition is not how one would normally define the bicommutant. For the
purposes of this talk, we use the von Neumann bicommutant theorem to define the bicommutant. We do
however encourage the reader to look up the real definitions and the von Neumann bicommutant theorem,
as it is a great story.

We now introduce an incredibly useful result in operator algebras which, fortunately, also holds for
operator categories.

Theorem (Kaplansky Density Theorem) — For a subset A ⊂ Hilb(H → K), if x : H → K is in the
SOT-closurea of A, then there exist (xλ) ⊂ A with ‖xλ‖ ≤ ‖x‖ such that xλ → x SOT.

aWe say that xλ → x SOT in Hilb(H → K) if xλξ → xξ in K for every ξ ∈ H.

1.3 The double dual construction

For a C*-category A, we wish to construct the enveloping W*-category W∗(A) together with a monic †-
functor A ↪→W∗(A), which satisfies the following universal property:

• For every †-functor F : A → B into a W*-category B, there exists a unique normal extension making
the following diagram commute:

A B

W∗(A)

F

∃!F̃

Idea 1.3.1. We wish to find the “smallest” C*-category containing A which admits a predual. Recall that,
for a Banach space A, there exists an organic inclusion ev : A ↪→ A∗∗ given by

eva(ϕ) := ϕ(a) for a ∈ A and ϕ ∈ A∗.

Clearly A∗∗ has a predual, namely A∗, and the Goldstine theorem tells us that A∗∗ is “small” in a sense:

Theorem (Goldstine) — For a Banach space A, ev(A) is weak*-dense in A∗∗.

The idea is then to try to upgrade this double dual construction for C*-categories.

When A is a C*-category, consider the vector space enriched graph1 A∗∗ with vertices ObA and edges
A∗∗(A → B) := A(A → B)∗∗. We define two so-called Arens compositions on A∗∗, which equip A∗∗ with
the structure of a (linear) category.

Definition 1.3.2 (Arens composition) — For Φ ∈ A∗∗(A → B) and Ψ ∈ A∗∗(B → C), we define the
left and right Arens compositions ◦ℓ and ◦r as follows:

(`) For ϕ ∈ A∗(A→ C), we set (Ψ ◦ Φ)(ϕ) := Ψ(Φ . ϕ) where Φ . ϕ ∈ A(B → C)∗ is given by:

(.) For b ∈ A(B → C), we set (Φ . ϕ)(b) := Φ(ϕ / b) where ϕ / b ∈ A(A→ B)∗ is given by:
(/) For a ∈ A(A→ B), we set (ϕ / b)(a) := ϕ(b ◦ a).

1By this, we simply mean a (ObA× ObA)-indexed collection of vector spaces.
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More succinctly, Ψ ◦ℓ Φ is given by the following formula:

Ψ ◦ℓ Φ = ϕ 7→ Ψ
(
Φ . ϕ

)
,

= ϕ 7→ Ψ
(
b 7→ Φ

(
ϕ / b

))
,

= ϕ 7→ Ψ
(
b 7→ Φ

(
a 7→ ϕ(b ◦ a)

))
.

(r) For ϕ ∈ A∗(A→ C), we set (Ψ ◦r Φ)(ϕ) := Φ(ϕ /Ψ) where ϕ /Ψ ∈ A(A→ B)∗ is given by:

(/) For a ∈ A(A→ B), we set (ϕ /Ψ)(a) := Ψ(a . ϕ) where a . ϕ ∈ A(B → C)∗ is given by:
(.) For b ∈ A(B → C), we set (a . ϕ)(b) := ϕ(b ◦ a).

More succinctly, Ψ ◦r Φ is given by the following formula:

Ψ ◦r Φ = ϕ 7→ Φ
(
ϕ /Ψ

)
,

= ϕ 7→ Φ
(
a 7→ Ψ

(
a . ϕ

))
,

= ϕ 7→ Φ
(
a 7→ Ψ

(
b 7→ ϕ(b ◦ a)

))
.

Exercise 1.3.3. Prove that . and / induce actions and deduce that ◦ℓ and ◦r are bilinear.

Notice there exists an organic inclusion ev : A ↪→ A∗∗ which acts as the identity on objects and is given
on morphisms as follows:

• For a ∈ A(A→ B), we define ev(a) = eva ∈ A∗∗(A→ B) by

eva(ϕ) := ϕ(a) for ϕ ∈ A(A→ B)∗.

Exercise 1.3.4. Show that ev is linear on each hom-space.

Lemma 1.3.5 — ev : A ↪→ A∗∗ is a functor when we equip A∗∗ with either Arens composition.

Proof of lemma. We will show our claim for the left Arens composition. Indeed, for composable morphisms
x, y in A, observe

evy ◦ℓ evx = ϕ 7→ evy
(
b 7→ evx

(
a 7→ ϕ(b ◦ a)

))
= ϕ 7→ evy

(
b 7→ ϕ(b ◦ x)

)
= ϕ 7→ ϕ(y ◦ x)
= evy◦x .
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Hence, ev is composition preseving. For a morphism Φ ∈ A∗∗(A→ B), we have

evidB
◦ℓ Φ = ϕ 7→ evidB

(
b 7→ Φ

(
a 7→ ϕ(b ◦ a)

))
= ϕ 7→ Φ

(
a 7→ ϕ(idB ◦ a)

)
= ϕ 7→ Φ

(
a 7→ ϕ(a)

)
= ϕ 7→ Φ(ϕ)

= Φ,

Φ ◦ℓ evidA
= ϕ 7→ Φ

(
b 7→ evidA

(
a 7→ ϕ(b ◦ a)

))
= ϕ 7→ Φ

(
b 7→ ϕ(b ◦ idA)

)
= ϕ 7→ Φ

(
b 7→ ϕ(b)

)
= ϕ 7→ Φ(ϕ)

= Φ.

Therefore evidB
= idevB

= idB in A∗∗. ■

Exercise 1.3.6. Prove that ev : A ↪→ A∗∗ is a functor when we equip A∗∗ with the right Arens composition.

Just as the composition in A induces structure on A∗∗, the dagger in A induces the following map-
ping.

Definition 1.3.7 — We define a conjugate-linear contravariant map † : A∗∗(A → B) → A∗∗(B → A)
as follows:

(†) For Φ ∈ A∗∗(A→ B), we define Φ† ∈ A∗∗(B → A) by

Φ†(ϕ) := Φ(ϕ†) for ϕ ∈ A(B → A)∗,

where ϕ† ∈ A(A→ B)∗ is given by ϕ†(a) := ϕ(a†) for a ∈ A(A→ B).
More succinctly, Φ† is given by the following formula:

Φ† = ϕ 7→ Φ
(
a 7→ ϕ(a†)

)
.

Exercise 1.3.8. Show that † is conjugate-linear and Φ†† = Φ for every Φ ∈ A∗∗(A→ B).

Exercise 1.3.9. Prove that † is weak*-continuous on each hom-space.

We now relate the Arens compositions via the following identity.

Lemma 1.3.10 — For Φ ∈ A∗∗(A→ B) and Ψ ∈ A∗∗(B → C),

(Ψ ◦ℓ Φ)† = Φ† ◦r Ψ†.
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Proof of lemma. Observe

(Ψ ◦ℓ Φ)† = ϕ 7→ (Ψ ◦ℓ Φ)
(
ϕ†

)
= ϕ 7→ Ψ

(
b 7→ Φ

(
a 7→ ϕ†(b ◦ a)

))
= ϕ 7→ Ψ

(
b 7→ Φ

(
a 7→ ϕ(a† ◦ b†)

))
= ϕ 7→ Ψ

(
b 7→ Φ

(
(b† . ϕ)†

))
= ϕ 7→ Ψ

(
b 7→ Φ†(b† . ϕ)

)
= ϕ 7→ Ψ†

(
b 7→ Φ†(b . ϕ)

)
= Φ† ◦r Ψ†. ■

1.4 The main theorem

From our previous result, we see that if the Arens compositions on A∗∗ agree then:

• A∗∗ forms a †-category, and

• ev : A ↪→ A∗∗ is then a †-functor since, for every morphism x in A, we have

ev†x = ϕ 7→ evx
(
a 7→ ϕ(a†)

)
= ϕ 7→ ϕ(x†) = evx† .

We will now show this is always the case for C*-categories, after which we will prove A∗∗ satisfies the universal
property required of the W*-envelope of A.

Theorem 1.4.1. For a C*-category A, the left and right Arens compositions on A∗∗ coincide. Further-
more, these serve to equip A∗∗ with the structure of a W*-category.

Proof. Without loss of generality, we may assume A is small as compositions coincide if and only if they
agree on each small subcategory. For objects A,B ∈ A and vectors ξ ∈ Υ(A), η ∈ Υ(B), recall we denote
the functional x 7→ 〈Υ(x)ξ, η〉 in A(A → B)∗ by 〈Υ · ξ, η〉. We will extend the universal representation
Υ: A → Hilb along ev

A Hilb

A∗∗

ev

Υ

Υ̃

such that for each Φ ∈ A∗∗(A→ B) we have

〈Υ̃(Φ)ξ, η〉 = Φ(〈Υ · ξ, η〉) for all ξ ∈ Υ(A) and η ∈ Υ(B).

Indeed, notice Φ(〈Υ · ξ, η〉) is linear in ξ, antilinear in η and

|Φ(〈Υ · ξ, η〉)| ≤ ‖Φ‖|〈Υ · ξ, η〉| ≤ ‖Φ‖‖ξ‖‖η‖.

By Exercise 1.1.11, there exists a unique operator Υ̃(Φ): Υ(A) → Υ(B) with ‖Υ̃(Φ)‖ ≤ ‖Φ‖ satisfying the
desired identity. For x ∈ A(A→ B), we see that

〈Υ̃(evx)ξ, η〉 = evx(〈Υ · ξ, η〉) = 〈Υ(x)ξ, η〉 for all ξ ∈ Υ(A) and Υ(B),

which implies Υ̃(evx) = Υ(x). Thus Υ̃ ◦ ev = Υ.
We now inspect various properties of the map Υ̃:
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(◦) For a ∈ A(A→ B), b ∈ A(B → C), and ξ ∈ Υ(A), η ∈ Υ(C), we have

〈Υ · ξ, η〉 / b = 〈Υ · ξ,Υ(b)†η〉, and a . 〈Υ · ξ, η〉 = 〈Υ ·Υ(a)ξ, η〉.

Indeed, (
〈Υ · ξ, η〉 / b

)
(a) = 〈Υ · ξ, η〉(ba) = 〈Υ(ba)ξ, η〉

= 〈Υ(b)Υ(a)ξ, η〉 = 〈Υ(a)ξ,Υ(b)†η〉
= 〈Υ · ξ,Υ(b)†η〉(a),

(
a . 〈Υ · ξ, η〉

)
(b) = 〈Υ · ξ, η〉(ba) = 〈Υ(ba)ξ, η〉

= 〈Υ(b)Υ(a)ξ, η〉 = 〈Υ ·Υ(a)ξ, η〉(b).

(◦) Thus, for Φ ∈ A(A→ B) and Ψ ∈ A(B → C), we have

Φ . 〈Υ · ξ, η〉 = 〈Υ · Υ̃(Φ)ξ, η〉 and 〈Υ · ξ, η〉 /Ψ = 〈Υ · ξ, Υ̃(Ψ)†η〉

Indeed, (
Φ . 〈Υ · ξ, η〉

)
(b) = Φ

(
〈Υ · ξ, η〉 / b

)
= Φ

(
〈Υ · ξ,Υ(b)†η〉

)
= 〈Υ̃(Φ)ξ,Υ(b)†η〉 = 〈Υ(b)Υ̃(Φ)ξ, η〉

=
(
〈Υ · Υ̃(Φ)ξ, η〉

)
(b),

(
〈Υ · ξ, η〉 /Ψ

)
(a) = Ψ

(
a . 〈Υ · ξ, η〉

)
= Ψ

(
〈Υ ·Υ(a)ξ, η〉

)
= 〈Υ̃(Ψ)Υ(a)ξ, η〉 = 〈Υ(a)ξ, Υ̃(Ψ)†η〉

=
(
〈Υ · ξ, Υ̃(Ψ)†η〉

)
(a).

(◦) Therefore
Υ̃(Ψ ◦ℓ Φ) = Υ̃(Ψ) ◦ Υ̃(Φ) = Υ̃(Ψ ◦r Φ).

Indeed,

〈Υ̃(Ψ ◦ℓ Φ)ξ, η〉 = (Ψ ◦ℓ Φ)(〈Υ · ξ, η〉) = Ψ(Φ . 〈Υ · ξ, η〉)

= Ψ(〈Υ · Υ̃(Φ)ξ, η〉) = 〈Υ̃(Ψ)Υ̃(Φ)ξ, η〉,

〈Υ̃(Ψ ◦r Φ)ξ, η〉 = (Ψ ◦r Φ)(〈Υ · ξ, η〉) = Φ(〈Υ · ξ, η〉 /Ψ)

= Φ(〈Υ · ξ, Υ̃(Ψ)†η〉) = 〈Υ̃(Φ)ξ, Υ̃(Ψ)†η〉

= 〈Υ̃(Ψ)Υ̃(Φ)ξ, η〉.

Thus, in order to show ◦ℓ = ◦r, it suffices to show that Υ̃ is faithful. Suppose Φ ∈ A∗∗(A → B) satisfies
Υ̃(Φ) = 0 and consider some ϕ ∈ A(A→ B)∗. As a property of the universal representation of A, we know
there exist ξ ∈ Υ(A), η ∈ Υ(B) such that

ϕ = 〈Υ · ξ, η〉

But now observe
Φ(ϕ) = Φ(〈Υ · ξ, η〉) = 〈Υ̃(Φ)ξ, η〉 = 0.

Hence Φ = 0, Υ̃ is faithful, and we conclude that the Arens compositions agree on A∗∗.
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We will now prove the †-category A∗∗ together with the composition ◦ := ◦ℓ = ◦r is C*, and by con-
struction it will immediately follow that A∗∗ is W*. Due to the following argument, it suffices to show Υ̃ is
†-preserving and is isometric2:

‖Φ‖ = ‖Υ̃(Φ)‖ = ‖Υ̃(Φ)† ◦Υ(Φ)‖1/2 = ‖Υ̃(Φ† ◦ Φ)‖1/2 = ‖Φ† ◦ Φ‖1/2.

To see that Υ̃ is †-preserving:

(†) Notice 〈Υ · ξ, η〉† = 〈Υ · η, ξ〉 since(
〈Υ · ξ, η〉†

)
(a) = 〈Υ · ξ, η〉(a†) = 〈Υ(a†)ξ, η〉 = 〈Υ(a)η, ξ〉 =

(
〈Υ · η, ξ〉

)
(a).

(†) Therefore Υ̃(Φ†) = Υ̃(Φ)† since

〈Υ̃(Φ†)ξ, η〉 = Φ†(〈Υ · ξ, η〉) = Φ(〈Υ · ξ, η〉†) = Φ(〈Υ · η, ξ〉) = 〈Υ̃(Φ)η, ξ〉) = 〈Υ̃(Φ)†ξ, η〉.

Before checking that Υ̃ is isometric, we will verify it is weak*-WOT continuous. Indeed, suppose Φλ → Φ
weak* in A∗∗(A→ B) and observe

〈Υ̃(Φλ)ξ, η〉 = Φλ(〈Υ · ξ, η〉)→ Φ(〈Υ · ξ, η〉) = 〈Υ̃(Φ)ξ, η〉, for all ξ ∈ Υ(A) and η ∈ Υ(B).

Hence Υ̃(Φλ)→ Υ̃(Φ) WOT.
To see that Υ̃ is isometric, consider some Φ ∈ A∗∗(A→ B).

(≤) We already saw that ‖Υ̃(Φ)‖ ≤ ‖Φ‖ by construction.

(≥) Let ε > 0. As a property of the universal representation of A, we know there exist ξ ∈ Υ(A), η ∈ Υ(B)
with ‖〈Υ · ξ, η〉‖ = 1 such that

|〈Υ̃(Φ)ξ, η〉| = |Φ(〈Υ · ξ, η〉)| ≥ ‖Φ‖ − ε.

Since Υ̃ is weak*-WOT continuous, Υ̃(Φ) ∈ ImΥ
WOT

= ImΥ
SOT ⊆ Hilb(ΥA → ΥB). By the

Kaplansky density theorem, there exist (xλ) ⊂ A(A → B) with ‖xλ‖ = ‖Υ(xλ)‖ ≤ ‖Υ̃(Φ)‖ such that
Υ(xλ)→ Υ̃(Φ) SOT. Observe

‖Υ̃(Φ)‖ ≥ ‖xλ‖ ≥ |〈Υ(xλ)ξ, η〉| → |〈Υ̃(Φ)ξ, η〉| ≥ ‖Φ‖ − ε.

Since ε ≥ 0 was arbitrary, ‖Υ̃(Φ)‖ ≥ ‖Φ‖.

We conclude that A∗∗ is a W*-category.

Universal Property 1.4.2 — For every †-functor F : A → B into a W*-category B, there exists a unique normal
extension F̃ : A∗∗ → B making the following diagram commute.

A B

A∗∗

ev

F

∃!F̃

2We equip A∗∗ with the standard operator norm for functionals, which is complete on each hom-space. By showing this
norm satisfies the C*-identity, this implies the spectral norm agrees with the operator norm, and is hence complete.
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Verification. Since each hom set A(A→ B) is weak* dense in A∗∗(A→ B), we may try to extend F to A∗∗

by continuity.
Indeed, suppose xλ → x weakly in A(A→ B), which is equivalent to evxλ

→ evx weak* in A∗∗(A→ B).
Let ψ ∈ B(FA → FB)∗ be a weak*-continuous functional and consider the functional F ∗ψ ∈ A(A → B)∗

given by F ∗ψ(a) := ψ(Fa). Then

ψ(Fxλ) = F ∗ψ(xλ)→ F ∗ψ(x) = ψ(Fx),

from which we conclude Fxλ → Fx weak*. Therefore, we may extend F by continuity to a map F̃ : A∗∗ → B,
which is normal by construction. We also have F̃ (evx) = F (x), and this implies that F̃ preserves identities.
To see that F preserves compositions, consider Φ ∈ A∗∗(A → B) and Ψ ∈ A∗∗(B → C). Choose (xλ) ⊂
A(A → B) and (yµ) ⊂ A(B → C) such that xλ → Φ and yµ → Φ weak*. Using the fact that composition
in W*-categories is separately normal, we obtain

F̃ (Ψ) ◦ F̃ (Φ) = lim
µ
F (yµ) ◦ F̃ (Φ) = lim

µ
lim
λ
F (yµ) ◦ F (xλ)

= lim
µ

lim
λ
F (yµ ◦ xλ) = lim

µ
F̃ (yµ ◦ Φ) = F̃ (Ψ ◦ Φ).

Similar arguments using the linearity and †-preservation of F together with the continuity of addition and
scalar action, and Exercise 1.3.9 reveal that F̃ is also linear and †-preserving. We conclude that F̃ : A∗∗ → B
is a normal †-functor, whose uniqueness is immediate by the local weak* density of A in A∗∗. ■

1.5 Corollaries

Corollary 1.5.1 (Sherman-Takeda for C*-categories) — For a small C*-category A, the †-functor

Υ̃ : A∗∗ → GNS(A)′′

constructed in Theorem 1.4.1 is an isomorphism of W*-categories extending Υ: A → GNS(A).

A GNS(A)

A∗∗ GNS(A)′′
ev

Υ

Υ̃

Proof of Corollary. We already know Υ̃ : A∗∗ → Hilb is weak*-WOT continuous, so that Im Υ̃ ⊆ GNS(A)′′.
To show that Υ̃ : A∗∗ → GNS(A)′′ is full, consider some T : Hilb(Υ(A) → Υ(B)). Since every functional
ϕ ∈ A(A→ B)∗ is of the form

ϕ = 〈Υ · ξ, η〉, for some ξ ∈ Υ(A) and η ∈ Υ(B),

we may define ΦT : A∗∗(A→ B) by

ΦT (〈Υ · ξ, η〉) = 〈Tξ, η〉 for ξ ∈ Υ(A) and η ∈ Υ(B).

To see that ΦT is well-defined, suppose 〈Υ · ξ, η〉 = 〈Υ · ξ′, η′〉. Then choose (xλ) ⊂ A(A → B) such that
Υ(xλ)→ T WOT and observe

ΦT (〈Υ · ξ, η〉) = 〈Tξ, η〉 = lim〈Υ(xλ)ξ, η〉 = lim〈Υ(xλ)ξ
′, η′〉 = ΦT (〈Υ · ξ′, η′〉).

Hence ΦT is well-defined. Now note that Υ̃(ΦT ) = T as

〈Υ̃(ΦT )ξ, η〉 = ΦT (〈Υ · ξ, η〉) = 〈Tξ, η〉 for all ξ ∈ Υ(A) and η ∈ Υ(B).

Thus Υ̃ is full. Since Υ̃ is bijective on objects and faithful by Theorem 1.4.1, we conclude that Υ̃ is an
isomorphism of W*-categories. ■
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1.6 Future work

(1) We have actually already used the W*-completion of a C*-category to construct the W*-tensor product
⊗

max
of W*-categories.

(2) In the not-so-distant future, we will be upgrading these constructions for C*-2-categories and W*-2-
categories, in order to obtain a symmetric closed monoidal category (W∗2Cat, ⊠

max
) of W*-2-categories.

(3) By enriching over W∗2Cat, we end up with the correct notion of a W*-Gray-category, the semi-strict
version of a W*-3-category. The main goal of our future work is to show this coherence theorem.
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