TANNAKA-KREIN DUALITY FOR FINITE GROUPS

GIOVANNI FERRER

MATH 6131: Introduction to Representation Theory Dr. Sachin Gautam Spring 2023

ABSTRACT. The category of representations of a group forms a symmetric fusion category with a fiber functor, which is a strict faithful symmetric functor into the category of vector spaces. We show that we may recover a group from its representations in a process known as Tannaka reconstruction. Conversely, we prove Krein's theorem which states that every symmetric fusion category equipped with a fiber functor arises in this way.

CONTENTS

1.	Introduction	1
2.	Tannaka Reconstruction	3
3.	Krein's Theorem	5
References		8

The standard reference for tensor (fusion) categories is [2]. Our treatment of the Tannaka reconstruction theorem is based on [3] and the David Green's treatment of classical Tannaka reconstruction in an upcoming pre-print. The proof of the converse theorem is based on many useful discussions with David Green. However, a generalized version of this result can be found in [1].

1. INTRODUCTION

In what follows, we will only consider vector spaces and representations over \mathbb{C} . Similarly, we consider categories where each hom-set is equipped with the structure of a \mathbb{C} -vector space such that composition is bilinear. Motivated by representation theory, we provide the following definition.

Definition 1.1 — An object V in a (\mathbb{C} -linear) category \mathcal{C} is said to be *simple* when $\operatorname{End}(V) := \operatorname{Hom}_{\mathcal{C}}(V, V) = \mathbb{C}\operatorname{id}_{V}.$

A category C is *semisimple* when every object can be decomposed as a finite direct sum of simples. We further say that C is *finitely* semisimple when there are only finitely many simple objects (up to isomorphism). We denote the set of simple objects (up to isomorphism) by P(C).

Remark 1.1. One can show that every semisimple category is an abelian category such that every short exact sequence splits. In particular, any functor from a semisimple category is exact, i.e. preserves short exact sequences.

The following definition categorifies the notion of a commutative semisimple algebra.

Definition 1.2 (SFC) — A symmetric fusion category $(\mathcal{C}, \otimes, 1_{\mathcal{C}}, \alpha, \lambda, \rho, \beta)$ consists of:

- (\mathcal{C}) A finitely semisimple category \mathcal{C} ;
- (\otimes) A bifunctor \otimes : $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$;
- $(1_{\mathcal{C}})$ A simple object $1_{\mathcal{C}} \in \mathcal{C}$ called the *unit*;
- (α) An associator natural isomorphism

$$\alpha_{UVW} \colon U \otimes (V \otimes W) \to (U \otimes V) \otimes W \quad \text{for } U, V, W \in \mathcal{C};$$

 (λ) A *left unitor* natural isomorphism

$$\lambda_V \colon 1_{\mathcal{C}} \otimes V \to V \quad \text{for } V \in \mathcal{C}$$

 (ρ) A right unitor natural isomorphism

$$\rho_V \colon V \otimes 1_{\mathcal{C}} \to V \quad \text{for } V \in \mathcal{C};$$

 (β) An *interchanger* natural isomorphism

$$\beta_{V,W}: V \otimes W \to W \otimes V \text{ for } V, W \in \mathcal{C}.$$

We require that:

- Any two ways of reparenthesization, adding or removing the unit, swapping objects with α , λ , ρ , β , and identities agree.
- For every object $V \in \mathcal{C}$, there exists a *dual* object $V^* \in \mathcal{C}$ with maps

 $\mathsf{ev}: V^* \otimes V \to 1_{\mathcal{C}} \quad \text{and} \quad \mathsf{coev}: 1_{\mathcal{C}} \to V \otimes V^*,$

such that any two ways of annihilating and producing V, V^* with ev, coev, and identities agree.

Example 1.3 — The category Vec of vector spaces and linear maps admits a canonical structure of a symmetric fusion category. In particular,

- \otimes is given by the ordinary tensor product,
- 1_{Vec} is given by the one-dimensional vector space \mathbb{C} ,
- the coherence natural isomorphisms α , λ , ρ , and β are given on simple tensors in the obvious way,
- V^* is given by the dual vector space of V, **ev** is given by function evaluation on simple tensors, and **coev** is determined on $1 \in \mathbb{C}$ by the canonical tensor $\sum e^i \otimes e_i$ in $V \otimes V^*$ where $\{e_i\}$ is any basis on V and $\{e^i\}$ is the induced dual basis on V^* .

Example 1.4 — For a finite group G, consider the category $\operatorname{Rep}(G)$ of finite dimensional representations of G and G-intertwiners.

- In class, we showed that $\operatorname{Rep}(G)$ is finitely semisimple.
- Furthermore, recall that $\operatorname{Rep}(G)$ inherits tensors and duals from Vec, hence turning $\operatorname{Rep}(G)$ into a symmetric fusion category.

In particular, for G-representation (V, ρ_V) and (W, ρ_W) , we have

 $(V, \rho_V) \otimes (W, \rho_W) \coloneqq (V \otimes W, \rho_V \otimes \rho_W),$

that is, $\rho_{V\otimes W} \coloneqq \rho_V \otimes \rho_W$. Given (V, ρ_V) one also defines the action of G on V^* by $(g \cdot \varphi)(v) = \varphi(g^{-1} \cdot v) \quad \text{for } \varphi \in V^* \text{ and } v \in V.$

Remark 1.2. For a finite group G, notice that $\operatorname{Rep}(G)$ admits a forgetful functor

$$F: \operatorname{\mathsf{Rep}}(G) \to \operatorname{\mathsf{Vec}} (V, \rho_V) \mapsto V.$$

By construction, F is faithful and preserves the tensor, unit, and coherence natural isomorphisms on Rep(G). In this note, we will call such strict faithful symmetric functors from a general symmetric fusion category into Vec a *fiber functor*.

Definition 1.5 — Given any (\mathbb{C} -linear) functor $F : \mathcal{C} \to \mathcal{D}$ between (\mathbb{C} -linear) categories, there is an algebra $\operatorname{End}(F)$ of natural transformations from F to itself. The vector space structure on $\operatorname{End}(F)$ is determined component-wise and the multiplication is given by composition of natural transformations.

Moreover, when \mathcal{C} and \mathcal{D} are symmetric fusion categories with F perserving the tensor, unit, and coherence natural isomorphisms, we may define a group $\operatorname{Aut}_{\otimes}(F)$ of natural isomorphisms from F to itself such that $\eta_{V\otimes W} = \eta_V \otimes \eta_W$ for $V, W \in \mathcal{C}$.

2. TANNAKA RECONSTRUCTION

Given a finite group G, we may produce its category of representations $\operatorname{Rep}(G)$ together with its fiber functor $F \colon \operatorname{Rep}(G) \to \operatorname{Vec}$. Conversely, given this symmetric fusion category $\operatorname{Rep}(G)$ with its fiber functor F, we may construct a group $\operatorname{Aut}_{\otimes}(F)$ of \otimes -natural isomorphisms from F to itself. In this section, we will show that this reconstructs the original group G, i.e.

$$G \cong \operatorname{Aut}_{\otimes}(\operatorname{\mathsf{Rep}}(G) \xrightarrow{F} \operatorname{\mathsf{Vec}}).$$

We first recall some facts about the group algebra $\mathbb{C}[G]$ of a finite group G, which is given by

$$\mathbb{C}[G] \coloneqq \left\{ \sum_{g \in G} z_g \delta_g \ \middle| \ z_g \in \mathbb{C} \right\}.$$

First notice that $\mathbb{C}[G]$ admits a G-action determined by left multiplication

$$g_0 \cdot \delta_g \coloneqq \delta_{g_0g}$$
 for $g_0 \in G$ and $\delta_g \in \mathbb{C}[G]$.

In this sense, we obtain the following fact.

Fact 2.1 — For $(V, \rho_V) \in \mathsf{Rep}(G)$, we have $F(V) = \operatorname{Hom}_{\mathsf{Rep}(G)}(\mathbb{C}[G], V)$.

Proof of Fact. Given $v \in F(V)$, we define $T : \mathbb{C}[G] \to V$ by

$$T\sum z_g\delta_g = \sum z_g\rho_V(g)(v).$$

Conversely, we identify $T \colon \mathbb{C}[G] \to V$ with $T\delta_e \in V$.

In particular, since $\mathbb{C}[G]$ acts on $\operatorname{Hom}(\mathbb{C}[G], V)$, each *G*-representation can be uniquely extended to a $\mathbb{C}[G]$ -representation. In what follows, we will identity $\operatorname{Rep}(G)$ with $\operatorname{Rep}(\mathbb{C}[G])$.

Moreover, the group algebra $\mathbb{C}[G]$ admits the structure of a co-commutative Hopf algebra with comultiplication $\Delta \colon \mathbb{C}[G] \to \mathbb{C}[G] \otimes \mathbb{C}[G]$, counit $\epsilon \colon \mathbb{C}[G] \to \mathbb{C}$, and antipode $S \colon \mathbb{C}[G] \to \mathbb{C}[G]$ determined by:

$$\begin{split} \Delta(\delta_g) &\coloneqq \delta_g \otimes \delta_g \\ \epsilon(\delta_g) &\coloneqq 1 \\ S(\delta_g) &\coloneqq \delta_{g^{-1}}. \end{split}$$

Fact 2.2 — The grouplike elements of $\mathbb{C}[G]$ are precisely those $\delta_g \in \mathbb{C}[G]$ for $g \in G$, i.e. $a \neq 0$ with $\Delta(a) = a \otimes a$ if and only if $a = \delta_g$ for some $g \in G$.

Proof of Fact. Indeed, if $a \neq 0$ such that $\Delta(a) = a \otimes a$, then

$$\epsilon(a) = (\epsilon \otimes \epsilon)(\Delta(a)) = \epsilon(a)^2$$

implying $\epsilon(a) = 0$ or 1. So if $a = \sum z_g \delta_g$, then $\epsilon(a) = \sum z_g = 0$ or 1. Now observe $\sum_{g \in G} z_g \, \delta_g \otimes \delta_g = \Delta(a) = a \otimes a = \sum_{g,h \in G} z_g z_h \, \delta_g \otimes \delta_h.$

Hence $z_g = z_g^2$ which occurs only when $z_g = 0$ or 1 for every $g \in G$. Since $a \neq 0$, we conclude that $a = \delta_g$ for some $g \in G$. The converse is immediate by definition of Δ .

We are now ready to prove the main result of this section.

Theorem 2.3 (Tannaka Reconstruction). For a finite group G, we have $G \cong \operatorname{Aut}_{\otimes}(\operatorname{Rep}(G) \xrightarrow{F} \operatorname{Vec}).$

Proof. By the Yoneda Lemma, we have

$$\operatorname{Hom}_{\operatorname{\mathsf{Rep}}(G)}(\mathbb{C}[G],\mathbb{C}[G])\cong\operatorname{Hom}(\operatorname{Hom}(\mathbb{C}[G],-),\operatorname{Hom}(\mathbb{C}[G],-)).$$

So from Fact 2, we have $\mathbb{C}[G] \cong \operatorname{End}(F)$ as vector spaces. In particular, the Yoneda map¹ $\rho \colon \mathbb{C}[G] \to \operatorname{End}(F)$ is determined on $\delta_g \in \mathbb{C}[G]$ by the natural transformation

$$\rho(\delta_g) = (\rho(\delta_g)_V \colon F(V) \to F(V)),$$

whose component on $(V, \rho_V) \in \mathsf{Rep}(G)$ is given by

$$\rho(\delta_g)_V \coloneqq \rho_V(g)$$

From this definition, it is clear that ρ is also an algebra isomorphism, i.e.

$$\rho(\delta_q)\rho(\delta_h) = \rho(\delta_{qh}) \text{ for all } g, h \in G.$$

Furthermore, each $\rho(\delta_g) \in \operatorname{Aut}_{\otimes}(F)$ since every $\rho_V(g)$ is invertible with

$$\rho_{V\otimes W}(g) \coloneqq \rho_V(g) \otimes \rho_W(g).$$

¹Recall that the Yoneda map $\operatorname{Hom}(X, Y) \to \operatorname{Hom}(\operatorname{Hom}(X, -) \to \operatorname{Hom}(Y, -))$ is given on $f \colon X \to Y$ by precomposition f^* by f. Through our identifications, for $(V, \rho_V) \in \operatorname{Rep}(G)$ and $v \in F(V)$, we have $v = T\delta_e$ for some $T \colon \mathbb{C}[G] \to V$ and δ_q^* is precisely the map which sends $v = T\delta_e$ to $\rho_V(g)(v) = T\delta_g\delta_e$.

Now suppose $\rho(a) \in \operatorname{Aut}_{\otimes}(F)$. Then $a \neq 0$ and $\rho_{\mathbb{C}[G] \otimes \mathbb{C}[G]} = \rho_{\mathbb{C}[G]} \otimes \rho_{\mathbb{C}[G]}$. Hence $\Delta(a) = \rho_{\mathbb{C}[G] \otimes \mathbb{C}[G]}(a)(\delta_e \otimes \delta_e) = \rho_{\mathbb{C}[G]}(a)(\delta_e) \otimes \rho_{\mathbb{C}[G]}(a)(\delta_e) = a \otimes a.$

By Fact 2.2, we conclude that $a = \delta_g$ for some $g \in G$.

3. Krein's Theorem

Given a symmetric fusion category \mathcal{C} with a fiber functor $F: \mathcal{C} \to \mathsf{Vec}$, we may construct the group $\operatorname{Aut}_{\otimes}(F)$ of \otimes -natural automorphisms of F. Conversely, given the group $\operatorname{Aut}_{\otimes}(F)$, we may construct a symmetric fusion category of its representations $\operatorname{Rep}(\operatorname{Aut}_{\otimes}(F))$ together with its fiber functor. In this section, we will show that this reconstructs the original symmetric fusion category \mathcal{C} with fiber functor $F: \mathcal{C} \to \operatorname{Rep}$, i.e.

Lemma 3.1 — For a SFC C with fiber functor $F: C \to \mathsf{Vec}$, there exists an equivalence of categories $\widehat{F}: C \to \mathsf{Rep}(\mathrm{End}(C \xrightarrow{F} \mathsf{Vec}))$ such that the following diagram commutes

Proof of Lemma. We will first construct an equivalence of (linear) categories

$$\widehat{F}: \mathcal{C} \to \mathsf{Rep}(\mathrm{End}(F)).$$

For $C \in \mathcal{C}$, we define

$$\widehat{F}(C) \coloneqq (F(C), \rho_{F(C)})$$

where $\rho_{F(C)}(\alpha) \coloneqq \alpha_C$ for $\alpha \colon F \Rightarrow F$. For $f \colon C \to C'$ in \mathcal{C} , we then set $\widehat{F}(f) = F(f)$. Since F is faithful, \widehat{F} is a faithful. It is also clear by construction that the desired triangle commutes.

To show \widehat{F} is essentially surjective and full, we first introduce a tensoring for \mathcal{C} compatible with F. By choosing a basis $V \xrightarrow{\sim} \mathbb{C}^n$ for every vector space V, we may define

$$\mathcal{C} \times \mathsf{Vec} \to \mathcal{C}$$
$$(C, V) \mapsto C \otimes V$$

together with natural isomorphisms

$$\tau_{C,V} \colon F(C \otimes V) \to F(C) \otimes V$$

and

$$\mu_{C,V,W} \colon C \otimes (V \otimes W) \to (C \otimes V) \otimes W$$

as follows. Set $C \otimes V \coloneqq V^{\oplus n}$ and choose the maps

$$\tau_{C,V} \colon F(C^{\oplus n}) = F(C)^{\oplus n} = F(C) \otimes \mathbb{C}^n \xrightarrow{\sim} F(C) \otimes V$$

determined by the basis $V \xrightarrow{\sim} \mathbb{C}^n$, and

$$\mu_{C,V,W} \colon C^{\oplus (n+m)} \to C^{\oplus (n+m)}$$

to be the obvious morphism in \mathcal{C} determined by the change of basis matrix

$$\mathbb{C}^{n+m} \to V \otimes W \to \mathbb{C}^n \otimes \mathbb{C}^m = \mathbb{C}^{n+m}.$$

One extends \otimes to morphisms similarly. We now set

$$X_F \coloneqq \bigoplus_{X_i \in P(\mathcal{C})} X_i \otimes F(X_i)^*.$$

Now notice that each $\alpha \in \text{End}(F)$ is uniquely determined by $\alpha_{X_i} \in \text{End}(F(X_i))$ for $X_i \in P(\mathcal{C})$ since \mathcal{C} is semisimple and $\alpha_{C \oplus C'} = \alpha_C \oplus \alpha_{C'}$ for $C, C' \in \mathcal{C}$. Conversely, one can easily show that choosing $\beta_{X_i} \in \text{End}(F(X_i))$ for every $X_i \in P(\mathcal{C})$ determines a natural transformation $\beta \in \text{End}(F)$. In summary,

$$\operatorname{End}(F) = \bigoplus_{X_i \in P(\mathcal{C})} \operatorname{End}(F(X_i)).$$

Now notice

$$\operatorname{End}(F) = \bigoplus_{X_i \in P(\mathcal{C})} F(X_i) \otimes F(X_i)^* = \bigoplus_{X_i \in P(\mathcal{C})} F(X_i \otimes F(X_i)^*) = F(X_F).$$

One verifies that through this identification, the action of $\operatorname{End}(F)$ on $F(X_F)$ agrees with left multiplication (postcomposition) on $\operatorname{End}(F)$. We are now ready to show \widehat{F} is essentially surjective. Consider some $(V, \rho_V) \in \operatorname{Rep}(\operatorname{End}(F))$. Let $C \in \mathcal{C}$ be the coequalizer

$$C := \operatorname{coeq} \left(X_F \otimes \operatorname{End}(F) \otimes V \xrightarrow[ev \otimes \operatorname{id}_F \otimes \rho_V]{} X_F \otimes V \right)$$

where the bottom arrow is given by

$$X_F \otimes \operatorname{End}(F) \otimes V = X_F \otimes \operatorname{End}(X_F) \otimes V \xrightarrow{\operatorname{ev} \otimes \operatorname{id}_V} X_F \otimes V.$$

Here, we have used the map ev: $C \otimes \text{Hom}(C, C') \to C'$ given on the summand indexed by $f: C \to C'$ by f itself. Now notice that

$$F(C) = \operatorname{coeq} \left(F(X_F) \otimes \operatorname{End}(F) \otimes V \rightrightarrows F(X_F) \otimes V \right)$$

= coeq (End(F) \otimes End(F) $\otimes V \rightrightarrows$ End(F) $\otimes V$)
= End(F) $\otimes_{\operatorname{End}(F)} V$
= V.

By our previous remarks about the action of End(F) on $F(X_F)$, we see that

$$\widehat{F}(C) = (V, \rho).$$

Finally, to see that \widehat{F} is full, notice that an $\operatorname{End}(F)$ -intertwiner $\varphi \colon (V, \rho_V) \to (W, \rho_W)$ induces a morphism of diagrams:

We then obtain a morphism f between the coequalizers of both diagrams. One then see that $\widehat{F}(f) = F(f) = \operatorname{id}_{\operatorname{End}(F)} \otimes_{\operatorname{End}(F)} \varphi = \varphi$. We conclude that $\widehat{F} \colon \mathcal{C} \to \operatorname{Rep}(\operatorname{End}(F))$.

Fact 3.2 — For a Hopf algebra H, the grouplike elements G of H form a group.

Proof of Fact. The fact that G is closed under multiplication follows from the condition that comultiplication is an algebra map. As in Fact 2.2, one verifies that $g \in G$ satisfies $\epsilon(g) = 1$. It then follows that $S(g) = g^{-1}$ since

$$S(a)a = m(S \otimes id)(a \otimes a) = m(S \otimes id)\Delta a = 1\epsilon(a) = 1$$

and similarly aS(a) = 1.

Fact 3.3 — Let H be a finite dimensional (complex) co-commutative Hopf algebra. Then H is the group algebra $\mathbb{C}[G]$ of the group-like elements G of H.

Proof of Fact. This seems to be corollary of the Cartier-Konstant-Milnor-Moore classification theorem. Unfortunately, I could not find a simpler proof of this fact.

Lemma 3.4 — We may equip $\operatorname{End}(F)$ with the structure of a Hopf algebra such that the grouplike elements of $\operatorname{End}(F)$ are $\operatorname{Aut}_{\otimes}(F)$.

Proof of Lemma. Similar to the tensor product of algebras, there is a Deligne tensor product $\mathcal{C} \boxtimes \mathcal{D}$ of semisimple categories \mathcal{C}, \mathcal{D} which admits a separately linear functor

$$\mathcal{C} \times \mathcal{D} \to \mathcal{C} \boxtimes \mathcal{D}$$

such that for linear functors $G: \mathcal{D} \to \mathcal{E}$ and $H: \mathcal{D} \to \mathcal{E}$, there exists a unique linear functor $G \boxtimes H$ such that the following diagram commutes

The Deligne tensor product satisfies

$$\operatorname{End}(G) \otimes \operatorname{End}(H) = \operatorname{End}(G \boxtimes H).$$

In particular, $\operatorname{End}(F) \otimes \operatorname{End}(F) = \operatorname{End}(F \boxtimes F)$. We then define the coproduct

$$\Delta \colon \operatorname{End}(F) \to \operatorname{End}(F) \otimes \operatorname{End}(F)$$

by $\Delta \alpha \in \operatorname{End}(F \boxtimes F)$ for $\alpha \in F$ by

$$(\Delta \alpha)_{(C,C')} \coloneqq \alpha_{C \otimes C'}.$$

From this definition together with Fact 3.2, it is clear that $\Delta \alpha = \alpha \otimes \alpha$ if and only if $\alpha \in Aut_{\otimes}(F)$. We then define the counit

 $\epsilon \colon \operatorname{End}(F) \to \mathbb{C}$

by $\epsilon(\alpha) \coloneqq \alpha_1$ where $\alpha_1 \in \text{End}(F(1)) = \text{End}(1) = \mathbb{C}$. Finally, we define the antipode

 $S \colon \operatorname{End}(F) \to \operatorname{End}(F)$

by $S(\alpha)_C := \alpha_{C^*}^*$ for $C \in \mathcal{C}$. One checks that the associator, unitors, and interchanger in \mathcal{C} are absorbed by the canonical associator, unitors, and interchangers of algebras and the identification of $\operatorname{End}(G) \otimes \operatorname{End}(H)$ with $\operatorname{End}(G \boxtimes H)$. In particular, Δ is co-associative, ϵ is co-unital, and Δ is co-commutative.

Theorem 3.5 (Krein). For a SFC C with fiber functor $F: C \to \mathsf{Vec}$,

$$\mathcal{C} \cong \mathsf{Rep}(\mathrm{Aut}_{\otimes}(\mathcal{C} \xrightarrow{F} \mathsf{Vec}))$$

as symmetric fusion categories, such that the following diagram commutes

Proof. By Lemma 3.4, $\operatorname{End}(F) = \bigoplus_{X_i \in P(\mathcal{C})} \operatorname{End}(F(X_i))$ is a finite dimensional co-commutative Hopf algebra, with grouplike elements $\operatorname{Aut}_{\otimes}(F)$. By Fact 3.3,

$$\operatorname{End}(F) = \mathbb{C}[\operatorname{Aut}_{\otimes}(F)].$$

Therefore, Lemma 3.1 yields that

$$\mathcal{C} \cong \mathsf{Rep}(\mathbb{C}[\operatorname{Aut}_{\otimes}(F)]) = \mathsf{Rep}(\operatorname{Aut}_{\otimes}(F))$$

as categories. Finally, for $\alpha \in \operatorname{Aut}_{\otimes}(F)$ and $C, C' \in \mathcal{C}$, observe

$$\rho_{F(C\otimes C')}(\alpha) = \alpha_{F(C\otimes C')} = \alpha_{F(C)} \otimes \alpha_{F(C')} = \rho_{F(C)} \otimes \rho_{F(C')}(\alpha).$$

So $\widehat{F}(C) \otimes \widehat{F}(C') = \widehat{F}(C \otimes C')$ when we restrict ourselves to the action of $\operatorname{Aut}_{\otimes}(F) \subset \operatorname{End}(F)$. Therefore, $\mathcal{C} \cong \operatorname{Rep}(\operatorname{Aut}_{\otimes}(F))$ as symmetric fusion categories.

References

- [1] P. Deligne and J. S. Milne. Tannakian categories.
- [2] Pavel I. Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. *Tensor categories*. American Mathematical Society, 2017.
- [3] Pavel I. Etingof and Olivier Schiffmann. Lectures on quantum groups. International Press, 2012.