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1. INTRODUCTION

Functional analysis. The mathematical foundations for quantum mechanics lead to the development of functional
analysis, where one can encode the state space of a system with a Hilbert space H and observables with a von
Neumann algebra A C B(H) of operators acting on H.

Categorifying Hilbert spaces. Functional analysis has since flourished in its own right as a field of mathematics.
One particular approach in studying a given operator algebra A is to examine its representations A = B(H,),
i.e. the possible ways A can act on different Hilbert spaces H,. The mathematical structure Rep(A) consisting
of all such representations of A has many properties analogous to that of Hilbert spaces, while being much more
mathematically rich. In this sense, these structures are higher Hilbert spaces, or 2-Hilbert spaces.

[ Functional Analysis [ “ Representation Theory [ ]
Hilbert spaces H=L%>(X,p) Representation categories H = Rep(A)
Vectors neH Representations HpaeH
Scalars z€C Hilbert spaces H < Hilb
Scaling x:Cx H—H Tensoring ®: Hilb x H —H
Addition +:HxH—H Direct sum B:HXH—>H
C-valued inner product (|V: HxH—C Hilb-valued inner product L2 Hom(- — -): H x H — Hilb
Dual Hilbert space H* := Hom(H — C) Presheaf category H* := Hom(H — Hilb)
Riesz Representation Theorem H>~H* Yoneda Embedding Theorem H o H*

Categorifying von Neumann algebras. Just as before, consider operators that act on a 2-Hilbert space
‘H = Rep(A). These are higher quantum symmetries forming the structure of a higher von Neumann algebra Bim(A).
More generally, Henriques defines a bicommutant category as a bi-involutive ®-category A < Bim(A) with A4 = A”.

[ Algebras H Tensor categories ]
Finite dimensional algebra Fusion category
*-algebra Bi-involutive ®-category
Operators on a Hilbert space H Bimodules over an operator algebra A
B(H) Bim(A)
Center Z(A) of an algebra A Drinfeld center Z(.A) of a tensor category A
Commutant A’ = Zg(g)(A) of A C B(H) || Commutant A’ = Zpjy(4)(A) of A — Bim(A)

von Neumann algebras Bicommutant categories

A C B(H) with A= A" A — Bim(A) with A=~ A"

Higher Functional Analysis. These motifs fit into the following research program, which has been worked out in
the finite dimensional case. Indeed, the representations Rep(.A) of a 2-operator algebra A, i.e. the ways A can act
on 2-Hilbert spaces A BNy (Hr), then form an even higher Hilbert space known as a 3-Hilbert space. One may thus
continue constructing a staircase of higher and higher Hilbert spaces and operator algebras, that is, a theory of
higher functional analysis.
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The focus of my research is to develop the theory of higher functional analysis.




2. IMPORTANCE

The framework of higher functional analysis provides a powerful lens to systematically study quantum
systems, using abstract mathematical concepts to obtain physical applications. From advancing our
understanding of topological phenomena to supporting robust quantum computation, these structures
illuminate the interplay between mathematics and physics.

Quantum symmetry. The classical symmetries of a set S are captured by the corresponding group of symmetries
G, which act on S through a map G — End(S). In the same way, tensor categories A act on 2-Hilbert spaces as
so-called quantum symmetries. In particular for an operator algebra A, its quantum symmetries are captured by a
®-functor A — Bim(A). One important example central to subfactor theory is the standard invariant of a finite
index IT;-subfactor A C B, which is generated by the action of 4L?Bp € Bim(A4 & B).

Topological order. Another motivating force driving us up this mathematical staircase is the connection between
higher operator algebras and quantum computation. Higher operator algebras provide an algebraic structure for
excitations in so-called topologically ordered systems, capturing the fusion, braiding, and commutation relations of
the quasi-particle excitations (or anyons) in your material. In particular, the excitations or defects of a (24 1)D
topological order gives rise to a 3-category which is expected to form a 4-Hilbert space.

We recall that in classical systems, “order” refers to patterns like the alignment of spins in a ferromagnet, where
the spins break rotational symmetry and align in a particular direction. This type of order can be captured by
simple order parameters, such as magnetization. In many-body quantum systems, however, order can be more
complex due to non-local quantum correlations, such as entanglement, where distant parts of the system become
strongly correlated. These correlations are not visible at the level of an individual particle yet become evident at the
global scale, distinguishing quantum order from classical order. Further key features of these quantum systems are
the presence of exotic excitations, such as anyons in two dimensional materials.
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Figure 1: Depictions of 1D (spin chain), 2D (lattice), and 3D phases of matter

Quantum order is remarkably robust, often persisting despite local perturbations. This is due to the fact that in
systems with topological order, quantum states are determined by global properties, such as the system’s shape or
topology, rather than local details. This stability makes topological order especially valuable for quantum computing,
as it offers protection against errors.

Topological Quantum Field Theory. Higher Hilbert spaces are also expected to serve as the appropriate
receptacles for fully-extended unitary topological quantum field theories (TQFTs). Since Lurie’s work on cobordism
hypothesis, it is known that these TQFTs are uniquely determined by what they assign to the point *. Henriques
showed that Reshetikhin-Turaev theories, e.g. Chern-Simons, are fully extended. Moreover, he then showed that the
mathematical structure of what such a TQFT assigns to * forms a higher von Neumann algebra, i.e. a bicommutant
category.

We note that TQFTs not only hold physical significance but also yield invariants with deep mathematical
applications in knot theory, differential geometry, and algebraic topology. The importance of such invariants is
underscored by the recognition of mathematicians like Vaughan Jones (1990), Edward Witten (1990), and Maxim
Kontsevich (1998), who have been awarded Fields Medals for their groundbreaking contributions to knot invariants
and related fields.



3. PAST ACCOMPLISHMENTS

In my past work, I have focused on the finite dimensional theory of higher functional analysis. Moreover,
I have established foundational category-theoretic results which will play a role in the development of
higher functional analysis.

Manifestly unitary higher Hilbert spaces. In joint work with Chen, Hungar, Penneys, and Sanford, we define
finite dimensional 2-operator algebras and 3-Hilbert spaces. We then describe a formal process of constructing
3-Hilbert spaces from 2-Hilbert spaces from Hilbert spaces, known as unitary condensation. In particular, this is a
manifestly unitary formulation of the work of Gaiotto and Johnson-Freyd for higher vector spaces.

Foundations for operator algebraic tricategories. In single author work, we provide foundational results
for the theory of 3-operator algebras and 4-Hilbert spaces. More technically, we define and prove both coherence
and concreteness results for so-called operator algebraic tricategories. We then show there is an operator algebraic
tricategory Eg(HiIb) consisting of commutative operator algebras and their 3-categorical quantum symmetries.

Dagger n-categories. In joint work with Hungar, Johnson-Freyd, Krulewski, Muller, Nivedita, Penneys, Reutter,
Scheimbauer, Stehouwer, and Vuppulury, we establish a theory of dagger n-categories, one of the key ingredients in
the future formulation of n-Hilbert spaces and n-operator algebras for arbitrary n =1,2,3, ...

Classifying module categories for generalized Temperley-Lieb-Jones x-2-categories. In joint work with
Hernandez-Palomares, we provide a universal construction for a family of finite dimensional 3-Hilbert spaces related
to the Jones polynomial and classify their representations.

Gray-categories model algebraic tricategories. In single author work, we prove the Grothendieck’s homotopy
hypothesis, as popularized by Baez, for algebraic trigroupoids.

4. CURRENT WORK

My current research is focused on furthering these results in the direction of homotopy theory and higher
category theory.

Bases for 3-Hilbert spaces and higher unitary duality. Building on work from Manifestly unitary higher
Hilbert spaces, joint with Hungar, Penneys, and Wesley. We define and characterize unitary dual 2-functors on finite
dimensional 3-operator algebras.

The homotopy 3-type of abelian operator algebras. Building on work from Foundations for operator algebraic
tricategories, joint with Faurot. We describe an equivalent topological model to the Morita operator algebraic
tricategory E;(Hilb) of commutative operator algebras and their quantum symmetries, and provide a tricategorical
Gelfand duality, simultaneously extending classical Gelfand duality, the Serre-Swan theorem, and the Dauns-Hoffman
theorem. We then describe the underlying homotopy 3-type of this 3-category in terms of its Postnikov data.

Models for higher Hilbert spaces as homotopy fixed points. Building on work from Dagger n-categories,
joint with Miiller, Penneys, and Stehouwer. We systematically describe the different theories of operator algebras
(C*-algebras, W*-algebras, H*-algebras) in terms of homotopy fixed points for different subgroups of O(2).



5. FUTURE RESEARCH

(1)

Our goal is to develop the infinite-dimensional side of this higher functional analysis program. In
particular, one of our main research objectives is to develop the theory of bicommutant categories, which
are higher analogues of von Neumann algebras.

Establish foundational results for the theory of bicommutant categories.

Concreteness theorem. Identify analytic and categorical conditions under which abstract (universal) and con-
crete (realization-based) definitions of bicommutant categories coincide, i.e. so that every abstract bicommutant
category admits a faithful module category.

Representation theory. Prove that every module category for a bicommutant category A decomposes as a
direct sum of a faithful and a kernel part. Deduce that every module category admits non-trivial maps into a
faithful module category, and hence any faithful module for A generates Rep(.A).

Higher bicommutant theorem. Show that for any faithful module H of a bicommutant category .4, the
commutant A’ C B(H) = End(H) contains absorbing objects, and A = A", mirroring the classical bicommutant
theorem for von Neumann algebras.

Construct expected examples of bicommutant categories coming from operator algebras, representation theory,
and conformal nets.

Construct the Morita operator algebraic tricategory EI(2HiIb) of bicommutant categories and their quantum
symmetries. It was proven by Bartels-Douglas-Henriques that conformal nets form a 3-category. However this
3-category is not Cauchy complete. We propose:

Completion of conformal nets.

. ElT(2Hi|b) is a Cauchy complete operator algebraic tricategory;
e The category of conformal nets embeds into E] (2Hilb); and
) EI(ZHiIb) is the Cauchy completion of the 3-category of conformal nets.

Describe a higher analogue of Gelfand duality, spectral theory, and the functional calculus.

Indeed, classical Gelfand duality provides a foundational correspondence between commutative von Neumann
and compact measure spaces. This result can be aimed at a particular operator € B(H) on a Hilbert space H.
Namely, if « is normal, the W*-algebra W*(x) generated by z corresponds to functions L (Spec(z)) on the
spectrum Spec(x) of x. This correspondence then allows us to perform a measurable functional calculus for .
On the other hand, there are various instantiations of Tannaka-reconstruction which afford correspondences
between symmetric monoidal categories and (super)groupoids under suitable conditions. In particular, we expect
a higher Gelfand duality theorem unifying these two motifs.

Higher Gelfand duality. Describe a correspondence between symmetric bicommutant categories and compact
measurable (super)groupoids.

Aiming such a result at a bimodule 4 X 4 € Bim(A) over a von Neumann algebra A would then yield a higher
spectral theorem when viewing 4 X4 as an operator on the 2-Hilbert space Rep(A). Indeed, such a bimodule
4X 4 equipped with a symmetric braiding for 4 X4 and 4 X 4 generates a symmetric bicommutant category
W*(a4X4), which would then correspond to representations Rep(G) on a compact measurable (super)groupoid
G = Spec(aXa).

Higher spectral theory. Determine what information about 4 X 4 this higher spectrum Spec(4X4) encodes.
Moreover, determine how this construction depends on the choice of symmetric braiding.

Higher functional calculus. Employ this representation-theoretic functional calculus to solve problems in
higher functional analysis arising from quantum symmetries, topological order, and topological quantum field
theory.



6. BROADER IMPACTS AND OUTREACH

Having extensive experience supervising undergraduate research, mentoring graduate students, and
organizing seminars, I will continue these efforts as a part of my post-doctoral work.

REU Research. Joint work with Poudel, mentored undergraduate student Lu during our quantum symmetries
REU summer program. We established a skein-theoretic immersed curve model for Rep(if,(sls)), the representation
theory of the quantum group associated to SL4. In particular, this project relates Rep(U,(sls)) to work of Kauffmand
and Vogel on the HOMFLY-PT knot invariant.

Undergraduate Research. Mentoring undergraduate student Circele as part of the CYCLE program at OSU. Our
project is focused on establishing a duality theory in the spirit of functional analysis. In particular, we generalize
the notion of rigidity in a monoidal category to account for infinite dimensional spaces and provide a formal calculus
for Hilbert spaces internal to a monoidal category under suitable conditions.

REU Expositional Work. Mentored undergraduate student Kolt, producing an expositional video on the Synoptic
Chart of Tensor Categories with the goal of disseminating the geometric aspects of tensor categories to a broader
audience.

Textbook. Writing a coauthored book Unitary Quantum Symmetries Lite (UQSL) with Kawagoe and Penneys.
Our primary goal is to make the tools of higher category theory accessible to a large audience, in order to bridge the
gap between mathematicians and physicists working on unitary tensor categories and topological phases of matter.
Our main theme is the aforementioned higher functional analysis program in finite dimensions.

Building on this foundation, I plan to develop a series of expositional lectures translating its contents to the
infinite-dimensional setting of higher functional analysis with a broader math and physics audience in mind.
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