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1
Steps towards higher spaces: What is a site?

The wise man looks into space and does not
regard the small as too little, nor the great as
too big, for he knows that there is no limit to
dimensions.

Zhuang Zhou

Recall that, for a category X , a presheaf of a given flavor of mathematical structure on X is simply a
contravariant functor:

X op → Structures
where Structures can be taken to be category of Sets, Groups, Ab, Vec, Hilb, C∗Alg, W∗Alg, etc. depending
on our interests. But where does the term “pre-sheaf” come from, and what would make a “pre”-sheaf not
just “pre”?

Idea. If presheaves are like functions on a space, sheaves are to be thought of as the continuous functions.

But in order to talk about “continuity” of a functor on a category, we need the notion of a topology on
a category: thus turning it into a higher space known as a site.

Algebraic geometry cheat sheet
Category level 0 Category level 1
Set Category
Topology Grothendieck Topology
Space Site
Function X → C Presheaf X op → Hilb
Continuous function f : X → C Sheaf F : X op → Hilb
Abelian group C(X) Topos Sh(X )
(f + g)(x) := f(x) + g(x) (F ⊕G)(U) := F (U)⊕G(U)
Vector space C(X) 2-vector space Sh(X )
Scalars λ ∈ C Hilbert spaces Λ ∈ Hilb
(λ� f)(x) := λ · f(x) (Λ� F )(U) := Λ⊗ F (U)
Algebra C(X) Monoidal category Sh(X )
(f · g)(x) := f(x) · g(x) (F ⊗G)(U) := F (U)⊗G(U)
Commutative C*-algebra C(X) Symmetric C*-2-algebra Sh(X )
f(x) := f(x) F (U) := F (U)
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Idea. The category O(X) of open sets is the same data as a topological space X, and is hence a space.1

Albeit unorthodox, we may describe the topology on X as follows:

For every x ∈ X, there is a collection of so-called open neighborhoods Tx ⊆ O(X) of x where each
U ∈ Tx contains x ∈ U . These are required to satisfy the following three axioms:

(T1) If V ∈ Ty is an open neighborhood of y ∈ X, then V ∩ Tx ⊆ Ty.2

(T2) For every collection of points {xj} ⊂ X, and every collection of open neighborhoods {Uij} ⊆ Txj
,

we have
⋃

ij Uij ∈ Txj for every xj .
(T3) X ∈ Tx is an open neighborhood for every x ∈ X

Notice (T1) captures the fact that the topology on X is closed under finite intersections, (T2) captures
closure under arbitrary unions, and (T3) implies X is open.3

One thing to note is that the points x ∈ X generally live “outside” of O(X), as the singletons {x} are seldom
open. Hence, one should morally modify these conditions in terms of coverings for open sets U , instead of
neighborhoods for a point x.4 This leads us to the following notion of a Grothendieck topology:

Definition 1.0.1 — A Grothendieck topology τ on a category X consists of the following data:

For every U ∈ X , there is a collection of so-called covering sieves τU where each S ∈ τU is a
subfunctor of X (− → U).a These are required to satisfy the following three axioms:

(T1) For f ∈ X (V → U) and S ∈ τU , we have f∗S ∈ τV where f∗S is the pullbackb sieve:

V ×U W W

V U

f∗S(V×UW )∋ f∗(g)
⌟

g ∈S(W )

f

(T2) For every covering sieve S ∈ τU , and every collection of covering sieves {SUj ∈ τUj}, we have⋃
j SUj

◦ S ∈ τU where⋃
j

SUj
◦ S

 (V ) =
⋃
j

SUj
(V ) ◦ S(Uj) :=

{
V

g−→ Uj
f−→ U

∣∣∣g ∈ SUj
(V ) and f ∈ S(Uj)

}

(T3) X (− → U) ∈ τU is a covering sieve for every U ∈ X .

1In this note we will use this idea to motivate the notion of a site. In particular, we will focus on abstracting “open covers”
to arbitrary categories. However, there is another, equally valid direction in formalizing the very same idea. Indeed, one can
instead consider lattices which behave like the lattice O(X) by admitting:

• finite limits (meets, greatest lower bounds, intersections) ∧ = ∩,
• arbitrary colimits (joins, least upper bounds, unions)

∨
=

⋃
• initial (minimal, smallest, False) and terminal (maximal, greatest, True) objects 0 = ∅ and 1 = X.

These lattices are known as frames/locales in the field of pointless geometry (pun intended). These also play a role in intuitionistic
logic, where they are known as complete Heyting algebras. Of course these structures will turn out to be closely related to sites.
In fact, the representations of a site X will form a so-called topos Sh(X ), where a topos is the categorification (homotopification)
of a locale.

2Here we’re not worrying about ∅
3Either include ∅ in each Tx (which is admittedly not great conceptually), or include it at the end
4We note that one should also be able to interpret this discussion in terms of filters and ultrafilters.
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A site (X , T ) is then a category X equipped with a Grothendieck topology τ .
aMore concretely, a covering sieve S picks out a collection of morphisms S(V ) ⊆ X (V → U) for every V ∈ X , which

we say cover U . In the case of X = O(X), note that X (V → U) is either ∅ or {⊆}. Hence, when defining a covering sieve
S for U , we have a choice of whether or not to include V as part of our cover for U whenever V ⊂ U .

bIn the case when X = O(X), pulling back along an inclusion V ⊆ U is the same as taking an intersection with V .

Remark 1.0.2. As one can see, the notation for sieves gets a bit heavy and obfuscates this relatively easy
concept: A site is a category equipped with a notion of “covering”, where:

(T1) The preimage of a cover is a cover

(T2) Covering a cover is a cover

(T3) The whole space5 covers everything

Alternatively, we can state these axioms in parallel to those of a topology as long as we’re willing to squint
at the meaning of “intersections”, “unions”, and “trivial”:

(T1) Finite intersections of covers are covers

(T2) Arbitrary unions of covers are covers6

(T3) Trivial covers are covers

Of course, by construction, we recover our guiding example:

Example 1.0.3 (Spaces are spaces) — The category O(X) of open sets with inclusions for a topological
space X admits a natural Grothendieck topology τ , where S ∈ τU is a covering sieve on an open set
U ⊆ X if and only if

U =
⋃

S(V ) ̸=∅

V

When working in categorification, one notices the following common motif:

Idea. Structures of a certain mathematical flavor assemble into higher mathematical structures with a
resembling taste.

We see this for example as abelian groups themselves form an abelian category Ab, vector spaces form
a 2-vector space Vec, Hilbert spaces form a 2-Hilbert space Hilb, and so on. Thus, in the spirit of
(vertical) categorification, we should expect that topological spaces themselves form a higher space, i.e.
a site.

Vertical categorification
Category level 0 Category level 1
Abelian groups Abelian category Ab
Vector spaces 2-vector space Vec
Hilbert spaces 2-Hilbert space Hilb

Topological spaces Site CHaus

5Following the yoga of Yoneda, we identify a space X with its Yoneda embedding.
6The ambiguity of this statement is particularly egregious, as we will see later on.
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Example 1.0.4 (Spaces are a space) — The category CHaus of compact Hausdorff spaces forms a site,
where each non-trivial covering sieve S on a compact Hausdorff space X corresponds to a finitea cover
{Ui}ni=1 of X with compact Hausdorff spaces Ui, i.e., S is determined by a surjective map:

n∐
i=1

Ui ↠ X.

aHere one might be worried about satisfying (T2). However it is true that the arbitrary “union” of finite covers {SXj
}

is again finite... not great, but the reader was warned. Indeed, in the formal statement of (T2), the union
⋃

j SUj
gets

post-composed with a chosen finite cover S, and now
⋃

j SUj
◦ S is again finite.

We note that these covering sieves in CHaus are quite tame. In general, Grothendieck topologies can be much
more fine or coarse. Indeed, just as in point-set topology, there are maximal and minimal Grothendieck
topologies:

Example 1.0.5 — For a category X ,

• The discrete topology is obtained by declaring every subfunctor X (− → U) to be a covering sieve
for every U ∈ X ;

• The trivial topology is obtained by declaring that the only covering sieves are X (− → U).

• The canonical topology is obtained by declaring that the only covering sieves are the representable
presheaves, i.e. those isomorphic to X (− → U) for some U ∈ X .
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2
Being hungry, they carry the sheaves: What is a sheaf?

Those who go out weeping, carrying seed to
sow, will return with songs of joy, carrying
sheaves with them.

Psalms 126:6

Now that we have fleshed out the notion of a topology on a category X , we may talk about presheaves
of a certain flavor

X op → Structures

which preserve the topology we’ve chosen on our site.

Idea. If we think of a covering sieve S for U ∈ X as an honest covering of U , “preserving” S corresponds
to satisfying a certain “gluing condition”1 with respect to this covering. In the case when X = O(X) for a
topological space X, we think of a presheaf F as assigning a whole structure’s-worth of functions over each
U ⊂ X. Indeed, consider the prototypical example where Structures = Groups and F = C(− → G)

C(− → G) : O(X)op → Groups

assigns to each open U ⊂ X the group of G-valued continuous functions for a topological group G:2

C(U → G) := {f : U → G continuous}.

Now for an open covering {Vi} ⊆ X of U , consider the commutative diagram

C (U → G) C(Vj → G) (f : U → G) f |Vj

C(Vi → G) C(Vi ∩ Vj → G) f |Vi f |Vi∩Vj

Observe that each f : U → G is uniquely determined by the collection of functions (fi := f |Vi) where
fi|Vj

= fj |Vi
. Conversely, given such a collection (fi : Vi → G) of continuous functions, we may uniquely

glue these to obtain a continuous f : U → G. The slick way to express this categorically is that the following

1You’ll also hear of algebraic geometers talking about “descent conditions”, which are synonymous.
2This is actually closely related to how one thinks of a topological group as a condensed group in Condensed Mathematics.
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diagram is a pullback square3:

C(U → G)
∐

j C(Vj → G)

∐
i C(Vi → G)

∐
ij C(Vi ∩ Vj → G)

⌟

In any case, what the category theory is trying to express is that the space C(U → G) is built from each
C(Vi → G) by gluing along their intersections C(Vi ∩ Vj → G).

Definition 2.0.1 (Sheaf) — A sheaf of groups F : X → Groups on a site (X , τ) is a presheaf satisfying:

• For every covering sieve S on U ∈ X , we have a pullback square:

F (U)
∐

j F (Vj)

∐
i F (Vi)

∐
ij F (Vi ×U Vj)

⌟

Of course, we may equivalently describe this gluing condition more concretely:

• For every covering sieve S on U ∈ X , we have that every collection (fi ∈ F (Vi)) with fi|Vj = fj |Vi

can be uniquely glued into f ∈ F (U) such that each f |Vi
= fi.a

aHere one actually needs to consider collections (fi,s ∈ F (Vi)) indexed not only by objects Vi ∈ X , but also by
morphisms s ∈ S(Vi) ⊆ X (Vi → U). One then needs to reinterpret our restriction notation f |Vi

as F (s)(f) where
F (s) : F (U) → F (Vi). As the notation is already quite cumbersome, we will omit such ennui.

Again, by construction, we obtain our first example:

Example 2.0.2 (Continuous functions form sheaves) — For a topological group G, the sheaf C(− → G)
on O(X) is known as the sheaf of germs of continuous G-valued functions on X.

In the following section, we will discuss the meaning of this curious term “germ”. However, prior to such
a digression, we present more examples of sheaves:

Example 2.0.3 (Manifolds form sheaves) — For a smooth manifold X, its structure sheaf

C∞ : O(X)op → Vec

assigns to an open set U ⊂ X the vector space

C∞(U) := {f : U → R or C smooth},

where the target depends on which flavor of manifolds one desires.

Non-example 2.0.4 (C*-algebras) — With the previous example in mind, one might wish to construct
a C*-algebraic analogue of C∞ as follows: For a compact Hausdorff space, we define

C : O(X)op → C*Alg

3or equalizer diagram, pick your poison.
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which assigns to an open set U ⊂ X the C*-algebra

C(U) := {f : U → C continuous}.

Of course there’s a problem in that functions in C(U) need not be bounded because U is seldom
compact, i.e. this obviously doesn’t form a C*-algebra. But we may try to modify this construction by
considering:

C0 : O(X)op → C*Alg (not necessarily unital)

on a locally compact Hausdorff space X, which assigns to an open set U ⊂ X the C*-algebra

C0(U) := {f : U → C continuous and vanishing at infinity}.

Albeit a more promising candidate, as this does form a presheaf, we note that C0 does not satisfy the
desired gluing condition for sheaves.

Exercise 2.0.5. Find a locally compact Hausdorff space X so that C0 : O(X)op → C*Alg is not a sheaf on
X. In particular, build a family of continuous functions vanishing at infinity (fi : Ui → C) on an open cover
{Ui} of X which does not glue to a global function f : X → C which vanishes at infinity.
Hint: Consider X = R covered by Ui = (i− 1, i+ 1) for i ∈ Z.

Example 2.0.6 (C*-algebras v2.0) — A way to fix the previous non-example is to instead consider

C : O(X)op → †Alg

as a sheaf of †-algebras on our chosen compact Hausdorff space X. It just so happens that C(X) is a
C*-algebraa, which is a property and not a structure on a †-algebra.

aMore generally C(X̃) is a C*-algebra for every component X̃ ⊆ X as closed sets in a Hausdorff space are compact.

Sheafs of smooth functions? Continuous functions? Imaginably one can cook up many more sheaves of
this form. Indeed, one may consider sheaves of holomorphic functions on compact Riemann surfaces, mero-
morphic functions on such surfaces equipped with divisors, you name it. In fact, one might be willing to
naively conjecture: the nicer the flavor of functions, the easier it is to form a sheaf out of them. However,
there is a certain element of robustness these families of functions must satisfy. We provide the following
counterexample as a warning.

Non-example 2.0.7 (Constant function presheaf) — Let G be a group. We define to constant function
presheaf on a space X, denoted by:

Cc(− → G) : O(X)op → Groups,

by assigning to each open U ⊆ X, the group of constant functions on U :

Cc(U → G) := {f : U → G constant}.

This presheaf in general fails to satisfy the require gluing condition. Indeed, as long as G is non-trivial
and there exist disjoint open sets U, V ⊂ X, we can always construct constant functions fU and fV

11



which do not glue to a constant function:

X
U V

G

fU

fV

There is a way to fix this example, which is to consider a slightly larger, more robust class of functions.

Example 2.0.8 (Locally constant function sheaf) — Let G be a group. We define to locally constant
function sheaf on a space X, denoted by:

Clc(− → G) : O(X)op → Groups,

by assigning to each open U ⊆ X, the group of locallya constant functions on U :

Clc(U → G) := {f : U → G locally constant}.
aWe say that a function f is locally flavored when every x ∈ X admits an open neighborhood x ∈ U ⊆ X such that f

has said flavor on U .

Exercise 2.0.9. Let G be a group equipped with its discrete topology. Show that

C(U → G) = Clc(U → G) for any space U.

We will see that there is a more systematic way of enhancing a presheaf into a sheaf, i.e. a free construction:

Sheaves Presheaves
forget

free

⊣

For this we will introduce the “stalk picture” and finally discuss “germs” of functions. Before this, we include
a brief digression on spaces of sheaves.
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3
Where the sea advances insensibly in silence: What is a topos?

It is better to have a good category with bad
objects than a bad category with good
objects.

Attributed to A. Grothendieck

Consider the following example of a sheaf, which is the “dirac-delta” function’s higher analogue. Of
course this can be stated in terms of any sort of mathematical structure. But, as we are not interested in
centipede mathematics1, we will state it here for sheaves of groups.

Example 3.0.1 (Skyscraper sheaves) — Let G be a group and p ∈ X a point in a space X. The
Skyscraper sheaf over a point p ∈ X, denoted by

Gδp : O(X)op → Groups

is given on open sets by:

Gδp(U) =

{
G p ∈ U

0 else

and has “restriction” maps for U ⊆ V :

Gδp(V )→ Gδp(U) =

{
idG p ∈ U ⊆ V

0 else

One can more generally extend this construction to GχP for characteristic functions χP where P ⊂ X,
“add” these GχP ⊕X HχQ to assign different groups G,H to different points in P,Q ⊆ X, etc.

Exercise 3.0.2. What conditions on P ⊂ X, if any, does one need to impose so that one can define a sheaf
GχP on X?

The idea of sheaves being “continuous2 functions” on a site leads us to the following insight:

Idea. The space of sheaves Sh(X ) on a site X plays the role of C(X) on a space X.
1This is the yoga of removing as many hypothesis from a theorem as possible while retaining its form. How many legs can

you remove from a centipede until it is no longer a centipede? One? Fifty? Fifty-one? Ninety-nine? A hundred? Moreover,
how much discussion can one include in a footnote until it is no longer a footnote? We leave this as an exercise to the reader.

2This last example might be a bit counterintuitive, since characteristic functions are generally not continuous. But what we
normally think of as continuity will arise as a local-triviality condition later on.
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From practice, we know that the C*-algebra C(X) is quite a nice mathematical object, due to the fact
that C is quite rich. More generally, the yoga of the Yoneda lemma teaches us that algebraic structures
on an object T correspond to structures on Hom(− → T ), which in turn descend onto structure for
each Hom(X → T ). So the fact that C is a C*-algebra is what endows C(X) is said structure.

Now the same can be said for higher structures: When T is, for example, an abelian category, it follows
that the category Sh(X → T ) of sheaves on a site X valued in T will also form an abelian category.
This is the guiding principle of condensed mathematics3, where topological abelian groups are replaced
by sheaves of abelian groups on a suitable site CHaus of topological spaces.

Indeed, albeit the category of topological abelian groups is not an abelian category, we may identify a
topological abelian group G with its associated sheaf:

C(− → G) : CHausop → Ab︸︷︷︸
abelian category

which does live in an abelian category of condensed abelian groups cAb := Sh(CHaus→ Ab).4

Definition 3.0.3 — A category of the form Sh(X ) for a site X is known as a (Grothendieck) topos.

Idea. Condensed structures are like structures that need not have enough points.

For a condensed structure F : CHausop → Structure, we may consider the underlying structure

|F | := F (∗) = F ({p}),

which are to be thought of as the space of “points” of F .5 Notice how |F | could be trivial yet
ΩF := F (S1), the loop space of F , could be non-trivial. For example, consider the condensed abelian
group

H1(−;Z) := CHausop → Ab
which only has one point H1(∗;Z) = {0} and an infinite loop space H1(S1;Z) = Z. One way to think
about this is that H1 is the condensed abelian group representing the infinitely small circle.

Moreover, since we may view finite sets ∆ as discrete compact Hausdorff spaces in CHaus, there is also
an underlying simplicial structure F |∆op : ∆op → Structure.

Indeed, for condensed sets, we obtain some nice adjunctions:

sSet cSet Top
Kan

|∆op

|·|

よ

⊣ ⊣

Note that here, instead of |F | landing in Set, we equip F (∗) with an organic topology.

Exercise 3.0.4. What topology do we need to equip F (∗) with in order to obtain the desired adjunction?

3One will find different formalisms, all based on this principle, which have their own ways of dealing with size issues:
• Condensed mathematics only considers spaces smaller than an uncountable inaccessible cardinal κ, taking a (large) colimit

on κ whenever needed. In fact, they tend to restrict themselves to so-called pro-finite sets, which form a site with more-
or-less the same sheaves.

• Pyknotic mathematics only considers spaces smaller than the first strongly inaccessible cardinal κ.
• Quasi-mathematics completely disregards size issues. A quasi-topological space in the sense of Spanier is precisely a sheaf

CHausop → Ab on the large category CHaus. This is the philosophy we will follow, noting that “quasi-mathematics” is
not a standard term.

4Here it is curious that CHausop ∼= C*Algcomm. appears. Is this just a coincidence?
5Again practicing the yoga of Yoneda, the points of F are Hom(∗ ⇒ F ) = F (∗) where ∗ := よ∗ = Top(− → ∗).
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4
Love in the Time of Cholera: What is a germ?

Today, when I saw you, I realized that what is
between us is nothing more than an illusion.

Gabriel García Márquez

We have seen how sheaves on a space X serve to encode classes of partially defined functions on X
together with the way they glue together. In this section, our aim is to present the “Stalk picture” for
sheaves, which is motivated by fiber bundles.

Definition 4.0.1 (Bundles) — A (locally trivial) fiber bundle E
p−→ B with fiber F consists of:

(E) A space E called the total space;

(B) A space B called the base space

(F) A space F called the fiber, which might be equipped with Structure.

(p) A continuous map p : E → B satisfying two conditions:

• (locally trivial) Each b ∈ B admits an open neighborhood U ⊆ B such that:

U × F EU E

U U B

pU p|U p

where pU is the projection (u, f) 7→ u and p|U : EU := p−1(U)→ U is the co-restriction of p.

• (transition maps) For two such U, V ⊆ X, there is a transition map tU,V : U∩V → Aut(F ). Indeed,
consider a basepoint b ∈ U ∩ V . For each e ∈ Eb := p−1(b), we have two equivalent expressions
(or coordinates): (b, f) ∈ U × F and (b, f ′) ∈ V × F . We then define tU,V (b) by f 7→ f ′. When
the fiber F has Structure, we require these transition maps to be structure preservinga.

aThat is, we compile Aut(F ) in the category Structure.

We will quickly talk only of bundles E
p−→ B, suppressing the fibers from our notation when possible. In

order to clarify this talk of Structure and structure preserving maps, let us instantiate our cases of interest:
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• In the case when Structure = Vec, such a fiber bundle is known as a vector bundle and we require the
transition maps tU∩V : U ∩ V → Aut(V ) to have their image in linear automorphisms Vec(V → V ).

• When Structure = Hilb, these are known as Hilbert bundles and we require the transition maps to land
in bounded maps (really, the “correct” choice is unitary maps). These are closely related to so-called
Riemannian manifolds.

• One can also consider Structure = sHilb, which are then related to the semi-Riemannian manifolds
appearing in general relativity.

• Finally, for C*-bundles with Structure = C*Alg, we require that tU∩V land in ∗-algebra automorphisms.

More generally, one speaks of so-called structure groups:

Definition 4.0.2 — We say that a bundle has structure group G ≤ Aut(F ) when every Im tU∩V ⊆ G.

These structure groups are more refined than just equipping the fibers F of a bundle E p−→ B with Structure1.
For example, we may talk of n-dimensional vector bundles with structure group O(n). Similarly, we can
consider Hilbert bundles with fiber H having structure group U(H).

Before we move on to relating these bundles to our story about sheaves, we present some examples.

Example 4.0.3 (Möbius) — [[todo]]

Example 4.0.4 — For an n-dimensional (smooth) manifold M , its tangent bundle TM has fibers Rn

where, more concretely, the fiber over a basepoint b ∈M is its tangent space TbM . Viewing this as the
space of derivations at b,

TbM := {∂ : C∞(M)→ R or C | ∂(fg) = f(b)∂(g) + ∂(f)g(b) for all f, g ∈ C∞(M)}.

Exercise 4.0.5. Figure out how to equip TM with a topology so that TM →M is a vector bundle.

Non-example 4.0.6 (Unitary algebras) — [[todo]]

We now discuss how to view bundles as sheaves.

Example 4.0.7 (Bundles as sheaves) — Let E p−→ B be a fiber bundle with fiber F equipped with some
Structure. We define its sheaf of sections, denoted by:

Γ(− → E) : O(B)op → Structure,

by assigning to an open set U ⊆ B the space of sectionsa on U :

Γ(U → E) := {s : U → E continuous or smooth | U s−→ E
p−→ U = idU}.

aIn general, the sections of a morphism f : A → B are its right-inverses, i.e. the g : B → A such that fg = idB .

A particular instance of this example to keep in mind is the sheaf of vector fields on a manifold:

XM := Γ(− → TM) : O(M)op → Vec.

1Equivalently, one could restrict the morphisms in the category Structure, so that Aut(F ) is our desired group in this
subcategory. For example, one could pass from Hilb to the subcategory Hilbisom of Hilbert spaces with isometric maps in order
to obtain bundles with structure group U(H). This, however, would be a notational nightmare.
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Idea. Sheafs are like bundles where we allow the “fibers”, called stalks, to be different.

In order to recover the fiber over a basepoint b ∈ B from the section sheaf Γ(− → E) of a bundle
E, we somehow need to “shrink” the Γ(U → E) by taking smaller and smaller open neighborhoods of
b ∈ U ∈ O(B). Using the language of ultrafilters on O(X), or more generally, of directed limits in X ,
we obtain the notion of a stalk:

Definition 4.0.8 — For a sheaf F : O(X)op, its stalk over the point x ∈ X is given by the colimit

Fx := lim
O(X)∋U∋x

F (U).

This stalk is determined by a universal property where each F (U) admits a map Fx compatible with
restrictions.

In the case where F is a sheaf of functions, for example when F = C(− → G) for a topological group G,
each f ∈ C(U → G) determines a germ at x ∈ U ∈ O(X) i.e. its image under the map C(U → G) → Fx.
Thus, the stalk Fx is known as the space of germs at x, and F = C(− → G) the sheaf of germs of G-valued
functions.
To summarize our discussion so far:

Presheaves Sheaves Fiber bundles

Functions Continuous functions Constant functions

Let us now view operator algebras as sheaves through this stalk picture:

Definition 4.0.9 (unitary algebras) — [[To do]]

Theorem 4.0.10 (Dauns-Hofmann). [[To do]]

Theorem 4.0.11 (Factor decomposition). [[To do]]

We now provide a method of sheafifying any presheaf F , by first viewing it as a “generalized bundle” and
then taking its sheaf of sections.

Definition 4.0.12 (Sheafification) —

[[Figure out where to move this]]

Example 4.0.13 (2-functionals) — For a finite dimensional 2-Hilbert space X , recall that the Yoneda
embedding X → HilbX

op
is a unitary equivalence. Hence, all Grothendieck topologies on X agree with

the trivial topology and every presheaf on X is a sheaf.

Remark 4.0.14. The analogous statement one category level down is that every functional on a Hilbert space
is bounded/continuous.
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5
Failure as an option: What is sheaf cohomology?

We don’t make mistakes, just happy little
accidents.

Bob Ross

Consider a morphism1 ϕ : F ⇒ G of sheaves F,G : X op → Structure:

X op Structure

G

F

ϕ

Recall the following idea:

Idea. Maps into an algebraic structure tend to absorb this structure and reflect its properties.

In particular, when Structure forms an abelian category, we expect Sh(X ) to form a category which is
also abelian.

So, for ϕ : F ⇒ G, we should be able to construct sheaves Kerϕ and Imϕ that fit into a short exact
sequence:

0→ Kerϕ→ F
ϕ−→ Imϕ→ 0

The first construction one would guess is to define

Kerϕ : X op → Structure and Imϕ : X op → Structure

pointwise, i.e. on U ∈ X by

(Kerϕ)(U) := Ker(ϕU : F (U)→ G(U)) and (Imϕ)(U) := Im(ϕU : F (U)→ G(U))

Unfortunately, while Kerϕ is indeed a sheaf, this naive construction for Imϕ fails to be more than a
presheaf.

1By this, we just mean a natural transformation as functors X op → Structure
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Non-example 5.0.1 (exp) — The continuous map eiπ(−) : R→ T induces a sheaf map

C(− → R) ϕ=⇒ C(− → T)

given by post-composition ϕ :=よeiπ(−) , i.e. for U ∈ O(X) we define the corresponding component by:

C(U → R) ϕU−−→ C(U → T)

f(x) 7→ eiπf(x)

Consider the open cover of T = U ∪ V where U = T − {1} and V = T − {−1} are contractible. We
claim that idU ∈ (Imϕ)(U) and idV ∈ (Imϕ)(V ) yet

idU ∪ idV = idT 6∈ (Imϕ)(T).

Exercise 5.0.2. Show the previous claim by proving:
• There exists a continuous section of eiπ(−) on U , suggestively named 1

iπ ln. Convince yourself that this
is equivalent to idU ∈ (Imϕ)(U).

• Convince yourself the same holds true for V .

• Show there exists no continuous split monomorphism of T→ R by homotopical2 considerations:

π1(R)︸ ︷︷ ︸
0

← π1(T)︸ ︷︷ ︸
Z

Convince yourself this means that eiπ(−) has no continuous section on T, and hence idT 6∈ (Imϕ)(T).
Okay, so just sheafify this construction to obtain the desired Imϕ sheaf, big whoop. Well actually...
Idea. The failure of our naive construction is a feature, not a bug.

Indeed, notice the obstruction we constructed was homotopical in nature: T has nontrivial holes in
dimension 1 whereas R does not.

The idea behind sheaf cohomology is to exploit this failure in order to detect holes.

To recap, given a short exact sequence of sheaves on O(X)op:

0→ K → F → I → 0

we only have exact sequences:
0→ K(U)→ F (U)→ I(U)

which we will extend into long exact sequences:

0 K(U) F (U) I(U)

H1(U ;K) H1(U ;F ) H1(U ; I)

H2(U ;K) H2(U ;F ) H2(U ; I)

Hn(U ;K) Hn(U ;F ) Hn(U ; I)

α0

α1

2Recall that π1(Y ) := C(T → Y )/ ∼ up to homotopy for a (pointed) space Y .
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