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1. INTRODUCTION

Functional analysis. The mathematical foundations for quantum mechanics lead to the development of functional

analysis, where one can encode the state space of a system with a Hilbert space H and observables with a von

Neumann algebra A ⊂ B(H) of operators acting on H.

Categorifying Hilbert spaces. Functional analysis has since flourished in its own right as a field of mathematics.

One particular approach in studying a given operator algebra A is to examine its representations A
π−→ B(Hπ),

i.e. the possible ways A can act on different Hilbert spaces Hπ. The mathematical structure Rep(A) consisting

of all such representations of A has many properties analogous to that of Hilbert spaces, while being much more

mathematically rich. In this sense, these structures are higher Hilbert spaces, or 2-Hilbert spaces.

Functional Analysis Representation Theory

Hilbert spaces H = L2(X,µ) Representation categories H = Rep(A)
Vectors η ∈ H Representations HA ∈ H
Scalars z ∈ C Hilbert spaces H ∈ Hilb
Scaling × : C×H → H Tensoring ⊗ : Hilb×H → H
Addition +: H ×H → H Direct sum ⊕ : H×H → H

C-valued inner product ⟨·|·⟩ : H ×H → C Hilb-valued inner product L2 Hom(· → ·) : H×H → Hilb
Dual Hilbert space H∗ := Hom(H → C) Presheaf category H∗ := Hom(H → Hilb)

Riesz Representation Theorem H ∼= H∗ Yoneda Embedding Theorem H ∼= H∗

Categorifying von Neumann algebras. Just as before, consider operators that act on a 2-Hilbert space

H = Rep(A). These are higher quantum symmetries forming the structure of a higher von Neumann algebra Bim(A).

More generally, Henriques defines a bicommutant category as a bi-involutive ⊗-category A ↪→ Bim(A) with A ∼= A′′.

Algebras Tensor categories

Finite dimensional algebra Fusion category
∗-algebra Bi-involutive ⊗-category

Operators on a Hilbert space H Bimodules over an operator algebra A
B(H) Bim(A)

Center Z(A) of an algebra A Drinfeld center Z(A) of a tensor category A
Commutant A′ = ZB(H)(A) of A ⊂ B(H) Commutant A′ = ZBim(A)(A) of A ↪→ Bim(A)

von Neumann algebras Bicommutant categories
A ⊂ B(H) with A = A′′ A ↪→ Bim(A) with A ∼= A′′

Higher Functional Analysis. These motifs fit into the following research program, which has been worked out in

the finite dimensional case. Indeed, the representations Rep(A) of a 2-operator algebra A, i.e. the ways A can act

on 2-Hilbert spaces A F−→ B(HF ), then form an even higher Hilbert space known as a 3-Hilbert space. One may thus

continue constructing a staircase of higher and higher Hilbert spaces and operator algebras, that is, a theory of

higher functional analysis.

3-Operator algebras 4-Hilbert spaces
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The focus of my research is to develop the theory of higher functional analysis.



2. IMPORTANCE

The framework of higher functional analysis provides a powerful lens to systematically study quantum

systems, using abstract mathematical concepts to obtain physical applications. From advancing our

understanding of topological phenomena to supporting robust quantum computation, these structures

illuminate the interplay between mathematics and physics.

Quantum symmetry. The classical symmetries of a set S are captured by the corresponding group of symmetries

G, which act on S through a map G → End(S). In the same way, tensor categories A act on 2-Hilbert spaces as

so-called quantum symmetries. In particular for an operator algebra A, its quantum symmetries are captured by a

⊗-functor A → Bim(A). One important example central to subfactor theory is the standard invariant of a finite

index II1-subfactor A ⊆ B, which is generated by the action of AL
2BB ∈ Bim(A⊕B).

Topological order. Another motivating force driving us up this mathematical staircase is the connection between

higher operator algebras and quantum computation. Higher operator algebras provide an algebraic structure for

excitations in so-called topologically ordered systems, capturing the fusion, braiding, and commutation relations of

the quasi-particle excitations (or anyons) in your material. In particular, the excitations or defects of a (2 + 1)D

topological order gives rise to a 3-category which is expected to form a 4-Hilbert space.

We recall that in classical systems, “order” refers to patterns like the alignment of spins in a ferromagnet, where

the spins break rotational symmetry and align in a particular direction. This type of order can be captured by

simple order parameters, such as magnetization. In many-body quantum systems, however, order can be more

complex due to non-local quantum correlations, such as entanglement, where distant parts of the system become

strongly correlated. These correlations are not visible at the level of an individual particle yet become evident at the

global scale, distinguishing quantum order from classical order. Further key features of these quantum systems are

the presence of exotic excitations, such as anyons in two dimensional materials.

Figure 1: Depictions of 1D (spin chain), 2D (lattice), and 3D phases of matter

Quantum order is remarkably robust, often persisting despite local perturbations. This is due to the fact that in

systems with topological order, quantum states are determined by global properties, such as the system’s shape or

topology, rather than local details. This stability makes topological order especially valuable for quantum computing,

as it offers protection against errors.

Topological Quantum field theory. Higher Hilbert spaces are also expected to serve as the appropriate receptacles

for fully-extended unitary topological quantum field theories (TQFTs). Since Lurie’s work on cobordism hypothesis,

it is known that these TQFTs are uniquely determined by what they assign to the point ∗. Henriques showed

that Reshetikhin-Turaev theories, e.g. Chern-Simons, are fully extended. Moreover, he then showed that the

mathematical structure of what such a TQFT assigns to ∗ forms a higher von Neumann algebra, i.e. a bicommutant

category.

We note that TQFTs not only hold physical significance but also yield invariants with deep mathematical

applications in knot theory, differential geometry, and algebraic topology. The importance of such invariants is

underscored by the recognition of mathematicians like Vaughan Jones (1990), Edward Witten (1990), and Maxim

Kontsevich (1998), who have been awarded Fields Medals for their groundbreaking contributions to knot invariants

and related fields.



3. RESEARCH PLAN

Our goal is to develop the infinite-dimensional side of this higher functional analysis program. In

particular, one of my main research objectives is to develop the theory of bicommutant categories, which

are higher analogues of von Neumann algebras introduced by Prof. André Henriques.

(1) Establish foundational results for the theory of bicommutant categories.

Concreteness theorem. Identify analytic and categorical conditions under which abstract (universal) and con-

crete (realization-based) definitions of bicommutant categories coincide, i.e. so that every abstract bicommutant

category admits a faithful module category.

Representation theory. Prove that every module category for a bicommutant category A decomposes as a

direct sum of a faithful and a kernel part. Deduce that every module category admits non-trivial maps into a

faithful module category, and hence any faithful module for A generates Rep(A).

Higher bicommutant theorem. Show that for any faithful module H of a bicommutant category A, the

commutant A′ ⊂ B(H) = End(H) contains absorbing objects, and A ∼= A′′, mirroring the classical bicommutant

theorem for von Neumann algebras.

(2) Construct expected examples of bicommutant categories coming from operator algebras, representation theory,

and conformal nets.

(3) Construct the Morita operator algebraic tricategory E†
1(2Hilb) of bicommutant categories and their quantum

symmetries. It was proven by Bartels-Douglas-Henriques that conformal nets form a 3-category. However this

3-category is not Cauchy complete. We propose:

Completion of conformal nets.

• E†
1(2Hilb) is a Cauchy complete operator algebraic tricategory;

• The category of conformal nets embeds into E†
1(2Hilb); and

• E†
1(2Hilb) is the Cauchy completion of the 3-category of conformal nets.

(4) Describe a higher analogue of Gelfand duality, spectral theory, and the functional calculus.

Indeed, classical Gelfand duality provides a foundational correspondence between commutative von Neumann

and compact measure spaces. This result can be aimed at a particular operator x ∈ B(H) on a Hilbert space H.

Namely, if x is normal, the W ∗-algebra W ∗(x) generated by x corresponds to functions L∞(Spec(x)) on the

spectrum Spec(x) of x. This correspondence then allows us to perform a measurable functional calculus for x.

On the other hand, there are various instantiations of Tannaka-reconstruction which afford correspondences

between symmetric monoidal categories and (super)groupoids under suitable conditions. In particular, we expect

a higher Gelfand duality theorem unifying these two motifs.

Higher Gelfand duality. Describe a correspondence between symmetric bicommutant categories and compact

measurable (super)groupoids.

Aiming such a result at a bimodule AXA ∈ Bim(A) over a von Neumann algebra A would then yield a higher

spectral theorem when viewing AXA as an operator on the 2-Hilbert space Rep(A). Indeed, such a bimodule

AXA equipped with a symmetric braiding for AXA and AXA generates a symmetric bicommutant category

W ∗(AXA), which would then correspond to representations Rep(G) on a compact measurable (super)groupoid

G = Spec(AXA).

Higher spectral theory. Determine what information about AXA this higher spectrum Spec(AXA) encodes.

Moreover, determine how this construction depends on the choice of symmetric braiding.

Higher functional calculus. Employ this representation-theoretic functional calculus to solve problems in

higher functional analysis arising from quantum symmetries, topological order, and topological quantum field

theory.
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