<table>
<thead>
<tr>
<th>Course</th>
<th>College</th>
<th>Campus</th>
<th># Enrolled</th>
<th># Resp</th>
<th>Web</th>
<th>Instructor Mean</th>
<th>Instructor SD</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBGP 701.03</td>
<td>MED</td>
<td>COL</td>
<td>15449</td>
<td>25</td>
<td>N</td>
<td>4.1 4.3 4.5 4.3 4.4 4.2 4.5 4.2 4.3</td>
<td>0.9 0.9 0.7 0.7 0.7 0.6 0.9 0.7 0.9 0.7</td>
<td>4.4</td>
</tr>
<tr>
<td>IBGP 701.05</td>
<td>MED</td>
<td>COL</td>
<td>17906</td>
<td>29</td>
<td>Y</td>
<td>3.3 3.7 3.8 3.6 3.4 3.5 3.5 3.7 3.8 3.5</td>
<td>0.8 0.9 0.7 0.9 0.9 0.9 0.9 0.7 0.7 0.8</td>
<td>4.3</td>
</tr>
<tr>
<td>MCDBIO 890</td>
<td>BIO</td>
<td>COL</td>
<td>6448</td>
<td>14</td>
<td>N</td>
<td>4.0 3.9 4.5 4.2 4.0 4.4 4.0 4.0 4.0 4.2</td>
<td>0.6 0.9 0.8 0.7 0.7 0.7 0.6 0.5 1.0 0.7</td>
<td>4.4</td>
</tr>
<tr>
<td>MOLGEN 602</td>
<td>BIO</td>
<td>COL</td>
<td>9309</td>
<td>16</td>
<td>N</td>
<td>3.7 4.4 4.8 4.6 3.9 4.9 4.4 4.8 4.2 4.4</td>
<td>1.1 0.8 0.4 0.6 1.1 0.3 0.7 0.6 1.0 0.7</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9741</td>
<td>19</td>
<td>N</td>
<td>4.7 4.7 4.9 4.7 4.8 4.8 4.8 4.8 4.8 4.9</td>
<td>0.6 0.5 0.2 0.5 0.4 0.5 0.4 0.4 0.4 0.3</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9940</td>
<td>23</td>
<td>N</td>
<td>4.7 4.8 5.0 4.7 4.9 5.0 4.8 4.8 4.7 4.9</td>
<td>0.6 0.4 0.2 0.5 0.4 0.0 0.4 0.5 0.7 0.3</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10076</td>
<td>23</td>
<td>N</td>
<td>4.3 4.7 4.7 4.5 4.2 4.7 4.8 4.6 4.4 4.5</td>
<td>1.0 0.7 0.7 0.8 1.0 0.7 0.6 0.8 0.7 0.7</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7632</td>
<td>9</td>
<td>Y</td>
<td>4.1 4.4 4.4 4.0 4.2 4.4 4.2 4.2 4.1 4.9</td>
<td>1.3 1.3 1.3 1.5 1.3 1.3 1.3 1.3 1.4 0.3</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Harold Fisk
Cumulative Student Evaluation of Instruction Summary
Report generated on 6/17/2010
NOTE TO INSTRUCTOR: Mark the "Multi inst" box for course sections that were team taught or had more than one instructor.
"Web" is "Y" if student ratings were collected electronically.
Comparison groups are based on class size (Small, Medium, Large) and electivity (Required, Free, Choose). See individual reports for more details.
<table>
<thead>
<tr>
<th>Course</th>
<th>Semesters</th>
<th>Class</th>
<th># Enrolled</th>
<th># Resp</th>
<th>Web</th>
<th>Instructor Mean</th>
<th>Instructor SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLGEN 705</td>
<td>2007 Wntr</td>
<td>9606</td>
<td>55</td>
<td>35</td>
<td>N</td>
<td>3.8 4.2 4.5 4.6 4.2 4.5 4.0 4.1 4.1 4.1</td>
<td>0.9 0.8 0.7 0.6 0.9 0.6 0.9 0.9 1.0 0.8</td>
</tr>
<tr>
<td></td>
<td>2008 Wntr</td>
<td>9882</td>
<td>60</td>
<td>47</td>
<td>N</td>
<td>4.1 4.2 4.7 4.3 4.2 4.6 4.1 4.4 4.3 4.5</td>
<td>0.9 0.9 0.8 0.9 1.2 0.9 1.0 0.9 1.1 0.9</td>
</tr>
<tr>
<td>MOLGEN 800</td>
<td>2010 Spr</td>
<td>7754</td>
<td>29</td>
<td>10</td>
<td>Y</td>
<td>4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.5</td>
<td>0.4 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.5 0.5</td>
</tr>
</tbody>
</table>
Great instructor. Truly a master of his craft.

Dr. Fisk was one of the best professors that I have had at Ohio State and THE best professor in the molgen department. He was always willing and available to help students, while still encouraging them to think for themselves.

Great prof. Works very hard to listen to students/respond to confusion (either expressed in class or evidenced on quizzes). Learned a great deal from him. Includes thinks in lecture that may not be tested, but are useful to understand. I really liked the tendency not to teach to the test. Plus, fun to talk to during long incubations!

Dr. Fisk was the best professor I've had all year, and the best Molecular Genetics instructor I've had overall. His lectures were highly informative, and I really enjoyed how the lab itself set out to answer questions about centrosomal proteins that had not yet been answered. He always had time to answer questions both related and not-related to lab and was always willing to actually listen to the opinions of his students. The wording on the quizzes/midterms was sometimes a little weird, but I never thought it was bad enough that I couldn't answer questions after a bit of clarification. Overall, I really enjoyed this class and having Dr. Fisk as an instructor.
Department of Molecular Genetics - Peer review of teaching

Name of Instructor - Harold Fisk

Name and Number of course being evaluated - MG602

Name of Evaluator - Michael Weinstein

Number of lectures/laboratories attended by the evaluator - 0.5 lab sessions

The following topics should be addressed in your evaluation letter:

1. **Syllabus and handouts** - Two handouts were available at the time of the class. The first was the lab manual, while the second was a set of procedures for the experiments to be performed in the class. The manual appeared comprehensive with regard to procedures, but less so in terms of background material, presenting only one page of explanation to students who may lack rigorous cell biology training. I have spoken to Harold about this, and he has expressed in interest in increasing the manual, but had little time, since this is his first class taught here at OSU, and he said that it had caught him a bit off guard.

2. **Clarity, organization, and pace of presentation** - Harold began with a discussion of indirect immunofluorescence, beginning with fixation and permeabilization, and continuing through to detection. More background would have been welcome, e.g. the molecular structure of a fixative and what it does, and the same for permeabilization. Harold described the functions of a fluorescent microscope, but a cartoon or diagram would have assisted the students' understanding considerably. The students were left to begine their IF experimentation, and later Harold discussed the second part of their lab work, which involved PCR amplification. There was a least one complex text slide that was largely ignored. Also, at one part Harold tried to differentiate between the students' plasmid DNA, cDNA, and PCR products. The discussion was sufficiently confusing that I got lost.

3. **Mechanics of presentation (volume, voice, speed, mannerisms)** - The class was small (~25 students) so no microphone was employed. Harold was easily heard in the back of the room. Harold displayed one bad vocal habit in which he would finish sentences in a near monotone. However, other than that he did a very nice job.

4. **Use of teaching aids (projector, blackboard etc...)** - Harold utilized a Powerpoint presentation shown through a portably video projector, as well as an overhead. The Powerpoint was quite light at the beginning, until one of the TAs lowered the lights. Lighting is always a consideration in classroom situations. During the overhead demonstration Harold did not look at the
students at all. Although it is difficult to make eye contact while manipulating something on an overhead, it can be done sporadically.

5. **Student interactions (questions/answers)**- Harold showed surprisingly minimal student interactions, especially for a lab course. There was little opportunity during the lecture portion for questions, nor were any asked. It was quite striking that at one point the students began a procedure that was of sufficient difficulty that Harold showed a demonstration of how it was to be done, yet when the students began the experiment themselves Harold was not among them to check their progress. To his credit he was doing other essential lab chores, but there could have been completed once he was satisfied with their progress.

6. **Strong points**- Harold has developed an appealing laboratory curriculum using cutting edge methodology that will show students the power of somatic cell genetics and cell biology. He clearly has the potential to be a dynamic instructor.

7. **Suggestions for improvements**- Improvements can be made in student interactions, especially during lecture.
Syllabus and handouts: Dr. Fisk is utilizing Carmen to make his lecture slides, papers for review etc. available to the students. He had started lecturing without posting his slides online before the lectures but upon request of the students started to provide the slides online before lecturing. Upon investigating the amount of information posted online I found there to be a large amount of information including a 36 page article in German and 10 other review or primary literature articles. This is in addition to the lecture slides. This seems like a lot of information, especially given that two chapters in a text book have also been suggested as background reading.

Dr. Fisk has obviously spent an enormous amount of time and energy preparing his lectures and the lecture slides. Many of his slides would have taken a huge amount of time and effort to put together and I hope the students appreciate the effort he has obviously put into preparing the lectures.

Clarity, organization and pace of presentation: Dr. Fisk presented the material in a clear and logical manner which most students should have been able to follow easily. At times his lecture became faster which could potentially cause problems for the non-native English speakers, although I did not ascertain this to be a fact. His voice is clear and easily heard from the back of the lecture room. Dr. Fisk made a point of going over the same concepts in several different ways and did a nice job of summarizing the previous lecture at the beginning of the second lecture I attended.

Mechanics of presentation: Dr. Fisk speaks clearly and presented the lecture to the students well, constantly scanning his audience to engage them in his lecture. The 50+ students attending both lectures were attentive. In the first lecture I attended Dr. Fisk explained he was afflicted with flu like symptoms but his lecture was still clear.

Use of teaching aids: Dr. Fisk used a PowerPoint presentation and the projector. Most slides had an appropriate amount of information on them but on occasion slides had too much information and it was not clear what details the students were expected to remember.

Student interactions: Dr. Fisk asked questions of the students throughout his lectures but few questions were asked by the students. It is unclear why so few questions were asked. Perhaps everything was so crystal clear no questions needed to be asked. Dr. Fisk made it clear that he wants, and encourages, questions and this is an area that could be improved.

Strong points: The strong points of the lectures were the immaculately prepared slides and the ease with which Dr. Fisk presented the lectures, using an authoritative but
amiable presentation style. He clearly understands the material he is teaching at an intimate level and plainly tried to share some of his enthusiasm for science with his students.

Suggestions for improvements: There are several areas in which Dr. Fisk might be able to improve, although overall there is little room for major improvements.

On a couple of occasions some important details of the experiments being explained were not presented on the slides, such as the specificity of trypsin for example.

Several of the beautiful images presented in the slides did not project well with all the lights in the lecture room on. Half way through the second lecture Dr. Fisk dimmed the lights at the front of the room and that greatly improved the visibility of the details within the slides. I suggest he either switches these lights on and off, depending on the content of the slides, or just leaves these lights off.

It had occurred to me that because of the huge amount of detail presented in some of Dr. Fisk’s slides the students might need some guidance regarding what Dr. Fisk expected of them with regard to memorizing the information presented and exam questions. At the beginning of the second lecture I attended this topic was addressed by Dr. Fisk in response to questions he had received from some students. Dr. Fisk provided details of his expectations online, and at the beginning of his lecture, but it would also be a good idea to indicate details in specific slides, as they come up, which the students do not need to memorize.

I think some of the questions that Dr. Fisk asked the students may have been too simple, especially those they could answer by looking through the lecture slides put online. By asking more probing questions he may be able to get more of the students, particularly the advanced students, interested in answering. He could also try to ask more often if the students understood the concepts he explained to try and get more students to ask questions.

Overall summary: Dr. Fisk is clearly putting a huge amount of time and energy into his teaching and he is obviously taking this responsibility extremely seriously. He has a clear passion for science and this comes through loud and clear to the students. There is some room for improvement, as suggested above, but overall he should be commended for a job well done. I am sure he will continue to lecture well and will go from strength to strength.
Peer evaluation of Dr. Fisk's teaching by Hay-Oak Park

I am happy to provide a peer evaluation of Dr. Harold Fisk's teaching. Dr. Fisk gave a guest lecture in my Honors Cell Biology course (MG-H607) on November 14, 2007. This course is designed for more advanced undergraduate students who are interested in a future research career. The course emphasizes the process of discovery by combining lectures, students' presentations of current research articles, and a few guest speakers' research talks.

I was very pleased not only because Dr. Fisk agreed to give the lecture (even though he had no obligation to do so) but also because he did an excellent job. He successfully combined the relevant background material appropriate for undergraduate students and his own research topic - centrosome duplication. The clarity, pace and organization of the lecture were very good. In particular, the organization was outstanding. The information was presented in a logical progression that made it easy to understand. Dr. Fisk used a Powerpoint presentation, and all slides were very clear and illustrated the points he was making well.

I think it is more important to emphasize the process of discovery and to encourage students' critical thinking, rather than to simply deliver my knowledge to students. Dr. Fisk did an excellent job in that regard. For example, he presented how different approaches - 'reverse genetics' and 'forward genetics' - can be undertaken depending on model systems to address the same question. He had clearly put a great deal of thought into his presentation. Students asked several interesting questions during his lecture and he did a good job in answering them.

In summary, I thought Dr. Fisk is an already solid classroom teacher. He is an enthusiastic instructor whose teaching capability is well above the mark for assistant professors. In fact, I would love to have him as a guest speaker in my course every year!
Dear committee members,

This letter summarizes my evaluation of the teaching performance of Dr. Harold Fisk, an Assistant Professor in the Department of Molecular Genetics at The Ohio State University. I attended a lecture given by Dr. Fisk in the “Eukaryotic Cell and Developmental Biology Laboratory” course, MG602, on April 8, 2008. MG602 is a five credit hour lab-based course that is taken primarily by MG majors. The stated goal of this course is to expose students to the “techniques and methods central to the fields of eukaryotic cell and developmental biology.” The instructors in this course give introductory lectures for each lab section that describe the background of the field and the types of techniques that will be used. On this day, I observed Dr. Fisk’s lecture on the utility of classical genetic analysis and the more recent advances of gene inactivation by RNAi and related methodologies.

In general, I felt that Dr. Fisk did an excellent job with his presentation and that he has the potential to be one of the top instructors in our department. He presented the material in a clear and thoughtful manner and appeared to establish a good connection with his audience. The class was clearly engaged as there were always more than one answer to any one of the numerous questions that he peppered into the lecture. Perhaps a major reason for their interest is that Dr. Fisk is clearly passionate about the science and the teaching of it. He laid out very nicely the reasons we work with model organisms and why the information we obtain from these studies are likely to be relevant to human disease. The lecture was accompanied by a PowerPoint slide presentation that was well-designed and clearly demonstrated the major points being touched upon in the lecture. One minor comment I would make is that some of the slides contained text that was rather small and difficult to read. However, I want to emphasize that this is a minor point and that the most important information on the slides was generally clear to all people in the room.

I should point out that since this is a lab course, the students received a rather detailed manual that describes the background and subtleties of experimental science.
This manual was written by the instructors of the course and was beautifully laid out and very clear. The writing of this document obviously took a significant amount of time and effort and again points to the seriousness with which Dr. Fisk regards the teaching enterprise. In summary, I feel that Dr. Fisk genuinely cares about his students and that he has the potential to be an top-flight instructor.

Sincerely,

[Signature]

Paul K. Herman
Associate Professor of Molecular Genetics
Department of Molecular Genetics- Peer Review of Teaching

Name of Instructor: Dr. Harold Fisk
Name and number of course being evaluated: Molecular Genetics 602
Academic quarter when course was evaluated: Spring 2009
Name of evaluator: Harald Vaessin
Number of lectures that were attended by the evaluator: one lab session; 05/07/2009

1. Laboratory Manual/Syllabus:
Dr Fisk provides the students with an extensive laboratory manual that he has developed for this course. The well-written and illustrated manual contains critical background data, experimental procedures, as well as syllabus related information.

2. Clarity, organization and pace of presentation
Dr. Fisk presented a lecture during the first part of the lab session to discuss remaining issues from previous lab sessions and to introduce the students with the experiments to be completed in the present session. Dr. Fisk’s presentation on the “use of a hemacytometer to count cells” was well designed and provided both theoretical background information, as well as a detailed discussion of the experiments to be completed. Dr. Fisk actively involved the students by asking questions to test the student’s understanding of the concepts. Students participated well and appeared focused on the lecture. The lecture was clearly well planned and very well executed. As the lecture has to be presented in the laboratory (and not in a regular classroom) this can be a significant challenge.

3. Mechanics of presentation (voice volume, speed, mannerisms)
Dr. Fisk’s lecture was dynamic in delivery and, given the limitations of the room, easy to follow. Dr. Fisk made sure that all distracting noise sources (centrifuges etc) were not running and that other lab related distractions remained at an acceptable minimum. Dr. Fisk’s lectured at an appropriate pace, without distracting mannerisms, and appeared comfortable. It should also be noted that Dr. Fisk stayed for the entire period of the lab and had continuous one-on-one discussions with the students as the lab exercise proceeded.

4. Use of teaching aids (projector, blackboard, etc)
Dr. Fisk used teaching aids effectively during the lecture that I attended. In the PowerPoint supported lecture, Dr. Fisk used a mixture of textbook illustrations, self-designed slides, and summary slides, which well supported and illustrated the lecture content.

5. Student interactions (questions/answers)
Students appeared to pay good attention to Dr. Fisk’s presentation. Dr. Fisk was very effective in utilizing targeted questions to keep the student’s attention, as
well as to assess whether the students understood the presented content. Students appeared at ease to ask questions. Dr. Fisk answered all questions carefully and used them as a starting point to extend the discussion.

6. **Strong points**
Both the lab session and the associated lecture were very well designed and presented. Dr. Fisk interacts very well with the students and the students appear to interact well with him in this laboratory setting. In fact, a student mentioned to me how much she liked this course and specifically noted that Dr. Fisk is a “great teacher”.

7. **Suggestions for improvements**
I have no significant suggestions for improvements. Limitations that I observed were related to the limitations of the room (e.g. no dedicated projector, low quality screen etc.).
Peer Review of Teaching
Department of Molecular Genetics

Name of Instructor: Harold Fisk
Name and Number of course being evaluated: 2010 MG602
Name of Evaluator: Tien-Hsien Chang

Number of lectures/laboratories attended by the evaluator: 1 lab session.

The following topics should be addressed in your evaluation letter:

1. **Syllabus and Lab Manual:** The syllabus was clear, well organized, and contained all of the relevant material for the class. Presentation was done with PowerPoint projections of great clarity. The lab manual was well organized and written in a readily accessible manner to undergraduate-level students.

2. **Clarity, organization, and pace of presentation:** This is a laboratory course. Dr. Fisk started out giving a quiz consisting of four multiple choices questions, which lasted for ~15 minutes. After collecting answers from the students, Dr. Fisk immediately went through and explained in great details the correct answers of the questions. He reminded students the due date for the lab report and the date for the upcoming exam, during which time students' lab notebooks shall be inspected and graded. Several students asked for clarification, to which Dr. Fisk patiently and clearly answered. Dr. Fisk then began his opening lecture for the session, which lasted for about 40 minutes. He started by reminding students what they need to do for the session and went on to discuss how cell components can be visualized by using small molecules, specific antibodies, and fluororescently tagged protein fusions with GFP and DsRed. He briefly discussed the Nobel Prize recently awarded to the three scientists who ushered in the era of using fluororescently tagged proteins. In the process, Dr. Fisk showed many images illustrating the detection of various cellular components, such as alpha- and gamma-tubulins. These images were gorgeous and the clarity was superb, especially in exhibiting the power of concurrent examination of multiple components using multiple colors. Dr. Fisk then spent considerable amount of time on discussing centrosome, the subject of this student lab. He talked about the overall structure, various domains of centrosome, and the respective protein markers. Overall, Dr. Fisk’s lecture was skillful, very clear, well organized, and the pace was even.

3. **Mechanics of presentation (volume, voice, speed, mannerisms):** Because this student lab is not equipped with a microphone system, Dr. Fisk spoke without the aid of microphone. With the refrigerator humming (sometimes noisily) in the back of the room, where I stood, I at times missed
a few words, but that did not prevent me from understanding Dr. Fisk well. Dr. Fisk was quite comfortable in presenting the material and his mannerisms were entirely professional. I observed that students were all highly focused, with some taking notes, during Dr. Fisk’s lecture.

4. **Use of teaching aids (projector, blackboard etc…):** Dr. Fisk used PowerPoint presentation projected through an LCD system in the room. His slides were crystal clear. Vocabulary words were in red and clear, and Dr. Fisk made a point to emphasize what he wanted the students to focus on, such as the need to match primary and secondary antibodies for imaging.

5. **Student interactions (questions/answers):** Dr. Fisk’s lecture went smoothly well and some of the materials were apparently touched upon before. As a result, no student asked question during and after his lecture.

6. **Strong points:** Dr. Fisk is a very strong instructor. He is clear and to the point. The most impressive thing is that Dr. Fisk spent nearly whole time in this five-hours lab, demonstrating a remarkable commitment to student’s learning. He was there after his lecture, walking around, helping students, and addressing individual questions. There is without doubt that Dr. Fisk has taken his teaching with the utmost seriousness.

7. **Suggestions for improvements:** Because of the imperfect lab environment, it may be useful for Dr. Fisk to raise his voice or to use a microphone system, so that students sitting in the back of the room can hear better (although, admittedly, I did not ask students whether they can hear Dr. Fisk all right; it could all due to my own “aging” hearing problem!). One other thing Dr. Fisk may try is to use the more flexible time in the lab to tell the stories behind some of the greatest discoveries, such as GFP. I suspect that may heighten the interest and perhaps passion of some of the students. Overall, Dr. Fisk is a fine teacher doing a great job.
As a supplement to the SEI forms, I would appreciate your comments as I think about how to modify this course for next year. Therefore, please share your thoughts as follows. Your comments will be kept completely anonymous.

1) Did you enjoy the fact that you were addressing actual research questions, or were you uncomfortable with the fact that the outcome of your experiments was not known?

2) Given your choice, would you rather learn lab techniques by performing a series of protocols that have been well rehearsed and will only fail due to operator error, or would you prefer to learn through a series of new experiments, the outcomes of which are not known?

3) Would you rather attempt to generate an epitope tagged protein, or be given an epitope tagged protein to use in your experiments?

4) Are there any other comments you would like to share (please feel free to use the back of this sheet if you need more room)?
As a supplement to the SEI forms, we would appreciate your comments to help us improve the course for next year. Please share your thoughts, which will be kept completely anonymous. Dr. Fisk will not see this questionnaire until after lab notebooks, lab reports, and exams are graded and returned.

1) Did you enjoy the fact that you were addressing a novel research question, or were you uncomfortable with the fact that the outcome of your experiments was not known?

2) Given the choice, would you rather learn techniques by performing well rehearsed protocols that will only fail through operator error, or would you prefer to learn through a series of experiments whose outcomes are not known?

3) Would you rather attempt to generate an epitope tagged protein, or be given an epitope tagged protein to use in your experiments?

4) Did you find it a valuable experience to maintain your own cultures throughout the course, or would you have preferred to be given pre-made cultures for each experiment?

5) Are there any other comments you would like to share (please feel free to use the back of this sheet if you need more room)?
Next year, Dr. Fisk will teach the entire 10 weeks of MG602. This will require both the expansion of existing material and the inclusion of new material in the course.

6) Which aspects of the course do you think would most benefit from being expanded?

7) Given that there will be additional time, should students clone their own cDNA, or would it still be better to give them cDNAs already cloned into pENTR vectors?

8) What types of experiments that were not part of the course this year would you like to have been able to perform?

9) Do you think students would benefit from having any part of the course removed?
As a supplement to the SEI forms, we would appreciate your comments to help us improve the course for next year. Please share your thoughts candidly. This questionnaire will be kept completely anonymous and will not be seen by Dr. Fisk until after final grades have been assigned.

1) Did you enjoy the fact that you were addressing a novel research question, or were you uncomfortable with the fact that the outcome of your experiments was not known?

2) Given the choice, would you rather learn techniques by performing well rehearsed protocols that will only fail through operator error, or would you prefer to learn through a series of experiments whose outcomes are not known?

3) Would you rather attempt to generate an epitope tagged protein, or be given an epitope tagged protein to use in your experiments?

4) Did you feel you got enough experience with maintaining your own cultures, or would you have liked more time with cell culture? Alternatively, did you value the experience, or would you have preferred to be given pre-made cultures for each experiment?

5) Are there any other comments you would like to share (please feel free to use the back of this sheet if you need more room)?
This is the first year that Dr. Fisk has taught the entire 10 weeks. We would like to know whether the new material (Experiments 1-4) was effectively integrated with the old material (Experiments 5 and 6).

6) Which aspects of the course do you think would most benefit from being expanded?

7) Next year, should students still clone their own cDNA into a pENTR vector, or was there too much cloning and students would be better off being given cDNAs already in pENTR vectors?

8) What types of experiments that were not part of the course this year would you like to have been able to perform?

9) Do you think the course would benefit from having any part removed?
As a supplement to the SEI forms, we would appreciate your comments to help us improve the course for next year. Please share your thoughts candidly. This questionnaire will be kept completely anonymous and will not be seen by Dr. Fisk until after final grades have been assigned.

1) Did you enjoy the fact that you were addressing a novel research question, or were you uncomfortable with the fact that the outcome of your experiments was not known?

2) Given the choice, would you rather learn techniques by performing well rehearsed protocols that will only fail through operator error, or would you prefer to learn through a series of experiments whose outcomes are not known?

3) Would you rather attempt to generate an epitope tagged protein, or be given an epitope tagged protein to use in your experiments?

4) Did you feel you got enough experience with maintaining your own cultures, or would you have liked more time with cell culture? Alternatively, did you value the experience, or would you have preferred to be given pre-made cultures for each experiment?

5) Are there any other comments you would like to share (please feel free to use the back of this sheet if you need more room)?
It is possible that Dr. Fisk will teach only 5 weeks in MG602 next year. We would like to know what you valued most about the 10 week course in order to ensure the best possible 5 week version.

6) Considering Experiments 1-4, which experiments do you think are the most critical to keep?

7) Considering Experiments 1-4, which experiments do you think can or should be removed?

8) Considering Experiments 5 and 6, which techniques do you think are most important for students to learn next year?

9) What types of experiments that were not part of the course this year would you like to have been able to perform?
Dear Dr. Fisk --

Thank you very much for making the time to meet with us today. You were very gracious to see us on such short notice. The value of our visit to OSU was at least doubled by the information you were so willing to provide.

Taylor Bush & Rick Bush
Dear Harold:

I just received a copy of the notice that you were nominated for a Distinguished Undergraduate Research Mentor Award. What wonderful, but well deserved news. I was especially touched by the quotes from one student that you taught him/her "how important it was to ask "why" and from another "I never thought there would be an opportunity to use a $50,000 microscope, modify cancer cells, or do meaningful research .. but Dr. Fisk showed me that faculty do genuinely care about undergraduate education...".

I concur, that providing students with the opportunity to reach for the stars results the best education and it's a reason that students should attend OSU rather than other places without cutting-edge research.

Awesome.
Anita
--
Anita K. Hopper, Chair
Dept. Molecular Genetics
Ohio State University
484 W. 12 Ave.
Riffe 800
Columbus, OH 43210
Phone: 614-688-3306
Fax: 614-247-2594
The winners of the 2009 Distinguished Undergraduate Research Mentor awards have been contacted and notified of their pending awards. We wish to congratulate you again on your nomination as a distinguished undergraduate research mentor - a true testament to your commitment to undergraduate research at Ohio State and look forward to seeing you at tomorrow’s Denman Undergraduate Research Forum, the largest Denman forum to date with more than 500 student projects on display.

The Undergraduate Research Office
Dear Harold Fisk,

Please allow me to introduce myself, my name is Tony Zimmerman and I am the chairman of the Faculty Recognition Banquet committee for Order of Omega. You have been nominated by Valerie Tiu as an outstanding faculty member who deserves to be recognized for your dedication to students and the university. We are also very excited to announce that Dr. Adams-Gaston, Vice President for Student Life, will be our guest speaker. Please RSVP by May 3rd if you are able to join us.

Details:
When: Wednesday, March 6th 2009
Time: 5:30PM-7:00PM
Where: Faculty Club

Congratulations on this distinction and I look forward to seeing you on the 6th.

Respectfully,
Tony Zimmerman

--
Tony Zimmerman
President
The Interfraternity Council
The Ohio State University
C: 419.680.8109
E: zimmerman.266@osu.edu