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ABSTRACT. The category of representations of a group forms a symmetric fusion category
with a fiber functor, which is a strict faithful symmetric functor into the category of vector
spaces. We show that we may recover a group from its representations in a process known
as Tannaka reconstruction. Conversely, we prove Krein’s theorem which states that every
symmetric fusion category equipped with a fiber functor arises in this way.
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The standard reference for tensor (fusion) categories is [2]. Our treatment of the Tannaka
reconstruction theorem is based on [3] and the David Green’s treatment of classical Tannaka
reconstruction in an upcoming pre-print. The proof of the converse theorem is based on
many useful discussions with David Green. However, a generalized version of this result can
be found in [1].

1. INTRODUCTION

In what follows, we will only consider vector spaces and representations over C. Similarly,
we consider categories where each hom-set is equipped with the structure of a C-vector
space such that composition is bilinear. Motivated by representation theory, we provide the
following definition.

Definition 1.1 — An object V in a (C-linear) category C is said to be simple when
End(V) = Hom¢(V, V) = Cidy.

A category C is semisimple when every object can be decomposed as a finite direct sum
of simples. We further say that C is finitely semisimple when there are only finitely
many simple objects (up to isomorphism). We denote the set of simple objects (up to
isomorphism) by P(C).

Remark 1.1. One can show that every semisimple category is an abelian category such that
every short exact sequence splits. In particular, any functor from a semisimple category is

exact, i.e. preserves short exact sequences.
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The following definition categorifies the notion of a commutative semisimple algebra.

Definition 1.2 (SFC) — A symmetric fusion category (C,®, l¢, a, A, p, §) consists of:
(C) A finitely semisimple category C;
(®) A bifunctor ®: C x C — C;
(1¢) A simple object 1¢ € C called the unit;
(o) An associator natural isomorphism

agyw: U@ (VW) (UV)W for UV,W e,
(A) A left unitor natural isomorphism
Av:le®@V =V forVecC;
(p) A right unitor natural isomorphism
pv:V®le—=V forV eC,;
(8) An interchanger natural isomorphism
Bvw: VW —-WeV for V;IWeC.

We require that:
e Any two ways of reparenthesization, adding or removing the unit, swapping
objects with a;, A, p, 5, and identities agree.
e For every object V' € C, there exists a dual object V* € C with maps

ev: V' ®V — 1 and coev: 1l -V V™,

such that any two ways of annihilating and producing V,V* with ev, coev, and
identities agree.

Example 1.3 — The category Vec of vector spaces and linear maps admits a canonical
structure of a symmetric fusion category. In particular,
e X is given by the ordinary tensor product,
® 1y is given by the one-dimensional vector space C,
e the coherence natural isomorphisms «, A, p, and § are given on simple tensors in
the obvious way,
e I/* is given by the dual vector space of V| ev is given by function evaluation on
simple tensors, and coev is determined on 1 € C by the canonical tensor Y e' ®e;
in V ® V* where {e;} is any basis on V and {e’} is the induced dual basis on V*.

Example 1.4 — For a finite group G, consider the category Rep(G) of finite dimensional
representations of G and G-intertwiners.

e In class, we showed that Rep(G) is finitely semisimple.
e Furthermore, recall that Rep(G) inherits tensors and duals from Vec, hence
turning Rep(G) into a symmetric fusion category.

In particular, for G-representation (V, py/) and (W, py/), we have
(Vipv) ® (W, pw) = (V@ W, pv ® pw),



that is, pyew = py ® pw. Given (V, py) one also defines the action of G on V* by
(g-0)(v) = <P(971 cv) forpeV*andov e V.

Remark 1.2. For a finite group G, notice that Rep(G) admits a forgetful functor

F: Rep(G) — Vec
(V7 PV) = V.

By construction, F' is faithful and preserves the tensor, unit, and coherence natural isomor-
phisms on Rep(G). In this note, we will call such strict faithful symmetric functors from a
general symmetric fusion category into Vec a fiber functor.

Definition 1.5 — Given any (C-linear) functor F': C — D between (C-linear) categories,
there is an algebra End(F) of natural transformations from F to itself. The vector space
structure on End(F') is determined component-wise and the multiplication is given by
composition of natural transformations.

Moreover, when C and D are symmetric fusion categories with F' perserving the tensor,
unit, and coherence natural isomorphisms, we may define a group Autg(F) of natural
isomorphisms from F' to itself such that nyew = ny @ nw for VW € C.

2. TANNAKA RECONSTRUCTION

Given a finite group G, we may produce its category of representations Rep(G) together with
its fiber functor F': Rep(G) — Vec. Conversely, given this symmetric fusion category Rep(G)
with its fiber functor F', we may construct a group Autg(F') of ®-natural isomorphisms from
F to itself. In this section, we will show that this reconstructs the original group G, i.e.

G = Autg(Rep(G) L Vec).
We first recall some facts about the group algebra C[G] of a finite group G, which is given by

C[G] = {Zzgcsg 2y € c} :

geG
First notice that C[G] admits a G-action determined by left multiplication
Go - 0y = 0409 for go € G and ¢, € C[G].

In this sense, we obtain the following fact.

For (V, pv) € Rep(G), we have F(V)) = Homgep()(C[G], V).

Proof of Fact. Given v € F(V'), we define T': C[G] — V by

T Z 2909 = Z zgpv (9) (V).

Conversely, we identify T: C[G] — V with T, € V.
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In particular, since C[G] acts on Hom(C[G], V), each G-representation can be uniquely
extended to a C[G]-representation. In what follows, we will identity Rep(G) with Rep(C[G]).

Moreover, the group algebra C|[G] admits the structure of a co-commutative Hopf algebra
with comultiplication A: C[G] — C[G]® C[G], counit e¢: C[G] — C, and antipode S: C[G] —
C|G] determined by:

A(g) = 0y @ 0,
€(dy) =1
S((;g) = 5g—1.

The grouplike elements of C[G] are precisely those 6, € C[G] for g € G, i.e.
a# 0 with A(a) =a®a if and only if a = d, for some g € G.

Proof of Fact. Indeed, if a # 0 such that A(a) = a ® a, then
e(a) = (e ® €)(A(a)) = e(a)?,
implying e(a) =0 or 1. So if a = ) 2,0,, then €(a) = > 2, = 0 or 1. Now observe
geG g,heG

Hence z, = zg which occurs only when 2z, = 0 or 1 for every g € G. Since a # 0, we conclude
that a = d, for some g € G. The converse is immediate by definition of A.

We are now ready to prove the main result of this section.

Theorem 2.3 (Tannaka Reconstruction). For a finite group G, we have

G = Autg(Rep(G) EiR Vec).

Proof. By the Yoneda Lemma, we have
HomRep(G) (C[G]a (C[G]) = HOID(HOIH((C[G], _)7 HOID(C{G], _>)

So from Fact 2, we have C[G] = End(F') as vector spaces. In particular, the Yoneda map
p: C[G] — End(F) is determined on ¢, € C[G] by the natural transformation

p(0,) = (p(6,)v s F(V) = P(V)),
whose component on (V, py) € Rep(G) is given by
p(0g)v = pv(g)-
From this definition, it is clear that p is also an algebra isomorphism, i.e.
p(0g)p(dn) = p(dgn) for all g, h € G.
Furthermore, each p(d,) € Autg(F') since every py(g) is invertible with
pvew(9) = pv(9) ® pw(g).

'Recall that the Yoneda map Hom(X,Y) — Hom(Hom(X, —) — Hom(Y, —)) is given on f: X — Y by
precomposition f* by f. Through our identifications, for (V, py) € Rep(G) and v € F(V), we have v = T4,
for some T': C[G] — V' and d; is precisely the map which sends v = T4, to py(g)(v) = T040..
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Now suppose p(a) € Autg(F). Then a # 0 and pejgecie) = Poje) ® peja)- Hence
Afa) = pefaiecia) (@) (de ® 0e) = peie)(a)(6e) ® peig)(a)(de) = a @ a.
By Fact 2.2, we conclude that a = d, for some g € G. O
3. KREIN’S THEOREM

Given a symmetric fusion category C with a fiber functor F': C — Vec, we may construct the
group Autg(F) of ®-natural automorphisms of F. Conversely, given the group Autg(F), we
may construct a symmetric fusion category of its representations Rep(Autg (F')) together with
its fiber functor. In this section, we will show that this reconstructs the original symmetric
fusion category C with fiber functor F': C — Rep, i.e.

\/

For a SFC C with fiber functor F': C — Vec, there exists an equivalence

> Rep(Autg(C L Vec))

of categories F: C — Rep(End(C L Vec)) such that the following diagram commutes

\/

Proof of Lemma. We will first construct an equivalence of (linear) categories

F: C — Rep(End(F)).

> Rep(End(F))

For C' € C, we define R

F(C) = (F(C), prc))
where ppey(a) == a¢ for a: F'= F. For f: C'— C"in C, we then set ﬁ(f) = F(f). Since F
is faithful, F is a faithful. Tt is also clear by construction that the desired triangle commutes.

To show F is essentially surjective and full, we first introduce a tensoring for C compatible
with F. By choosing a basis V' = C" for every vector space V, we may define

C xVec—C
(CV)—»CRV
together with natural isomorphisms
Tev: F(CeV)—= F(C)eV
and
peyw: Co(VaW)—= (CeoV)eW
as follows. Set C @ V := V%" and choose the maps

oy F(C®) = F(C)® = F(C)® C" = F(O)® V
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determined by the basis V' = C", and
UOVW: CEB(ner) N CEB(ner)
to be the obvious morphism in C determined by the change of basis matrix
C"" VoW —-C"'eC"=C".

One extends ® to morphisms similarly. We now set
@ X; @ F(X

Now notice that each a € End(F) is uniquely determined by ax, € End(F(X;)) for X; € P(C)
since C is semisimple and acacr = ac @ ager for C,C" € C. Conversely, one can easily show
that choosing fx, € End(F(X;)) for every X; € P(C) determines a natural transformation
f € End(F). In summary,

End(F @ End(F

X;€P(C)
Now notice
End(F)= € F(X)@F(X,)" = @@ F(Xi®F(X,)")=F(Xp).
XieP(C) X;€P(C)

One verifies that through this identification, the action of End(F") on F(Xp) agrees with
left multiplication (postcomposition) on End(F'). We are now ready to show F' is essentially
surjective. Consider some (V, py) € Rep(End(F)). Let C € C be the coequalizer

C::coeq(XF®End ®Vﬁ;dXF®V)
evidy

where the bottom arrow is given by

Xr@End(F)®@V = Xp ® End(Xp) @ V 22, X, 0 V.

Here, we have used the map ev: C'® Hom(C,C") — C” given on the summand indexed by
f: C — C" by f itself. Now notice that

F(C)=coeq(F(Xp)@End(F) @V = F(Xp)@V)
= coeq (End(F) @ End(F) @ V = End(F) @ V)
= End(F) Qgnar) V
=V.

By our previous remarks about the action of End(F) on F(Xg), we see that

F(C) - (V. p).



Finally, to see that F is full, notice that an End(F)-intertwiner ¢: (V, pyv) — (W, pw) induces
a morphism of diagrams:

idr®py
Xr@End(F) @V —/— = Xp@V

evidy

id®id®<pl lid@cp
idr®pw

Xr@End(F)@ W :di Xr@W
ev®idy,

We then obtain a morphism f between the coequalizers of Eoth diagrams. One then see that
F(f) = F(f) = idgna(r) @endr) ¢ = ¢. We conclude that F': C — Rep(End(F)).

For a Hopf algebra H, the grouplike elements G' of H form a group.

Proof of Fact. The fact that G is closed under multiplication follows from the condition that
comultiplication is an algebra map. As in Fact 2.2, one verifies that g € G satisfies €(g) = 1.
It then follows that S(g) = ¢g~! since

S(a)a=m(S ®id)(a ® a) = m(S ® id)Aa = le(a) = 1,
and similarly aS(a) = 1.

Let H be a finite dimensional (complex) co-commutative Hopf algebra.
Then H is the group algebra C[G]| of the group-like elements G of H.

Proof of Fact. This seems to be corollary of the Cartier-Konstant-Milnor-Moore classification
theorem. Unfortunately, I could not find a simpler proof of this fact.

We may equip End(F') with the structure of a Hopf algebra such that
the grouplike elements of End(F') are Autg(F).

Proof of Lemma. Similar to the tensor product of algebras, there is a Deligne tensor product
C X D of semisimple categories C, D which admits a separately linear functor

CxD—-CKD

such that for linear functors G: D — £ and H: D — &, there exists a unique linear functor
G' X H such that the following diagram commutes

CXD

S

CXDW(S‘

The Deligne tensor product satisfies
End(G) ® End(H) = End(GX H).
In particular, End(F) ® End(F') = End(F X F'). We then define the coproduct
A: End(F) — End(F) ® End(F)
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by Aa € End(F X F) for a € F by

(Aa)ccry = acgcr-
From this definition together with Fact 3.2, it is clear that Aa = a ® « if and only if
a € Autg(F). We then define the counit

e: End(F) —C
by €(a) := oy where oy € End(F'(1)) = End(1) = C. Finally, we define the antipode
S: End(F) — End(F)

by S(a)c = af. for C € C. One checks that the associator, unitors, and interchanger in
C are absorbed by the canonical associator, unitors, and interchangers of algebras and the
identification of End(G) ® End(H) with End(G X H). In particular, A is co-associative, € is
co-unital, and A is co-commutative.

Theorem 3.5 (Krein). For a SFC C with fiber functor F': C — Vec,
C = Rep(Autg (C L5 Vec))

as symmetric fusion categories, such that the following diagram commutes

C = > Rep(Autg(F))

EN

Vec

Proof. By Lemma 3.4, End(F) = @, ¢ p(c) End(#(X;)) is a finite dimensional co-commutative
Hopf algebra, with grouplike elements Autg(F'). By Fact 3.3,

End(F) = C[Autg(F)].
Therefore, Lemma 3.1 yields that
C = Rep(C[Autg(F)]) = Rep(Autg(F))
as categories. Finally, for a € Autg(F') and C,C" € C, observe
PF(C@C')(@) = Qp(cec) = OF(C) @ Apcy = Pre) @ PF(C')(Oé)-
So F(C)® F(C") = F(C®C") when we restrict ourselves to the action of Autg(F) C End(F).
Therefore, C = Rep(Autg(F)) as symmetric fusion categories. O
REFERENCES

[1] P. Deligne and J. S. Milne. Tannakian categories.

[2] Pavel I. Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories. American
Mathematical Society, 2017.

[3] Pavel I. Etingof and Olivier Schiffmann. Lectures on quantum groups. International Press, 2012.



	1. Introduction
	2. Tannaka Reconstruction
	3. Krein's Theorem
	References

