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Abstract. The category of representations of a group forms a symmetric fusion category
with a fiber functor, which is a strict faithful symmetric functor into the category of vector
spaces. We show that we may recover a group from its representations in a process known
as Tannaka reconstruction. Conversely, we prove Krein’s theorem which states that every
symmetric fusion category equipped with a fiber functor arises in this way.
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The standard reference for tensor (fusion) categories is [2]. Our treatment of the Tannaka
reconstruction theorem is based on [3] and the David Green’s treatment of classical Tannaka
reconstruction in an upcoming pre-print. The proof of the converse theorem is based on
many useful discussions with David Green. However, a generalized version of this result can
be found in [1].

1. Introduction

In what follows, we will only consider vector spaces and representations over C. Similarly,
we consider categories where each hom-set is equipped with the structure of a C-vector
space such that composition is bilinear. Motivated by representation theory, we provide the
following definition.

Definition 1.1 — An object V in a (C-linear) category C is said to be simple when

End(V ) := HomC(V, V ) = C idV .

A category C is semisimple when every object can be decomposed as a finite direct sum
of simples. We further say that C is finitely semisimple when there are only finitely
many simple objects (up to isomorphism). We denote the set of simple objects (up to
isomorphism) by P (C).

Remark 1.1. One can show that every semisimple category is an abelian category such that
every short exact sequence splits. In particular, any functor from a semisimple category is
exact, i.e. preserves short exact sequences.
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The following definition categorifies the notion of a commutative semisimple algebra.

Definition 1.2 (SFC) — A symmetric fusion category (C,⊗, 1C, α, λ, ρ, β) consists of:

(C) A finitely semisimple category C;
(⊗) A bifunctor ⊗ : C × C → C;
(1C) A simple object 1C ∈ C called the unit ;
(α) An associator natural isomorphism

αUVW : U ⊗ (V ⊗W ) → (U ⊗ V )⊗W for U, V,W ∈ C;
(λ) A left unitor natural isomorphism

λV : 1C ⊗ V → V for V ∈ C;
(ρ) A right unitor natural isomorphism

ρV : V ⊗ 1C → V for V ∈ C;
(β) An interchanger natural isomorphism

βV,W : V ⊗W → W ⊗ V for V,W ∈ C.
We require that:

• Any two ways of reparenthesization, adding or removing the unit, swapping
objects with α, λ, ρ, β, and identities agree.

• For every object V ∈ C, there exists a dual object V ∗ ∈ C with maps

ev : V ∗ ⊗ V → 1C and coev : 1C → V ⊗ V ∗,

such that any two ways of annihilating and producing V ,V ∗ with ev, coev, and
identities agree.

Example 1.3 — The category Vec of vector spaces and linear maps admits a canonical
structure of a symmetric fusion category. In particular,

• ⊗ is given by the ordinary tensor product,
• 1Vec is given by the one-dimensional vector space C,
• the coherence natural isomorphisms α, λ, ρ, and β are given on simple tensors in
the obvious way,

• V ∗ is given by the dual vector space of V , ev is given by function evaluation on
simple tensors, and coev is determined on 1 ∈ C by the canonical tensor

∑
ei⊗ ei

in V ⊗ V ∗ where {ei} is any basis on V and {ei} is the induced dual basis on V ∗.

Example 1.4 — For a finite group G, consider the category Rep(G) of finite dimensional
representations of G and G-intertwiners.

• In class, we showed that Rep(G) is finitely semisimple.
• Furthermore, recall that Rep(G) inherits tensors and duals from Vec, hence
turning Rep(G) into a symmetric fusion category.

In particular, for G-representation (V, ρV ) and (W, ρW ), we have

(V, ρV )⊗ (W, ρW ) := (V ⊗W, ρV ⊗ ρW ),
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that is, ρV⊗W := ρV ⊗ ρW . Given (V, ρV ) one also defines the action of G on V ∗ by

(g · φ)(v) = φ(g−1 · v) for φ ∈ V ∗ and v ∈ V.

Remark 1.2. For a finite group G, notice that Rep(G) admits a forgetful functor

F : Rep(G) → Vec

(V, ρV ) 7→ V.

By construction, F is faithful and preserves the tensor, unit, and coherence natural isomor-
phisms on Rep(G). In this note, we will call such strict faithful symmetric functors from a
general symmetric fusion category into Vec a fiber functor.

Definition 1.5 — Given any (C-linear) functor F : C → D between (C-linear) categories,
there is an algebra End(F ) of natural transformations from F to itself. The vector space
structure on End(F ) is determined component-wise and the multiplication is given by
composition of natural transformations.

Moreover, when C and D are symmetric fusion categories with F perserving the tensor,
unit, and coherence natural isomorphisms, we may define a group Aut⊗(F ) of natural
isomorphisms from F to itself such that ηV⊗W = ηV ⊗ ηW for V,W ∈ C.

2. Tannaka Reconstruction

Given a finite group G, we may produce its category of representations Rep(G) together with
its fiber functor F : Rep(G) → Vec. Conversely, given this symmetric fusion category Rep(G)
with its fiber functor F , we may construct a group Aut⊗(F ) of ⊗-natural isomorphisms from
F to itself. In this section, we will show that this reconstructs the original group G, i.e.

G ∼= Aut⊗(Rep(G)
F−→ Vec).

We first recall some facts about the group algebra C[G] of a finite group G, which is given by

C[G] :=

{∑
g∈G

zgδg

∣∣∣∣∣ zg ∈ C

}
.

First notice that C[G] admits a G-action determined by left multiplication

g0 · δg := δg0g for g0 ∈ G and δg ∈ C[G].

In this sense, we obtain the following fact.

Fact 2.1 — For (V, ρV ) ∈ Rep(G), we have F (V ) = HomRep(G)(C[G], V ).

Proof of Fact. Given v ∈ F (V ), we define T : C[G] → V by

T
∑

zgδg =
∑

zgρV (g)(v).

Conversely, we identify T : C[G] → V with Tδe ∈ V . ■
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In particular, since C[G] acts on Hom(C[G], V ), each G-representation can be uniquely
extended to a C[G]-representation. In what follows, we will identity Rep(G) with Rep(C[G]).

Moreover, the group algebra C[G] admits the structure of a co-commutative Hopf algebra
with comultiplication ∆: C[G] → C[G]⊗C[G], counit ϵ : C[G] → C, and antipode S : C[G] →
C[G] determined by:

∆(δg) := δg ⊗ δg

ϵ(δg) := 1

S(δg) := δg−1 .

Fact 2.2 — The grouplike elements of C[G] are precisely those δg ∈ C[G] for g ∈ G, i.e.

a ̸= 0 with ∆(a) = a⊗ a if and only if a = δg for some g ∈ G.

Proof of Fact. Indeed, if a ̸= 0 such that ∆(a) = a⊗ a, then

ϵ(a) = (ϵ⊗ ϵ)(∆(a)) = ϵ(a)2,

implying ϵ(a) = 0 or 1. So if a =
∑

zgδg, then ϵ(a) =
∑

zg = 0 or 1. Now observe∑
g∈G

zg δg ⊗ δg = ∆(a) = a⊗ a =
∑
g,h∈G

zgzh δg ⊗ δh.

Hence zg = z2g which occurs only when zg = 0 or 1 for every g ∈ G. Since a ≠ 0, we conclude
that a = δg for some g ∈ G. The converse is immediate by definition of ∆. ■

We are now ready to prove the main result of this section.

Theorem 2.3 (Tannaka Reconstruction). For a finite group G, we have

G ∼= Aut⊗(Rep(G)
F−→ Vec).

Proof. By the Yoneda Lemma, we have

HomRep(G)(C[G],C[G]) ∼= Hom(Hom(C[G],−),Hom(C[G],−)).

So from Fact 2, we have C[G] ∼= End(F ) as vector spaces. In particular, the Yoneda map1

ρ : C[G] → End(F ) is determined on δg ∈ C[G] by the natural transformation

ρ(δg) = (ρ(δg)V : F (V ) → F (V )),

whose component on (V, ρV ) ∈ Rep(G) is given by

ρ(δg)V := ρV (g).

From this definition, it is clear that ρ is also an algebra isomorphism, i.e.

ρ(δg)ρ(δh) = ρ(δgh) for all g, h ∈ G.

Furthermore, each ρ(δg) ∈ Aut⊗(F ) since every ρV (g) is invertible with

ρV⊗W (g) := ρV (g)⊗ ρW (g).

1Recall that the Yoneda map Hom(X,Y ) → Hom(Hom(X,−) → Hom(Y,−)) is given on f : X → Y by
precomposition f∗ by f . Through our identifications, for (V, ρV ) ∈ Rep(G) and v ∈ F (V ), we have v = Tδe
for some T : C[G] → V and δ∗g is precisely the map which sends v = Tδe to ρV (g)(v) = Tδgδe.
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Now suppose ρ(a) ∈ Aut⊗(F ). Then a ̸= 0 and ρC[G]⊗C[G] = ρC[G] ⊗ ρC[G]. Hence

∆(a) = ρC[G]⊗C[G](a)(δe ⊗ δe) = ρC[G](a)(δe)⊗ ρC[G](a)(δe) = a⊗ a.

By Fact 2.2, we conclude that a = δg for some g ∈ G. □

3. Krein’s Theorem

Given a symmetric fusion category C with a fiber functor F : C → Vec, we may construct the
group Aut⊗(F ) of ⊗-natural automorphisms of F . Conversely, given the group Aut⊗(F ), we
may construct a symmetric fusion category of its representations Rep(Aut⊗(F )) together with
its fiber functor. In this section, we will show that this reconstructs the original symmetric
fusion category C with fiber functor F : C → Rep, i.e.

C Rep(Aut⊗(C
F−→ Vec))

Vec

∼

F

Lemma 3.1 — For a SFC C with fiber functor F : C → Vec, there exists an equivalence

of categories F̂ : C → Rep(End(C F−→ Vec)) such that the following diagram commutes

C Rep(End(F ))

Vec

F̂

F

Proof of Lemma. We will first construct an equivalence of (linear) categories

F̂ : C → Rep(End(F )).

For C ∈ C, we define

F̂ (C) := (F (C), ρF (C))

where ρF (C)(α) := αC for α : F ⇒ F . For f : C → C ′ in C, we then set F̂ (f) = F (f). Since F

is faithful, F̂ is a faithful. It is also clear by construction that the desired triangle commutes.

To show F̂ is essentially surjective and full, we first introduce a tensoring for C compatible
with F . By choosing a basis V

∼−→ Cn for every vector space V , we may define

C × Vec → C
(C, V ) 7→ C ⊗ V

together with natural isomorphisms

τC,V : F (C ⊗ V ) → F (C)⊗ V

and
µC,V,W : C ⊗ (V ⊗W ) → (C ⊗ V )⊗W

as follows. Set C ⊗ V := V ⊕n and choose the maps

τC,V : F (C⊕n) = F (C)⊕n = F (C)⊗ Cn ∼−→ F (C)⊗ V
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determined by the basis V
∼−→ Cn, and

µC,V,W : C⊕(n+m) → C⊕(n+m)

to be the obvious morphism in C determined by the change of basis matrix

Cn+m → V ⊗W → Cn ⊗ Cm = Cn+m.

One extends ⊗ to morphisms similarly. We now set

XF :=
⊕

Xi∈P (C)

Xi ⊗ F (Xi)
∗.

Now notice that each α ∈ End(F ) is uniquely determined by αXi
∈ End(F (Xi)) for Xi ∈ P (C)

since C is semisimple and αC⊕C′ = αC ⊕ αC′ for C,C ′ ∈ C. Conversely, one can easily show
that choosing βXi

∈ End(F (Xi)) for every Xi ∈ P (C) determines a natural transformation
β ∈ End(F ). In summary,

End(F ) =
⊕

Xi∈P (C)

End(F (Xi)).

Now notice

End(F ) =
⊕

Xi∈P (C)

F (Xi)⊗ F (Xi)
∗ =

⊕
Xi∈P (C)

F (Xi ⊗ F (Xi)
∗) = F (XF ).

One verifies that through this identification, the action of End(F ) on F (XF ) agrees with

left multiplication (postcomposition) on End(F ). We are now ready to show F̂ is essentially
surjective. Consider some (V, ρV ) ∈ Rep(End(F )). Let C ∈ C be the coequalizer

C := coeq

(
XF ⊗ End(F )⊗ V XF ⊗ V

ev⊗idV

idF⊗ρV
)

where the bottom arrow is given by

XF ⊗ End(F )⊗ V = XF ⊗ End(XF )⊗ V
ev⊗idV−−−−→ XF ⊗ V.

Here, we have used the map ev : C ⊗ Hom(C,C ′) → C ′ given on the summand indexed by
f : C → C ′ by f itself. Now notice that

F (C) = coeq (F (XF )⊗ End(F )⊗ V ⇒ F (XF )⊗ V )

= coeq (End(F )⊗ End(F )⊗ V ⇒ End(F )⊗ V )

= End(F )⊗End(F ) V

= V.

By our previous remarks about the action of End(F ) on F (XF ), we see that

F̂ (C) = (V, ρ).
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Finally, to see that F̂ is full, notice that an End(F )-intertwiner φ : (V, ρV ) → (W, ρW ) induces
a morphism of diagrams:

XF ⊗ End(F )⊗ V XF ⊗ V

XF ⊗ End(F )⊗W XF ⊗W

id⊗id⊗φ id⊗φ

ev⊗idV

idF⊗ρV

ev⊗idW

idF⊗ρW

We then obtain a morphism f between the coequalizers of both diagrams. One then see that

F̂ (f) = F (f) = idEnd(F ) ⊗End(F ) φ = φ. We conclude that F̂ : C → Rep(End(F )). ■

Fact 3.2 — For a Hopf algebra H, the grouplike elements G of H form a group.

Proof of Fact. The fact that G is closed under multiplication follows from the condition that
comultiplication is an algebra map. As in Fact 2.2, one verifies that g ∈ G satisfies ϵ(g) = 1.
It then follows that S(g) = g−1 since

S(a)a = m(S ⊗ id)(a⊗ a) = m(S ⊗ id)∆a = 1ϵ(a) = 1,

and similarly aS(a) = 1. ■

Fact 3.3 — Let H be a finite dimensional (complex) co-commutative Hopf algebra.
Then H is the group algebra C[G] of the group-like elements G of H.

Proof of Fact. This seems to be corollary of the Cartier-Konstant-Milnor-Moore classification
theorem. Unfortunately, I could not find a simpler proof of this fact. ■

Lemma 3.4 — We may equip End(F ) with the structure of a Hopf algebra such that
the grouplike elements of End(F ) are Aut⊗(F ).

Proof of Lemma. Similar to the tensor product of algebras, there is a Deligne tensor product
C ⊠D of semisimple categories C,D which admits a separately linear functor

C × D → C ⊠D
such that for linear functors G : D → E and H : D → E , there exists a unique linear functor
G⊠H such that the following diagram commutes

C ⊠D

C ×D E

G⊠H

G×H

The Deligne tensor product satisfies

End(G)⊗ End(H) = End(G⊠H).

In particular, End(F )⊗ End(F ) = End(F ⊠ F ). We then define the coproduct

∆: End(F ) → End(F )⊗ End(F )
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by ∆α ∈ End(F ⊠ F ) for α ∈ F by

(∆α)(C,C′) := αC⊗C′ .

From this definition together with Fact 3.2, it is clear that ∆α = α ⊗ α if and only if
α ∈ Aut⊗(F ). We then define the counit

ϵ : End(F ) → C
by ϵ(α) := α1 where α1 ∈ End(F (1)) = End(1) = C. Finally, we define the antipode

S : End(F ) → End(F )

by S(α)C := α∗
C∗ for C ∈ C. One checks that the associator, unitors, and interchanger in

C are absorbed by the canonical associator, unitors, and interchangers of algebras and the
identification of End(G)⊗ End(H) with End(G⊠H). In particular, ∆ is co-associative, ϵ is
co-unital, and ∆ is co-commutative. ■

Theorem 3.5 (Krein). For a SFC C with fiber functor F : C → Vec,

C ∼= Rep(Aut⊗(C
F−→ Vec))

as symmetric fusion categories, such that the following diagram commutes

C Rep(Aut⊗(F ))

Vec

∼

F

Proof. By Lemma 3.4, End(F ) =
⊕

Xi∈P (C) End(F (Xi)) is a finite dimensional co-commutative

Hopf algebra, with grouplike elements Aut⊗(F ). By Fact 3.3,

End(F ) = C[Aut⊗(F )].

Therefore, Lemma 3.1 yields that

C ∼= Rep(C[Aut⊗(F )]) = Rep(Aut⊗(F ))

as categories. Finally, for α ∈ Aut⊗(F ) and C,C ′ ∈ C, observe
ρF (C⊗C′)(α) = αF (C⊗C′) = αF (C) ⊗ αF (C′) = ρF (C) ⊗ ρF (C′)(α).

So F̂ (C)⊗ F̂ (C ′) = F̂ (C⊗C ′) when we restrict ourselves to the action of Aut⊗(F ) ⊂ End(F ).
Therefore, C ∼= Rep(Aut⊗(F )) as symmetric fusion categories. □
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